1
|
Li MZ, Chen GJ, Wang L, Liu SM, Yu JY, Wen H, Chen ZX. Novel Guanidinium-Functionalized Stigmasterol for Bile Salt Binding and Serum Cholesterol Reduction: Synthesis, Interaction Mechanisms, and In Vivo Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21892-21904. [PMID: 39315477 DOI: 10.1021/acs.jafc.4c06317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A novel amphiphilic guanidyl-functionalized stigmasterol hydrochloride (GFSH) was designed and synthesized as bile salt sequestrants for cholesterol reduction. GFSH exhibited a considerable in vitro capacity for bile salt binding in gastrointestinal digestion and alleviated hypercholesterolemia in vivo. GFSH spontaneously interacted with sodium cholate via synergistic electrostatic, hydrophobic, and hydrogen-bonding interactions. The effects of GFSH on serum cholesterol reduction in mice fed a high-fat-high-cholesterol diet were explored by measuring the expression of key transcription factors related to bile acid metabolism. GFSH produced a dose-dependent reduction in weight gain, hepatic fat accumulation, and fecal and blood markers. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analyses demonstrated GFSH-induced expression of hepatic CYP7A, LXRα, and LDL-R. GFSH exerts the cholesterol-lowering activity by inducing the bile acid metabolism.
Collapse
Affiliation(s)
- Mi-Zhuan Li
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
- School of Public Health, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Gong-Ji Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Lei Wang
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Shi-Mei Liu
- School of Public Health, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Jia-Yin Yu
- School of Public Health, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Hao Wen
- School of Public Health, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Zhong-Xiu Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| |
Collapse
|
2
|
Paul B, Natarajan R. Metal-Organic Cage Receptors for Encapsulation and Sensing of Bile Acids. Inorg Chem 2024; 63:8449-8461. [PMID: 38630518 DOI: 10.1021/acs.inorgchem.4c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Developing synthetic supramolecular receptors to solubilize, scavenge, recognize, encapsulate, and sense steroids is challenging. Despite a limited number of receptors having affinity with steroids, none exists to bind steroidal bile acids selectively. Herein, we report a C2-symmetric metal-organic cage [Pd6L24]12+ and an expanded version of the Fujita cage [Pd6L14]12+, built with a conformationally flexible ligand L2, accessed through coordination-driven self-assembly. We examined both cages for steroid recognition in water: both have certain shared characteristics and distinctive features. [Pd6L14]12+ binds hydrophobic bile acids and other steroids by forming a 1:1 complex. In contrast, the expanded [Pd6L24]12+ cage exhibits an affinity for amphiphilic bile acids and selective steroids to encapsulate them as dimers, promoted by cooperative interguest hydrogen bonding. [Pd6L24]12+ has a 5 times stronger solubility enhancement ability for cholic acid compared to [Pd6L14]12+. Further, the expanded [Pd6L24]12+ cage can selectively sense bile acids in nanomolar detection limits through indicator displacement assay by employing sulforhodamine 101 (SR101).
Collapse
Affiliation(s)
- Bhaswati Paul
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramalingam Natarajan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Tan Y, Li S, Li C, Liu S. Self-assembly of coconut residue fiber with chitosan: Effect of three pre-treatments on the self-assembly process and bile salt adsorption. Food Chem 2024; 437:137857. [PMID: 37924767 DOI: 10.1016/j.foodchem.2023.137857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Self-assembly with chitosan is a promising method for improving bile salt (BS) adsorption by coconut residue fiber (CRF). To study the self-assembly process, three pre-treatments were performed and investigated using microrheological analysis. The effects of the pretreatments on the self-assembly of CRF and the BS adsorption were evaluated. During self-assembly, CRFs underwent Brownian-like motion, and the addition of chitosan facilitated the formation of inter-particle interactions between CRFs in the system. These interactions were small in extent, large in number, and slow to state change, in addition to relatively high strength and longer maintenance, all of which contributed to the binding to BS. The conventional pretreatments failed to effectively improve the BS adsorption of the self-assembled CRFs and weakened the inter-particle interactions in the system. These results suggest that chitosan assists in the adsorption of self-assembled CRF to BS through a combination of H-bonds and other weak intermolecular forces.
Collapse
Affiliation(s)
- Yaoyao Tan
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuxian Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China.
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China; School of Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Armijos-Capa G, Tuninetti JS, Thomas AH, Serrano MP. Enhancement of the Photosensitizing Properties of 6-Carboxypterin through Covalent Binding to the pH-Responsive and Biocompatible Poly(allylamine Hydrochloride). ACS APPLIED MATERIALS & INTERFACES 2024; 16:3922-3934. [PMID: 38061363 DOI: 10.1021/acsami.3c13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A polymeric photosensitizer was synthesized through covalent attachment of the natural photosensitizer 6-carboxypterin (Cap) to a poly(allylamine hydrochloride) (PAH) polymer. The optimization of the functionalization steps and purification procedure is described. The overall yield of the functionalization reaction was 67% to generate the modified polymer (PAH-Cap), featuring a Cap substitution degree of approximately 1% and advantageous spectroscopic properties. Photosensitizing properties of PAH-Cap were observed to occur via both photooxidation mechanisms, i.e., type I and type II. This feature was demonstrated using a biologically relevant target molecule, 2'-deoxyguanosine (dG). The spectroscopic, photophysical, and photochemical behaviors in aqueous environments were studied and compared to Cap. To explore possible further relevant biological applications, experiments with PAH-Cap and dG were carried out at physiological pH. PAH-Cap can generate singlet molecular oxygen and initiate an electron transfer process at pH 7 in air-saturated solutions upon UVA irradiation. Moreover, based on its spectroscopic features, visible light can be used to initiate the photooxidation of biological compounds in water, with many interesting advantages compared to free Cap and other related pteridines. These advantages include an enhancement of the photosensitizing effect at physiological pH and the potential of PAH-Cap for its use as a building block in supramolecular assemblies. The functionalization strategy hereby described can be employed for the preparation of robust photoactive polymers with great potential for its application in photodynamic therapy (PDT) and disinfection technologies.
Collapse
Affiliation(s)
- Gerardo Armijos-Capa
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Jimena S Tuninetti
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Andrés H Thomas
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Mariana P Serrano
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| |
Collapse
|
5
|
Stanciu MC, Nichifor M, Teacă CA. Bile Acid Sequestrants Based on Natural and Synthetic Gels. Gels 2023; 9:500. [PMID: 37367171 DOI: 10.3390/gels9060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small intestine and eliminate them by excretion of the non-absorbable polymer-bile salt complex. This review gives a general presentation of bile acids and the characteristics and mechanisms of action of BASs. The chemical structures and methods of synthesis are shown for commercial BASs of first- (cholestyramine, colextran, and colestipol) and second-generation (colesevelam and colestilan) and potential BASs. The latter are based on either synthetic polymers such as poly((meth)acrylates/acrylamides), poly(alkylamines), poly(allylamines) and vinyl benzyl amino polymers or biopolymers, such as cellulose, dextran, pullulan, methylan, and poly(cyclodextrins). A separate section is dedicated to molecular imprinting polymers (MIPs) because of their great selectivity and affinity for the template molecules used in the imprinting technique. Focus is given to the understanding of the relationships between the chemical structure of these cross-linked polymers and their potential to bind bile salts. The synthetic pathways used in obtaining BASs and their in vitro and in vivo hypolipidemic activities are also introduced.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marieta Nichifor
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
El Hussein MT, Sharma A, Parmar K, Shelat K. Pharmacotherapeutics for dyslipidemia management. Nurse Pract 2023; 48:36-47. [PMID: 37227314 DOI: 10.1097/01.npr.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Effective management of dyslipidemia is of paramount importance to prevent cardiovascular (CV) complications. Using current clinical practice guidelines is recommended to correct lipid levels and prevent further pathologic processes. This article presents an overview of treatment options for patients with dyslipidemia and CV disease, with a special focus on the following drug classes: HMG-CoA reductase inhibitors (also called statins), cholesterol absorption inhibitors (ezetimibe), bile acid sequestrants, fibrates, icosapent ethyl, and PCSK9 inhibitors.
Collapse
|
7
|
Truong JK, Li J, Li Q, Pachura K, Rao A, Gumber S, Fuchs CD, Feranchak AP, Karpen SJ, Trauner M, Dawson PA. Active enterohepatic cycling is not required for the choleretic actions of 24-norUrsodeoxycholic acid in mice. JCI Insight 2023; 8:e149360. [PMID: 36787187 PMCID: PMC10070106 DOI: 10.1172/jci.insight.149360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The pronounced choleretic properties of 24-norUrsodeoxycholic acid (norUDCA) to induce bicarbonate-rich bile secretion have been attributed to its ability to undergo cholehepatic shunting. The goal of this study was to identify the mechanisms underlying the choleretic actions of norUDCA and the role of the bile acid transporters. Here, we show that the apical sodium-dependent bile acid transporter (ASBT), organic solute transporter-α (OSTα), and organic anion transporting polypeptide 1a/1b (OATP1a/1b) transporters are dispensable for the norUDCA stimulation of bile flow and biliary bicarbonate secretion. Chloride channels in biliary epithelial cells provide the driving force for biliary secretion. In mouse large cholangiocytes, norUDCA potently stimulated chloride currents that were blocked by siRNA silencing and pharmacological inhibition of calcium-activated chloride channel transmembrane member 16A (TMEM16A) but unaffected by ASBT inhibition. In agreement, blocking intestinal bile acid reabsorption by coadministration of an ASBT inhibitor or bile acid sequestrant did not impact norUDCA stimulation of bile flow in WT mice. The results indicate that these major bile acid transporters are not directly involved in the absorption, cholehepatic shunting, or choleretic actions of norUDCA. Additionally, the findings support further investigation of the therapeutic synergy between norUDCA and ASBT inhibitors or bile acid sequestrants for cholestatic liver disease.
Collapse
Affiliation(s)
- Jennifer K. Truong
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jianing Li
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Qin Li
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kimberly Pachura
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Anuradha Rao
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sanjeev Gumber
- Division of Pathology and Laboratory Medicine, Yerkes National Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claudia Daniela Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew P. Feranchak
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Saul J. Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul A. Dawson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Modification of coconut residue fiber and its bile salt adsorption mechanism: Action mode of insoluble dietary fibers probed by microrheology. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
10
|
Lebrun A, Fortin H, Fontaine N, Fillion D, Barbier O, Boudreau D. Pushing the Limits of Surface-Enhanced Raman Spectroscopy (SERS) with Deep Learning: Identification of Multiple Species with Closely Related Molecular Structures. APPLIED SPECTROSCOPY 2022; 76:609-619. [PMID: 35081756 PMCID: PMC9082968 DOI: 10.1177/00037028221077119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy is a non-destructive and label-free molecular identification technique capable of producing highly specific spectra with various bands correlated to molecular structure. Moreover, the enhanced detection sensitivity offered by surface-enhanced Raman spectroscopy (SERS) allows analyzing mixtures of related chemical species in a relatively short measurement time. Combining SERS with deep learning algorithms allows in some cases to increase detection and classification capabilities even further. The present study evaluates the potential of applying deep learning algorithms to SERS spectroscopy to differentiate and classify different species of bile acids, a large family of molecules with low Raman cross sections and molecular structures that often differ by a single hydroxyl group. Moreover, the study of these molecules is of interest for the medical community since they have distinct pathological roles and are currently viewed as potential markers of gut microbiome imbalances. A convolutional neural network model was developed and used to classify SERS spectra from five bile acid species. The model succeeded in identifying the five analytes despite very similar molecular structures and was found to be reliable even at low analyte concentrations.
Collapse
Affiliation(s)
- Alexis Lebrun
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Hubert Fortin
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Nicolas Fontaine
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Daniel Fillion
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Olivier Barbier
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Denis Boudreau
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| |
Collapse
|
11
|
Sakavitsi ME, Breynaert A, Nikou T, Lauwers S, Pieters L, Hermans N, Halabalaki M. Availability and Metabolic Fate of Olive Phenolic Alcohols Hydroxytyrosol and Tyrosol in the Human GI Tract Simulated by the In Vitro GIDM-Colon Model. Metabolites 2022; 12:391. [PMID: 35629895 PMCID: PMC9144922 DOI: 10.3390/metabo12050391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/15/2023] Open
Abstract
Hydroxytyrosol (HTyr) and tyrosol (Tyr) are the most well studied phenolic alcohols of olive oil and olive products demonstrating numerous and significant beneficial health effects. However, their activity in the human organism as food bioactives is strongly associated with their bioavailability and metabolism, while manifested through their metabolites. Nevertheless, there are limited studies investigating their biotransformation and mainly catabolism by gut microflora under a holistic interpretation close to the human organism. Thus, in the present study, the GastroIntestinal Dialysis (GIDM)-colon model, a continuous flow in vitro dialysis system mimicking physiological conditions during human gastrointestinal digestion, was used to explore the metabolism of HTyr and Tyr as pure compounds. The GIDM-colon model simulates absorption from the lumen to the mucosa, followed by the colon phase using pooled human fecal suspensions. Samples were collected at different time points and analyzed via LC-Orbitrap MS. An integrated approach combining Multivariate Data Analysis (MVA) and thorough dereplication procedures led to the identification of HTyr and Tyr metabolites in different phases (gastric, small intestine, and colon), yielding also valuable information about metabolites kinetics. To our knowledge, this is the first study reporting full spectrometric data of HTyr and Tyr metabolites along with possible transformation mechanisms in the GI tract.
Collapse
Affiliation(s)
- Maria Eleni Sakavitsi
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Annelies Breynaert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Stef Lauwers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| |
Collapse
|
12
|
Islam MS, Sharif A, Kwan N, Tam KC. Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Mol Pharm 2022; 19:1248-1272. [PMID: 35333534 DOI: 10.1021/acs.molpharmaceut.2c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acids, the endogenous steroid nucleus containing signaling molecules, are responsible for the regulation of multiple metabolic processes, including lipoprotein and glucose metabolism to maintain homeostasis. Within our body, they are directly produced from their immediate precursors, cholesterol C (low-density lipoprotein C, LDL-C), through the enzymatic catabolic process mediated by 7-α-hydroxylase (CYP7A1). Bile acid sequestrants (BASs) or amphiphilic resins that are nonabsorbable to the human body (being complex high molecular weight polymers/electrolytes) are one of the classes of drugs used to treat hypercholesterolemia (a high plasma cholesterol level) or dyslipidemia (lipid abnormalities in the body); thus, they have been used clinically for more than 50 years with strong safety profiles as demonstrated by the Lipid Research Council-Cardiovascular Primary Prevention Trial (LRC-CPPT). They reduce plasma LDL-C and can slightly increase high-density lipoprotein C (HDL-C) levels, whereas many of the recent clinical studies have demonstrated that they can reduce glucose levels in patients with type 2 diabetes mellitus (T2DM). However, due to higher daily dosage requirements, lower efficacy in LDL-C reduction, and concomitant drug malabsorption, research to develop an "ideal" BAS from sustainable or natural sources with better LDL-C lowering efficacy and glucose regulations and lower side effects is being pursued. This Review discusses some recent developments and their corresponding efficacies as bile removal or LDL-C reduction of natural biopolymer (polysaccharide)-based compounds.
Collapse
Affiliation(s)
- Muhammad Shahidul Islam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Anjiya Sharif
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nathania Kwan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Stanciu MC, Nichifor M, Ailiesei GL. Bile salts adsorption on dextran-based hydrogels. Int J Biol Macromol 2021; 190:270-283. [PMID: 34481856 DOI: 10.1016/j.ijbiomac.2021.08.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Dextran-based gels bearing two types of pendant N, N-dimethyl-N-alkyl-N-(2-hydroxypropyl) ammonium chloride groups with different alkyl chain length substituents (C2 and C12/C16, respectively) at the quaternary nitrogen were synthesized and structural characteristics of the compounds were studied by elemental analysis, potentiometric titration, FTIR and NMR spectroscopy. The morphology and size of polymeric microspheres were examined by SEM and their swelling behavior in water was also investigated. The hydrogels were evaluated as sorbents for sodium cholate (NaCA) and sodium deoxycholate (NaDCA) in water and 10 mM NaCl solutions. Different isotherm models (nearest-neighbor-interaction, Langmuir, Freundlich, Dubinin-Raduskevich, Sips and Hill) were used to elucidate the adsorption mechanism and established the characteristics of the most efficient polymeric sorbent. The maximum adsorption capacity of the gels was highly controlled by gel hydrophobicity which enhanced gel-bile salt affinity but decreased binding cooperativity. Swelling porosity, ionic strength and ligand lipophilicity were other factors that also affected the adsorption process. The hydrogel having 25 mol% pendant dodecyl groups retained the maximum amount of bile salts (1051 mg NaCA/g and 1138 mg NaDCA/g). All hydrophobically modified hydrogels revealed a better affinity and strength of binding compared to commercial Cholestyramine®.
Collapse
Affiliation(s)
- Magdalena Cristina Stanciu
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Natural Polymers, Bioactive and Biocompatible Materials, Gr. Ghica Voda Alley, 41 A, 700457, Iasi, Romania.
| | - Marieta Nichifor
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Natural Polymers, Bioactive and Biocompatible Materials, Gr. Ghica Voda Alley, 41 A, 700457, Iasi, Romania
| | - Gabriela Liliana Ailiesei
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Natural Polymers, Bioactive and Biocompatible Materials, Gr. Ghica Voda Alley, 41 A, 700457, Iasi, Romania
| |
Collapse
|
14
|
Feng Y, Li Q, Ou G, Yang M, Du L. Bile acid sequestrants: a review of mechanism and design. J Pharm Pharmacol 2021; 73:855-861. [PMID: 33885783 DOI: 10.1093/jpp/rgab002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/09/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Bile acid sequestrants (BAS) are used extensively in the treatment of hypercholesterolaemia. This brief review aimed to describe the design and evaluation of three types of BAS: amphiphilic copolymers, cyclodextrin/poly-cyclodextrin and molecular imprinted polymers. The mechanisms underlying the action of BAS are also discussed. KEY FINDINGS BAS could lower plasma cholesterol, improve glycemic control in patients with type 2 diabetes and regulate balance energy metabolism via receptors or receptor-independent mediated mechanisms. Different types of BAS have different levels of ability to bind to bile acids, different stability and different in-vivo activity. CONCLUSIONS A growing amount of evidence suggests that bile acids play important roles not only in lipid metabolism but also in glucose metabolism. The higher selectivity, specificity, stability and in-vivo activity of BAS show considerable potential for lipid-lowering therapy.
Collapse
Affiliation(s)
- Yumiao Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Pharmaceutical College, Henan University, Kaifeng, China
| | - Qian Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ge Ou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Pharmacy, General Hospital of PLA, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lina Du
- Pharmaceutical College, Henan University, Kaifeng, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Gülcan HO, Orhan IE. General Perspectives for the Treatment of Atherosclerosis. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201016154400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Atherosclerosis, a cardiovascular disease, is at the top of the list among the diseases leading
to death. Although the biochemical and pathophysiological cascades involved within the development
of atherosclerosis have been identified clearly, its nature is quite complex to be treated with
a single agent targeting a pathway. Therefore, many natural and synthetic compounds have been
suggested for the treatment of the disease. The majority of the drugs employed target one of the
single components of the pathological outcomes, resulting in many times less effective and longterm
treatments. In most cases, treatment options prevent further worsening of the symptoms rather
than a radical treatment. Consequently, the current review has been prepared to focus on the validated
and non-validated targets of atherosclerosis as well as the alternative treatment options such
as hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors, acyl-CoA cholesterol
acyl transferase (ACAT) inhibitors, lipoprotein lipase stimulants, bile acid sequestrants, and some
antioxidants. Related to the topic, both synthetic compounds designed employing medicinal chemistry
skills and natural molecules becoming more popular in drug development are scrutinized in this
mini review.
Collapse
Affiliation(s)
- Hayrettin Ozan Gülcan
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR. North Cyprus, via Mersin 10,Turkey
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara- 06300,Turkey
| |
Collapse
|
16
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
Affiliation(s)
- Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
17
|
Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Loh W, Masci G, Nyström B, Galantini L, Schillén K. Effect of temperature on the association behavior in aqueous mixtures of an oppositely charged amphiphilic block copolymer and bile salt. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Coreta-Gomes FM, Lopes GR, Passos CP, Vaz IM, Machado F, Geraldes CFGC, Moreno MJ, Nyström L, Coimbra MA. In Vitro Hypocholesterolemic Effect of Coffee Compounds. Nutrients 2020; 12:E437. [PMID: 32050463 PMCID: PMC7071201 DOI: 10.3390/nu12020437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Cholesterol bioaccessibility is an indicator of cholesterol that is available for absorption and therefore can be a measure of hypocholesterolemic potential. In this work, the effect of commercial espresso coffee and coffee extracts on cholesterol solubility are studied in an in vitro model composed by glycodeoxycholic bile salt, as a measure of its bioaccessibility. (2) Methods: Polysaccharide extracts from coffees obtained with different extraction conditions were purified by selective precipitation with ethanol, and their sugars content were characterized by GC-FID. Hexane extraction allowed us to obtain the coffee lipids. Espresso coffee samples and extracts were tested regarding their concentration dependence on the solubility of labeled 13C-4 cholesterol by bile salt micelles, using quantitative 13C NMR. (3) Results and Discussion: Espresso coffee and coffee extracts were rich in polysaccharides, mainly arabinogalactans and galactomannans. These polysaccharides decrease cholesterol solubility and, simultaneously, the bile salts' concentration. Coffee lipid extracts were also found to decrease cholesterol solubility, although not affecting bile salt concentration. (4) Conclusions: Coffee soluble fiber, composed by the arabinogalactans and galactomannans, showed to sequester bile salts from the solution, leading to a decrease in cholesterol bioaccessibility. Coffee lipids also decrease cholesterol bioaccessibility, although the mechanism of action identified is the co-solubilization in the bile salt micelles. The effect of both polysaccharides and lipids showed to be additive, representing the overall effect observed in a typical espresso coffee. The effect of polysaccharides and lipids on cholesterol bioaccessibility should be accounted on the formulation of hypocholesterolemic food ingredients.
Collapse
Affiliation(s)
- Filipe Manuel Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
| | - Guido R. Lopes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Inês M. Vaz
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Carlos F. G. C. Geraldes
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
- Chemistry Department, University of Coimbra, Faculty of Science and Technology, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal
| | - Laura Nyström
- ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland;
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| |
Collapse
|
19
|
Duan Y, Zhang F, Yuan W, Wei Y, Wei M, Zhou Y, Yang Y, Chang Y, Wu X. Hepatic cholesterol accumulation ascribed to the activation of ileum Fxr-Fgf15 pathway inhibiting hepatic Cyp7a1 in high-fat diet-induced obesity rats. Life Sci 2019; 232:116638. [DOI: 10.1016/j.lfs.2019.116638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
|
20
|
Schillén K, Galantini L, Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Masci G, Nyström B. Block copolymers as bile salt sequestrants: intriguing structures formed in a mixture of an oppositely charged amphiphilic block copolymer and bile salt. Phys Chem Chem Phys 2019; 21:12518-12529. [PMID: 31145393 DOI: 10.1039/c9cp01744e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To study the formation and characterize the structure of mixed complexes of oppositely charged block copolymers and surfactants are of great significance for practical applications, e.g., in drug carrier formulations that are based on electrostatically assisted assembly. In this context, biocompatible block copolymers and biosurfactants (like bile salts) are particularly interesting. In this work, we report on the co-assembly in dilute aqueous solution between a cationic poly(N-isopropyl acryl amide) (PNIPAM) diblock copolymer and the oppositely charged bile salt surfactant sodium deoxycholate at ambient temperature. The cryogenic transmission electron microscopy (cryo-TEM) experiments revealed the co-existence of two types of co-assembled complexes of radically different morphology and inner structure. They are formed mainly as a result of the electrostatic attraction between the positively charged copolymer blocks and bile salt anions and highlight the potential of using linear amphiphilic block copolymers as bile salt sequestrants in the treatment of bile acid malabsorption and hypercholesterolemia. The first complex of globular morphology has a coacervate core of deoxycholate anions and charged copolymer blocks surrounded by a PNIPAM corona. The second complex has an intriguing tape-like supramolecular morphology of several micrometer in length that is striped in the direction of the long axis. A model is presented in which the stretched cationic blocks of several block copolymers interact electrostatically with the bile salt molecules that are associated to form a zipper-like structure. The tape is covered on both sides by the PNIPAM chains that stabilize the overall complex in solution. In addition to cryo-TEM, the mixed system was investigated in a range of molar charge fractions at a constant copolymer concentration by static light scattering, small angle X-ray scattering, and electrophoretic mobility measurements.
Collapse
Affiliation(s)
- Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Viveka Alfredsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Anna M Carnerup
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Nicolae V Pavel
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Giancarlo Masci
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern N-0315, Oslo, Norway
| |
Collapse
|
21
|
Li L, Liang N, Wang D, Yan P, Kawashima Y, Cui F, Sun S. Amphiphilic Polymeric Micelles Based on Deoxycholic Acid and Folic Acid Modified Chitosan for the Delivery of Paclitaxel. Int J Mol Sci 2018; 19:ijms19103132. [PMID: 30322014 PMCID: PMC6213782 DOI: 10.3390/ijms19103132] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
The present investigation aimed to develop a tumor-targeting drug delivery system for paclitaxel (PTX). The hydrophobic deoxycholic acid (DA) and active targeting ligand folic acid (FA) were used to modify water-soluble chitosan (CS). As an amphiphilic polymer, the conjugate FA-CS-DA was synthesized and characterized by Proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared spectroscopy (FTIR) analysis. The degree of substitutions of DA and FA were calculated as 15.8% and 8.0%, respectively. In aqueous medium, the conjugate could self-assemble into micelles with the critical micelle concentration of 6.6 × 10−3 mg/mL. Under a transmission electron microscope (TEM), the PTX-loaded micelles exhibited a spherical shape. The particle size determined by dynamic light scattering was 126 nm, and the zeta potential was +19.3 mV. The drug loading efficiency and entrapment efficiency were 9.1% and 81.2%, respectively. X-Ray Diffraction (XRD) analysis showed that the PTX was encapsulated in the micelles in a molecular or amorphous state. In vitro and in vivo antitumor evaluations demonstrated the excellent antitumor activity of PTX-loaded micelles. It was suggested that FA-CS-DA was a safe and effective carrier for the intravenous delivery of paclitaxel.
Collapse
Affiliation(s)
- Liang Li
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| | - Na Liang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Danfeng Wang
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| | - Pengfei Yan
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| | - Yoshiaki Kawashima
- Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Fude Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shaoping Sun
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
22
|
Chouinard CD, Nagy G, Webb IK, Garimella SVB, Baker ES, Ibrahim YM, Smith RD. Rapid Ion Mobility Separations of Bile Acid Isomers Using Cyclodextrin Adducts and Structures for Lossless Ion Manipulations. Anal Chem 2018; 90:11086-11091. [PMID: 30102518 DOI: 10.1021/acs.analchem.8b02990] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) constitute an important class of steroid metabolites often displaying changes associated with disease states and other health conditions. Current analyses for these structurally similar compounds are limited by a lack of sensitivity and long separation times with often poor isomeric resolution. To overcome these challenges and provide rapid analyses for the BA isomers, we utilized cyclodextrin adducts in conjunction with novel ion mobility (IM) separation capabilities provided by structures for lossless ion manipulations (SLIM). Cyclodextrin was found to interact with both the tauro- and glyco-conjugated BA isomers studied, forming rigid noncovalent host-guest inclusion complexes. Without the use of cyclodextrin adducts, the BA isomers were found to be nearly identical in their respective mobilities and thus unable to be baseline resolved. Each separation of the cyclodextrin-bile acid host-guest inclusion complex was performed in less than 1 s, providing a much more rapid alternative to current liquid chromatography-based separations. SLIM provided capabilities for the accumulation of larger ion populations and IM peak compression that resulted in much higher resolution separations and increased signal intensities for the BA isomers studied.
Collapse
Affiliation(s)
- Christopher D Chouinard
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Gabe Nagy
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Ian K Webb
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Sandilya V B Garimella
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Erin S Baker
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Yehia M Ibrahim
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Richard D Smith
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| |
Collapse
|
23
|
Lipid reducing activity of novel cholic acid (CA) analogs: Design, synthesis and preliminary mechanism study. Bioorg Chem 2018; 80:396-407. [PMID: 29986186 DOI: 10.1016/j.bioorg.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/23/2022]
Abstract
Bile acids, initially discovered as endogenous ligands of farnesoid X receptor (FXR), play a central role in the regulation of triglyceride and cholesterol metabolism and have recently emerged as a privileged structure for interacting with nuclear receptors relevant to a large array of metabolic processes. In this paper, phenoxy containing cholic acid derivatives with excellent drug-likeness have been designed, synthesized, and assayed as agents against cholesterol accumulation in Raw264.7 macrophages. The most active compound 14b reduced total cholesterol accumulation in Raw264.7 cells up to 30.5% at non-toxic 10 μM and dosage-dependently attenuated oxLDL-induced foam cell formation. Western blotting and qPCR results demonstrate that 14b reduced both cholesterol and lipid in Raw264.7 cells through (1) increasing the expression of cholesterol transporters ABCA1 and ABCG1, (2) accelerating ApoA1-mediated cholesterol efflux. Through a cell-based luciferase reporter assay and molecular docking analysis, LXR was identified as the potential target for 14b. Interestingly, unlike conventional LXR agonist, 14b did not increase lipogenesis gene SREBP-1c expression. Overall, these diverse properties disclosed herein highlight the potential of 14b as a promising lead for further development of multifunctional agents in the therapy of cardiovascular disease.
Collapse
|
24
|
Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.
Collapse
Affiliation(s)
- Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|