1
|
Johnston CU, Kennedy CJ. Potency and mechanism of p-glycoprotein chemosensitizers in rainbow trout (Oncorhynchus mykiss) hepatocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01376-9. [PMID: 39026113 DOI: 10.1007/s10695-024-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
The membrane efflux transporter P-glycoprotein (P-gp, [ABCB1, MDR1]) exports a wide range of xenobiotic compounds, resulting in a continuous first line of defense against toxicant accumulation at basal expression levels, and contributing to the multixenobiotic resistance (MXR) phenotype at elevated expression levels. Relatively little information exists on P-gp inhibition in fish by chemosensitizers, compounds which lower toxicity thresholds for harmful P-gp substrates in complex mixtures. The effects of four known mammalian chemosensitizers (cyclosporin A [CsA], quinidine, valspodar [PSC833], and verapamil) on the P-gp-mediated transport of rhodamine 123 (R123) and cortisol in primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes were examined. Competitive accumulation assays using 25 µM R123 or cortisol and varying concentrations of chemosensitizers (0-500 µM) were used. CsA, quinidine, and verapamil inhibited R123 export (IC50 values ± SE: 132 ± 60, 83.3 ± 27.2, and 43.2 ± 13.6 µM, respectively). CsA and valspodar inhibited cortisol export (IC50 values: 294 ± 106 and 92.2 ± 34.9 µM, respectively). In an ATP depletion assay, hepatocytes incubated with all four chemosensitizers resulted in lower free ATP concentrations, suggesting that they act via competitive inhibition. Chemosensitizers that inhibit MXR transporters are an important class of environmental pollutant, and these results show that rainbow trout transporters are inhibited by similar chemosensitizers (and mostly at similar concentrations) as seen in mammals and other fish species.
Collapse
Affiliation(s)
- Christina U Johnston
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive Burnaby, British Columbia, Canada.
| |
Collapse
|
2
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
3
|
Zhao X, Di J, Luo D, Vaishnav Y, Kamal, Nuralieva N, Verma D, Verma P, Verma S. Recent developments of P-glycoprotein inhibitors and its structure-activity relationship (SAR) studies. Bioorg Chem 2024; 143:106997. [PMID: 38029569 DOI: 10.1016/j.bioorg.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Nargiza Nuralieva
- School of Education, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Deepti Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Payal Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shekhar Verma
- University College of Pharmacy Raipur, Chhattisgarh Swami Vivekananda Technical University, Newai, Bhilai 491107, Chhattisgarh, India.
| |
Collapse
|
4
|
Cheema Y, Linton KJ, Jabeen I. Molecular Modeling Studies to Probe the Binding Hypothesis of Novel Lead Compounds against Multidrug Resistance Protein ABCB1. Biomolecules 2024; 14:114. [PMID: 38254714 PMCID: PMC10813284 DOI: 10.3390/biom14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The expression of drug efflux pump ABCB1/P-glycoprotein (P-gp), a transmembrane protein belonging to the ATP-binding cassette superfamily, is a leading cause of multidrug resistance (MDR). We previously curated a dataset of structurally diverse and selective inhibitors of ABCB1 to develop a pharmacophore model that was used to identify four novel compounds, which we showed to be potent and efficacious inhibitors of ABCB1. Here, we dock the inhibitors into a model structure of the human transporter and use molecular dynamics (MD) simulations to report the conformational dynamics of human ABCB1 induced by the binding of the inhibitors. The binding hypotheses are compared to the wider curated dataset and those previously reported in the literature. Protein-ligand interactions and MD simulations are in good agreement and, combined with LipE profiling, statistical and pharmacokinetic analyses, are indicative of potent and selective inhibition of ABCB1.
Collapse
Affiliation(s)
- Yasmeen Cheema
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science and Technology, Sector H-12, Islamabad 44000, Pakistan;
| | - Kenneth J. Linton
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science and Technology, Sector H-12, Islamabad 44000, Pakistan;
| |
Collapse
|
5
|
Essa AF, El-Hawary SS, Kubacy TM, El-Din A M El-Khrisy E, El-Desoky AH, Elshamy AI, Younis IY. Integration of LC/MS, NMR and Molecular Docking for Profiling of Bioactive Diterpenes from Euphorbia mauritanica L. with in Vitro Anti-SARS-CoV-2 Activity. Chem Biodivers 2023; 20:e202200918. [PMID: 36602020 DOI: 10.1002/cbdv.202200918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 μg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.
Collapse
Affiliation(s)
- Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| | - Tahia M Kubacy
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ezz El-Din A M El-Khrisy
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed H El-Desoky
- Pharmacognosy Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
6
|
Discovery of a novel highly potent and low-toxic jatrophane derivative enhancing the P-glycoprotein-mediated doxorubicin sensitivity of MCF-7/ADR cells. Eur J Med Chem 2022; 244:114822. [DOI: 10.1016/j.ejmech.2022.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
|
7
|
Rouzimaimaiti R, Maimaitijiang A, Yang H, Aisa HA. Jatrophane diterpenoids from Euphorbia microcarpa (prokh.) krylov with multidrug resistance modulating activity. PHYTOCHEMISTRY 2022; 204:113444. [PMID: 36162463 DOI: 10.1016/j.phytochem.2022.113444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Eight undescribed jatrophane diterpenoids, namely euphomicrophane A-H, together with thirteen known diterpenes were isolated from the whole plant extracts of Euphorbia microcarpa (Prokh.) Krylov. Among them, euphomicrophane C and F were possessed the endo-type core structure that naturally rarely appeared. The structures of the purified undescribed compounds were established by extensive spectroscopic and spectrometric analysis, and the single-crystal X-ray diffraction analysis was used to determine the absolute configuration of euphomicrophane E, elusone A and euphorbesulin G. All the isolates were screened for their reversal abilities on P-glycoprotein-mediated multidrug resistant cancer cell line MCF-7/ADR. Compounds euphomicrophane G-H and 3β,7β,8α,9α,15β-pentaacetoxy-5β-benzoyloxyjatropha-6(17)-11E-dien-14-one were showed potential chemoreversal effect with reversal fold values 18.67, 17.15, and 16.76 at a concentration of 10.0 μM, being equal to or stronger than the positive drug verapamil (16.68).
Collapse
Affiliation(s)
- Ruxianguli Rouzimaimaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Ayitila Maimaitijiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Hequn Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China.
| |
Collapse
|
8
|
Anifowose SO, Alqahtani WSN, Al-Dahmash BA, Sasse F, Jalouli M, Aboul-Soud MAM, Badjah-Hadj-Ahmed AY, Elnakady YA. Efforts in Bioprospecting Research: A Survey of Novel Anticancer Phytochemicals Reported in the Last Decade. Molecules 2022; 27:molecules27238307. [PMID: 36500400 PMCID: PMC9738008 DOI: 10.3390/molecules27238307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Bioprospecting natural products to find prominent agents for medical application is an area of scientific endeavor that has produced many clinically used bioactive compounds, including anticancer agents. These compounds come from plants, microorganisms, and marine life. They are so-called secondary metabolites that are important for a species to survive in the hostile environment of its respective ecosystem. The kingdom of Plantae has been an important source of traditional medicine in the past and is also enormously used today as an exquisite reservoir for detecting novel bioactive compounds that are potent against hard-to-treat maladies such as cancer. Cancer therapies, especially chemotherapies, are fraught with many factors that are difficult to manage, such as drug resistance, adverse side effects, less selectivity, complexity, etc. Here, we report the results of an exploration of the databases of PubMed, Science Direct, and Google Scholar for bioactive anticancer phytochemicals published between 2010 and 2020. Our report is restricted to new compounds with strong-to-moderate bioactivity potential for which mass spectroscopic structural data are available. Each of the phytochemicals reported in this review was assigned to chemical classes with peculiar anticancer properties. In our survey, we found anticancer phytochemicals that are reported to have selective toxicity against cancer cells, to sensitize MDR cancer cells, and to have multitarget effects in several signaling pathways. Surprisingly, many of these compounds have limited follow-up studies. Detailed investigations into the synthesis of more functional derivatives, chemical genetics, and the clinical relevance of these compounds are required to achieve safer chemotherapy.
Collapse
Affiliation(s)
- Saheed O. Anifowose
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Wejdan S. N. Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Badr A. Al-Dahmash
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Florenz Sasse
- Institute for Pharmaceutical Biology, Technical University of Braunschweig, 38124 Braunschweig, Germany
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | | | - Yasser A. Elnakady
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
- Correspondence:
| |
Collapse
|
9
|
Zhao H, Sun L, Kong C, Mei W, Dai H, Xu F, Huang S. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012-2021). JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115574. [PMID: 35944737 DOI: 10.1016/j.jep.2022.115574] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia is one of the major genera in angiosperms, which is widely distributed all over the world, including Asia, Africa and Central and South America. The roots or tubers of Euphorbia are famous for medicinal purposes, especially in China. Many of them, such as Euphorbia pekinensis Rupr, Euphorbia fischeriana Steud and Euphorbia Kansui S.L.Liou ex S.B.Ho. . are used as Chinese herbal medicines. AIM OF THE STUDY This paper reviews the diterpenoids isolated from the genus Euphorbia species and the pharmacological activities of these compounds to evaluate its traditional use and potential future development. MATERIALS AND METHODS Information on the studies of the genus Euphorbia Linn was collected from scientific journals, books and reports via library and electronic data search (Scifinder, Web of Science, PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, CNKI and Kew Plants of the Word Online). Meanwhile, it was also obtained from published works of material medica, folk records, ethnophmacological literatures, Ph.D. and Masters dissertations. RESULTS Known as the main constituents of the genus Euphorbia Linn, Diterpenoids possess many pharmacological properties such as anti-inflammation, antiviral activities and cytotoxicity. To date, various types of diterpenoids were identified from this genus, including isopimarane, rosane, abietane, ent-kaurane, ent-atisane. cembrane, casbane, lathyrane, myrsinane, jatropholane, tigliane, ingenane, jatrophane, paraliane, pepluane, and euphoractin. CONCLUSIONS This review describes 14 types of diterpenoid isolated from 45 Euphorbia species from 2012 to 2021, a total of 615 compounds. Among them, mainly include jatrophane (171), lathyrane (92), myrsinane (62), abietane (70), ent-atisane (36), ent-kaurane (7), tigliane (26) and ingenane (19). The possible biological pathways of these compounds were presumed. At the same time, more than 10 biological activities of these compounds were summarized, such as anti-inflammation, antiviral activities and cytotoxicity.
Collapse
Affiliation(s)
- Huan Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - ChuiHao Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - WenLi Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - HaoFu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - FengQing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, PR China.
| | - ShengZhuo Huang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China.
| |
Collapse
|
10
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
11
|
Essa AF, El-Hawary SS, Emam SE, Kubacy TM, El-Khrisy EEDAM, Younis IY, Elshamy AI. Characterization of undescribed melanoma inhibitors from Euphorbia mauritanica L. cultivated in Egypt targeting BRAF V600E and MEK 1 kinases via in-silico study and ADME prediction. PHYTOCHEMISTRY 2022; 198:113154. [PMID: 35245525 DOI: 10.1016/j.phytochem.2022.113154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Three undescribed diterpenes including two ent-abietanes, euphomauritanol A, and euphomauritanol B, and one jatrophane, euphomauritanophane A, in addition to eight previously described metabolites were isolated from the MeOH-CH2Cl2 (1:1) extract of the Euphorbia mauritanica. The chemical structures of isolates were established based on the spectroscopic means including FT-IR, HRMS, 1D and 2D NMR. The absolute stereochemistry of the undescribed diterpenes was deduced by experimental and calculated TDDFT-electronic circular dichroism (ECD). The anti-proliferative effects of the isolated diterpenes were evaluated against B16-BL6, Hep G2, and Caco-2. The euphomauritanol A, euphomauritanol B, and euphomauritanophane A significantly inhibited the growth of murine melanoma B16-BL6 cell lines with IC50 10.28, 20.22, and 38.81 μM, respectively with no responses against the other cells. These activities were rationalized by molecular docking of the active compounds in BRAFV600E and MEK1 active sites. Moreover, the in-silico pharmacokinetics predictions by Swiss ADME revealed that the active compounds possessed favorable oral bioavailability and drug-likeness properties.
Collapse
Affiliation(s)
- Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Tahia M Kubacy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | - Ezz El-Din A M El-Khrisy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt.
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
12
|
Deng ZF, Bakunina I, Yu H, Han J, Dömling A, Ferreira MJU, Zhang JY. Research Progress on Natural Diterpenoids in Reversing Multidrug Resistance. Front Pharmacol 2022; 13:815603. [PMID: 35418870 PMCID: PMC8996378 DOI: 10.3389/fphar.2022.815603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in successful chemotherapy in cancer treatment. Overexpression of ATP-binding cassette (ABC) transporter proteins is one of the most important mechanisms of MDR. Natural products have their unique advantages in reversing MDR, among which diterpenoids have attracted great attention of the researchers around the world. This review article summarizes and discusses the research progress on diterpenoids in reversing MDR.
Collapse
Affiliation(s)
- Zhuo-Fen Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Jaehong Han
- Metalloenzyme Research Group and Department of Plant Science and Technology, Chung-Ang University, Anseong, Korea
| | - Alexander Dömling
- Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Xu Y, Tang P, Zhu M, Wang Y, Sun D, Li H, Chen L. Diterpenoids from the genus Euphorbia: Structure and biological activity (2013-2019). PHYTOCHEMISTRY 2021; 190:112846. [PMID: 34229224 DOI: 10.1016/j.phytochem.2021.112846] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Euphorbiaceae is one of the largest families of higher plants, including 7500 species, and many of them are used as medicines in China. From 2013 to 2019, a total of 455 previously undescribed diterpenoids were isolated from 53 species of Euphorbia, and some skeleton types were first discovered from the genus Euphorbia. Most of the diterpenoids isolated from Euphorbia spp. have been tested for their biological activity, and some of them were first reported for Euphorbia diterpenoids in recent years, such as neuroprotection, antimalarial activity and inhibition of osteoclast formation. In this review, we summarize all the isolated diterpenoids from the genus Euphorbia according to their skeleton types, classify all these diterpenoids into 26 normal classes and 37 novel skeleton types, and summarize their biological activity.
Collapse
Affiliation(s)
- Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Man Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yali Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
14
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
15
|
Tsai YC, Nell RA, Buckendorf JE, Kúsz N, Mwangi PW, Berkecz R, Rédei D, Vasas A, Spivak AM, Hohmann J. Bioactive Compounds from Euphorbia usambarica Pax. with HIV-1 Latency Reversal Activity. Pharmaceuticals (Basel) 2021; 14:ph14070653. [PMID: 34358079 PMCID: PMC8308672 DOI: 10.3390/ph14070653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Euphorbia usambarica is a traditional medicine used for gynecologic, endocrine, and urogenital illnesses in East Africa; however, its constituents and bioactivities have not been investigated. A variety of compounds isolated from Euphorbia species have been shown to have activity against latent HIV-1, the major source of HIV-1 persistence despite antiretroviral therapy. We performed bioactivity-guided isolation to identify 15 new diterpenoids (1–9, 14–17, 19, and 20) along with 16 known compounds from E. usambarica with HIV-1 latency reversal activity. Euphordraculoate C (1) exhibits a rare 6/6/3-fused ring system with a 2-methyl-2-cyclopentenone moiety. Usambariphanes A (2) and B (3) display an unusual lactone ring constructed between C-17 and C-2 in the jatrophane structure. 4β-Crotignoid K (14) revealed a 250-fold improvement in latency reversal activity compared to crotignoid K (13), identifying that configuration at the C-4 of tigliane diterpenoids is critical to HIV-1 latency reversal activity. The primary mechanism of the active diterpenoids 12–14 and 21 for the HIV-1 latency reversal activity was activation of PKC, while lignans 26 and 27 that did not increase CD69 expression, suggesting a non-PKC mechanism. Accordingly, natural constituents from E. usambarica have the potential to contribute to the development of HIV-1 eradication strategies.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Racheal A. Nell
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.A.N.); (J.E.B.)
| | - Jonathan E. Buckendorf
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.A.N.); (J.E.B.)
| | - Norbert Kúsz
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Peter Waweru Mwangi
- Department of Medical Physiology, School of Medicine, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Róbert Berkecz
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Dóra Rédei
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Andrea Vasas
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Adam M. Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.A.N.); (J.E.B.)
- Correspondence: (A.M.S.); (J.H.)
| | - Judit Hohmann
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: (A.M.S.); (J.H.)
| |
Collapse
|
16
|
Yang H, Mamatjan A, Tang D, Aisa HA. Jatrophane diterpenoids as multidrug resistance modulators from Euphorbia sororia. Bioorg Chem 2021; 112:104989. [PMID: 34022709 DOI: 10.1016/j.bioorg.2021.104989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Eight new jatrophane diterpenoids, Euphosorophane F-M (1-8), as well as fourteen known jatrophane diterpenoids (9-22) were separated and purified from the fructus of Euphorbia sororia, and the chemical structures were determined based on extensive spectroscopic analysis, 1D, 2D NMR and HRESIMS data included. Their absolute configurations of compounds 1, 2, 9, and 22 were elucidated by X-ray crystallographic analysis. These jatrophane diterpenoids showed lower cytotoxicity and compounds 3, 4, 11, 12, 13, 14, and 20 revealed promising multidrug resistance (MDR) reversal ability as modulators compared to verapamil (VRP) by MTT assay. The structure-activity relationship (SAR) exhibited that the absence of keto-carbonyl at C-9 and C-14 was essential to MDR reversal activity and the acyloxies substitution at C-5, C-7, C-8, and C-14 also made the activity difference. Euphosorophane I (4) particularly unfold greater potency (EC50 = 1.82 μM) in reversing P-gp-mediated resistance to doxorubicin (DOX). As shown by fluorescence microscopy, 4 promoted intracellular accumulation of rhodamine 123 (Rh123) and DOX in a dose-dependentmanner than VRP. Flow cytometry indicated that 4 inhibitedP-glycoprotein (P-gp) -dependentRh123 efflux in drug-resistant MCF-7/ADR cells. 4 stimulated P-gp-ATPase activity in a concentration-dependent way and inhibited DOX transport activity. Western blot and real-time qPCR results further illustrated that 4 exhibited superior MDR reversal effect in MCF-7/ADR cells attributed to the activation of ATPase rather than the upregulation of P-gp expression and mRNA levels. In addition, 4 bond to the drug-binding site of P-gp predicted by the molecular docking analysis. Collectively, these results indicated that 4 efficiently reversed P-gp-mediated MDR via inhibiting the ABCB1 drug efflux function. 4 with the advantage of low toxicity and efficient could be used as an adjuvanttherapy drug for breast cancer.
Collapse
Affiliation(s)
- Hequn Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Aytilla Mamatjan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Dan Tang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
17
|
Wang C, Gao M, Liu S, Zou Z, Ren R, Zhang C, Xie H, Sun J, Qi Y, Qu Q, Song Z, Yang G, Wang H. Pyxinol bearing amino acid residues: Easily achievable and promising modulators of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2021; 216:113317. [PMID: 33706147 DOI: 10.1016/j.ejmech.2021.113317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The P-glycoprotein (Pgp) is a major transporter involved in multidrug resistance (MDR) of cancer cells leading to chemotherapy failure. In our previous study, we demonstrated that the amide derivatives of pyxinol are promising modulators against Pgp-mediated MDR in cancer. In the present study, we designed and synthesized novel pyxinol derivatives linked to amino acid residues. We evaluated MDR (paclitaxel (Ptx) resistance) reversal potency of forty pyxinol derivatives in KBV cells and analyzed their structure-activity relationships. Half of our derivatives sensitized KBV cells to Ptx at non-toxic concentrations, among which the pyxinol compound bearing a methionine residue (3c) exhibited the best activity in MDR reversal. Compound 3c was found to possess high selectivity toward Pgp and sensitize the KBV cells to Pgp substrates by blocking the efflux function of Pgp. This manifestation may be attributed to its high binding affinity with Pgp, as suggested by docking studies. Overall, the biological profile and ease of synthesizing these pyxinol derivatives render them promising lead compounds for further development for Pgp-mediated MDR.
Collapse
Affiliation(s)
- Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Meng Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuqi Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zongji Zou
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruiyin Ren
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hao Xie
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jingxian Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yupeng Qi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Qi Qu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
18
|
Flores-Giubi ME, Botubol-Ares JM, Durán-Peña MJ, Escobar-Montaño F, Zorrilla D, Sánchez-Márquez J, Muñoz E, Macías-Sánchez AJ, Hernández-Galán R. Bond reactivity indices approach analysis of the [2+2] cycloaddition of jatrophane skeleton diterpenoids from Euphorbia gaditana Coss to tetracyclic gaditanone. PHYTOCHEMISTRY 2020; 180:112519. [PMID: 33038551 DOI: 10.1016/j.phytochem.2020.112519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The reaction mechanism of the intramolecular [2 + 2] cycloaddition from a jatrophane precursor to the gaditanane skeleton, an unprecedented 5/6/4/6-fused tetracyclic ring framework recently isolated from Euphorbia spp., was studied using the bond reactivity indices approach. Furthermore, six diterpenoids, including three undescribed jatrophanes isolated from E. gaditana Coss, were described. The structures of these compounds were deduced by a combination of 2D NMR spectroscopy and ECD data analysis.
Collapse
Affiliation(s)
- M Eugenia Flores-Giubi
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Departamento Central, Paraguay
| | - Jose Manuel Botubol-Ares
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - María J Durán-Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Felipe Escobar-Montaño
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - David Zorrilla
- Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real s/n, 11510, Puerto Real, Cádiz, Spain
| | - Jesús Sánchez-Márquez
- Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real s/n, 11510, Puerto Real, Cádiz, Spain
| | - Eduardo Muñoz
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédicas de Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, C/ Maria Virgen y Madre s/n, 14004, Córdoba, Spain
| | - Antonio J Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
19
|
Chen L, Chen Z, Zheng S, Fan L, Zhu L, Yu J, Tang C, Liu Q, Xiong Y. Study on mechanism of elemene reversing tumor multidrug resistance based on luminescence pharmacokinetics in tumor cells in vitro and in vivo. RSC Adv 2020; 10:34928-34937. [PMID: 35514396 PMCID: PMC9056898 DOI: 10.1039/d0ra00184h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/28/2020] [Indexed: 01/10/2023] Open
Abstract
While elemene (ELE) can reverse tumor multidrug resistance (MDR), the mechanisms for ELE reversing MDR remain unclear. Numerous studies have suggested that the efflux functionality of ATP-binding cassette (ABC) transporters, not their quantity, is more relevant to tumor MDR. However, no appropriate methods exist for real-time detection of the intracellular drug efflux caused by ABC transporters in vitro, especially in vivo, which hinders the examination of MDR reversal mechanisms. This study directly investigates the correlation between efflux functionality of ABC transporters and MDR reversal via ELE, using d-luciferin potassium salt (d-luc) as the chemotherapeutic substitute to study the intracellular drug efflux. Here, a luciferase reporter assay system combined with bioluminescence imaging confirmed that the efflux of d-luc from MCF-7/DOXFluc cells in vitro and in vivo was significantly reduced by ELE and when combined with Doxorubicin (DOX), ELE showed a synergistically anti-tumor effect in vitro and in vivo. Additionally, the luminescence pharmacokinetics of d-luc in MCF-7/DOXFluc cells and pharmacodynamics of the combined ELE and DOX in vivo showed a great correlation, implying that d-luc might be used as a probe to study ABC transporters-mediated efflux in order to explore mechanisms of traditional Chinese medicines reversing MDR.
Collapse
Affiliation(s)
- Liying Chen
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Zhi Chen
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
- The First People's Hospital of Jiande Jiande 311600 Zhejiang China
| | - Shuang Zheng
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Luhui Fan
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Lixin Zhu
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
- Zhejiang Institute for Food and Drug Control Hangzhou 310004 Zhejiang China
| | - Jiandong Yu
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Chaoyuan Tang
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine Baltimore MD 21231 USA
| | - Yang Xiong
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| |
Collapse
|
20
|
Yuan S, Zhang Y, Hua P, Zhou H, Xu J, Gu Q. Discovery of ingenane and jatrophane diterpenoids from Euphorbia esula as inhibitors of RANKL-induced osteoclastogenesis. Fitoterapia 2020; 146:104718. [PMID: 32882338 DOI: 10.1016/j.fitote.2020.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Two new ingenane diterpenoids (1-2), four new jatrophane diterpenoids (3-6), and seven known analogues (7-13), were isolated from the 95% ethanol extract of Euphorbia esula. Their structures were determined by extensive spectroscopic methods and ECD data analysis. These compounds were assayed for their anti-osteoporotic activity in a bone marrow-derived macrophage (BMM) cell line, and compounds 2, 4, 7, 8, 9, and 11 significantly inhibited the formation of osteoclasts with IC50 values of 3.4, 4.3, 2.1, 0.5, 1.5, and 4.5 μM, respectively. These compounds also dose-dependently reduced the activity of nuclear factor activated T-cell cytoplasmic 1 (NFATc1). This study reveals the anti-osteoporotic effects of ingenane diterpenoids for the first time.
Collapse
Affiliation(s)
- Shengheng Yuan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
21
|
Yuan S, Hua P, Zhao C, Zhou H, Xu J, Xu J, Gu Q. Jatrophane Diterpenoids from Euphorbia esula as Inhibitors of RANKL-Induced Osteoclastogenesis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1005-1017. [PMID: 32233482 DOI: 10.1021/acs.jnatprod.9b00929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eighteen new jatrophane diterpenoids, euphoesulatins A-R (1-18), and three known diterpenoids (19-21) were isolated from Euphorbia esula. Compounds 1-7, 14, and 18 represent a rare type of jatrophane-type diterpenoid containing a nicotinoyloxy group. The absolute configuration of 1 was determined by X-ray crystallography. The compounds were assayed for their antiosteoporotic activity in a bone-marrow-derived macrophage cell line, and compounds 1, 8, and 10 significantly inhibited the formation of osteoclasts, with IC50 values of 1.2, 3.5, and 2.3 μM, respectively. These three compounds also dose-dependently reduced the activity of nuclear factor activated T-cell cytoplasmic 1. This study reveals the antiosteoporotic effects of jatrophane diterpenoids for the first time.
Collapse
Affiliation(s)
- Shengheng Yuan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chao Zhao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
22
|
Fattahian M, Ghanadian M, Ali Z, Khan IA. Jatrophane and rearranged jatrophane-type diterpenes: biogenesis, structure, isolation, biological activity and SARs (1984-2019). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:265-336. [PMID: 32292314 PMCID: PMC7152985 DOI: 10.1007/s11101-020-09667-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/29/2020] [Indexed: 05/12/2023]
Abstract
Diterpene compounds specially macrocyclic ones comprising jatrophane, lathyrane, terracinolide, ingenane, pepluane, paraliane, and segetane skeletons occurring in plants of the Euphorbiaceae family are of considerable interest in the context of natural product drug discovery programs. They possess diverse complex skeletons and a broad spectrum of therapeutically relevant biological activities including anti-inflammatory, anti-chikungunya virus, anti-HIV, cytotoxic, and multidrug resistance-reversing activities as well as curative effects on thrombotic diseases. Among macrocyclic diterpenes of Euphorbia, the discovery of jatrophane and modified jatrophane diterpenes with a wide range of structurally unique polyoxygenated polycyclic derivatives and as a new class of powerful inhibitors of P-glycoprotein has opened new frontiers for research studies on this genus. In this review, an attempt has been made to give in-depth coverage of the articles on the naturally occurring jatrophanes and rearranged jatrophane-type diterpenes isolated from species belonging to the Euphorbiaceae family published from 1984 to March 2019, with emphasis on the biogenesis, isolation methods, structure, biological activity, and structure-activity relationship.
Collapse
Affiliation(s)
- Maryam Fattahian
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
23
|
Yang H, Zhao J, Talipov S, Izotova L, Aisa HA, Ibragimov B. Crystal and mol-ecular structure of jatrophane diterpenoid (2 R,3 R,4 S,5 R,7 S,8 S,9 S,13 S,14 S,15 R)-2,3,8,9-tetra-acet-oxy-5,14-bis-(benzo-yloxy)-15-hydroxy-7-(iso-butano-yloxy)jatropha-6(17),11( E)-diene. Acta Crystallogr E Crystallogr Commun 2019; 75:1884-1887. [PMID: 31871751 PMCID: PMC6895953 DOI: 10.1107/s205698901901541x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022]
Abstract
The structure of the jatrophane diterpenoid (ES2), C46H56O15, has ortho-rhom-bic (P212121) symmetry. The absolute configuration in the crystal has been determined as 2R,3R,4S,5R,7S,8S,9S,13S,14S,15R [the Flack parameter is -0.06 (11)]. The mol-ecular structure features intra-molecular O-H⋯O and C-H⋯O hydrogen bonding. In the crystal, C-H⋯O hydrogen bonds link the mol-ecules into supra-molecular columns parallel to the a axis. One of the acet-oxy substituents is disordered over two orientations in a 0.826 (8):0.174 (8) ratio.
Collapse
Affiliation(s)
- Hequn Yang
- Key Laboratory of Plant Resources and Chemistry of Arid Zones, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People’s Republic of China
| | - Jiangyu Zhao
- Key Laboratory of Plant Resources and Chemistry of Arid Zones, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People’s Republic of China
| | - Samat Talipov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str, 83, Tashkent, 100125, Uzbekistan
| | - Lidiya Izotova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str, 83, Tashkent, 100125, Uzbekistan
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zones, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People’s Republic of China
| | - Bakhtiyar Ibragimov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str, 83, Tashkent, 100125, Uzbekistan
| |
Collapse
|
24
|
Mollazadeh S, Sahebkar A, Kalalinia F, Behravan J, Hadizadeh F. Synthesis, in silico and in vitro studies of new 1,4-dihydropiridine derivatives for antitumor and P-glycoprotein inhibitory activity. Bioorg Chem 2019; 91:103156. [DOI: 10.1016/j.bioorg.2019.103156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/31/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023]
|
25
|
NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquorum. Bioorg Chem 2019; 92:103237. [PMID: 31536954 DOI: 10.1016/j.bioorg.2019.103237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022]
Abstract
Two new ent-atisane-type diterpenoids (1 and 2), three new lathyrane-type diterpenoids (3-5), and seven known analogues (6-12) were isolated from Euphorbia antiquorum. The structures of these diterpenoids were established by analysis of their NMR, MS, and electronic circular dichroism data. The anti-inflammatory activities were evaluated biologically and compounds 1, 4, 7, 8, and 10 displayed strong NO inhibitory effects with IC50 values less than 40 μM. The potential anti-inflammatory mechanism was also investigated using molecular docking and Western blotting.
Collapse
|
26
|
Hasan A, Liu GY, Hu R, Aisa HA. Jatrophane Diterpenoids from Euphorbia glomerulans. JOURNAL OF NATURAL PRODUCTS 2019; 82:724-734. [PMID: 30860373 DOI: 10.1021/acs.jnatprod.8b00507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In a phytochemical investigation of the whole plant of Euphorbia glomerulans, 17 new (1-17) and five known jatrophane diterpenoids (18-22) were identified. The X-ray crystallographic data of compounds 1, 4, and 21 permitted the definition of the absolute configurations of these compounds. The cytotoxicity and multidrug resistance reversal activities of the 17 new compounds were evaluated on multidrug-resistant MCF-7/ADR cells overexpressing P-glycoprotein. Several compounds showed different chemoreversal activities and considerably decreased cytotoxicity. Compounds 11 (IC50 value of 5.0 ± 0.8 μM) and 12 (IC50 value of 5.2 ± 2.0 μM) possessed MDR reversal activities that were as good as that of verapamil (IC50 value of 4.7 ± 0.6 μM).
Collapse
Affiliation(s)
- Aobulikasimu Hasan
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Urumqi 830011 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100039 , People's Republic of China
| | - Ge-Yu Liu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Urumqi 830011 , People's Republic of China
| | - Rui Hu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Urumqi 830011 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100039 , People's Republic of China
| | - H A Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Urumqi 830011 , People's Republic of China
| |
Collapse
|
27
|
Mollazadeh S, Sahebkar A, Hadizadeh F, Behravan J, Arabzadeh S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci 2018; 214:118-123. [PMID: 30449449 DOI: 10.1016/j.lfs.2018.10.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
P-glycoprotein (P-gp) is a member of ATP-binding cassette (ABC) superfamily which extrudes chemotherapeutic agents out of the cell. Suppression of this efflux activity has been the subject of numerous attempts to develop P-gp inhibitors. The aim of this review is to present up-to-date information on the structural and functional aspects of P-gp and its known inhibitors. The data presented also provide some information on drug discovery approaches for candidate P-gp inhibitors. Nucleotide-binding domains (NBDs) and drug-binding domains (DBDs) have been extensively studied to gain more information about P-gp inhibition and it looks that the ATPase activity of this pump has been the most attractive target for designing inhibitors. Hydrophobic and π-π (aromatic) interactions between P-gp binding domains and inhibitors are dominant intermolecular forces that have been reported in many studies using different methods. Many synthetic and natural products have been found to possess inhibitory or modulatory effects on drug transporter proteins. Log P value is an important factor in studying these inhibitors and has a crucial role on absorption, distribution, metabolism, and excretion (ADME) properties of candidate P-gp inhibitors.
Collapse
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Arabzadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Ren Q, Yang G, Guo M, Guo J, Li Y, Lu J, Yang Q, Tang H, Li Y, Fang X, Sun Y, Qi JG, Tian J, Wang H. Design, synthesis, and discovery of ocotillol-type amide derivatives as orally available modulators of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2018; 161:118-130. [PMID: 30347326 DOI: 10.1016/j.ejmech.2018.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Multidrug resistance (MDR) is a major cause of failure in cancer treatment, in which the overexpression of P-glycoprotein (Pgp) plays a crucial role. Herein, a novel class of ocotillol-type amide derivatives has been designed, synthesized, and evaluated for their ability to reverse MDR. The structure-activity relationship of the reversal activity was analyzed. Ten compounds showed promising chemo-reversal ability, among which the 24R-ocotillol-type amide derivative 6c with an N-Boc-hexanoyl unit exhibited the most potency in reversing paclitaxel resistance in KBV cells. Compound 6c could inhibit Pgp-mediated rhodamine123 efflux function via stimulating Pgp-ATPase activity and exhibited high binding affinity with Pgp in molecular docking studies. Importantly, compound 6c enhanced the efficacy of paclitaxel against KBV cancer cell-derived xenograft tumors in nude mice after oral administration. These results indicate that ocotillol-type amide derivatives are promising lead compounds for overcoming MDR in cancer.
Collapse
Affiliation(s)
- Qianwen Ren
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Mengqi Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingwen Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jing Lu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Qing Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hanhan Tang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yi Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xiaojuan Fang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yixiao Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jia Grace Qi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jingwei Tian
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
29
|
Li J, Li HH, Wang WQ, Song WB, Wang YP, Xuan LJ. Jatrophane diterpenoids from Euphorbia helioscopia and their lipid-lowering activities. Fitoterapia 2018; 128:102-111. [DOI: 10.1016/j.fitote.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 01/28/2023]
|