1
|
Salerno L, Notaro A, Consoli V, Affranchi F, Pittalà V, Sorrenti V, Vanella L, Giuliano M, Intagliata S. Evaluation of the anticancer effects exerted by 5-fluorouracil and heme oxygenase-1 inhibitor hybrids in HTC116 colorectal cancer cells. J Enzyme Inhib Med Chem 2024; 39:2337191. [PMID: 38634597 PMCID: PMC11028004 DOI: 10.1080/14756366.2024.2337191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertaken so far, including the use of drug cocktails and polypharmacology. Heme oxygenase-1 (HO-1) is an emerging molecular target in the treatment of various cancers. We recently demonstrated that a combination of HO-1 inhibitors with 5-FU and the corresponding hybrids SI1/17, SI1/20, and SI1/22, possessed anticancer activity against prostate and lung cancer cells. In this work, we evaluated these hybrids in a model of colon cancer and found that SI1/22 and the respective combo have greater potency than 5-FU. Particularly, compounds inhibit HO-1 activity in cell lysates, increase ROS and the expression of HO-1, SOD, and Nrf2. Moreover, we observed a decrease of pro-caspase and an increase in cleaved PARP-1 and p62, suggesting apoptotic and autophagic cell death and potential application of these drugs as anticancer agents.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Antonietta Notaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Federica Affranchi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | |
Collapse
|
2
|
Poudyal N, Subedi YP, Shakespear M, Grilley M, Takemoto JY, Chang CWT. Synthesis of kanamycin-azole hybrids and investigation of their antifungal activities. Bioorg Med Chem 2024; 114:117947. [PMID: 39418748 DOI: 10.1016/j.bmc.2024.117947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
The World Health Organization (WHO) recognizes Candida albicans and Cryptococcus neoformans as the critical priority fungal pathogens for which therapeutic solutions are needed. Azole-based antifungal agents, including triazoles, diazoles, and thiazoles, are widely used in the treatments for fungal infections. In light of past successes in the transformation of antibacterial kanamycin into antifungal derivatives via chemical modifications, a new library of kanamycin-azole hybrids was synthesized and tested against a panel of azole-resistant and susceptible Candida and Cryptococcus strains. Structure activity relationship (SAR) studies revealed pivotal roles for antifungal activity of the azole ring (imidazole vs triazole) and halogen substituents on the benzene ring (F vs Cl). Most notably, hybrids 13, 14 and 15 were active against resistant C. albicans, C. tropicalis and C. neoformans strains and non-toxic towards mammalian cells. Mode of action investigations using fluorogenic dyes, (SYTOXTM) showed the fungal active compounds could permeabilize fungal membranes even at ¼ MICs. These findings reveal novel azole-based antifungals that could offer new therapeutic options for candidiasis and cryptococcosis.
Collapse
Affiliation(s)
- Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Yagya P Subedi
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Madyson Shakespear
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Michelle Grilley
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322-5305, USA
| | - Jon Y Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322-5305, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA.
| |
Collapse
|
3
|
Sami DH, Soliman AS, Khowailed AA, Alruhaimi RS, Hassanein EHM, Kamel EM, Mahmoud AM. The protective effect of 7-hydroxycoumarin against cisplatin-induced liver injury is mediated via attenuation of oxidative stress and inflammation and upregulation of Nrf2/HO-1 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80181-80191. [PMID: 37291353 DOI: 10.1007/s11356-023-27879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapy against different solid cancers. However, the adverse effects, including hepatotoxicity, limit its clinical use. 7-hydroxycoumarin (7-HC) possesses antioxidant and hepatoprotective activities, but its protective effect against CIS hepatotoxicity has not been investigated. This study evaluated the effect of 7-HC on liver injury, oxidative stress (OS), and inflammation provoked by CIS. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 2 weeks followed by intraperitoneal injection of CIS (7 mg/kg) at day 15. CIS increased serum transaminases, alkaline phosphatase (ALP), and bilirubin and provoked tissue injury accompanied by elevated reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO). Liver nuclear factor (NF)-κB p65, inducible NO synthase (iNOS), pro-inflammatory cytokines, Bax, and caspase-3 were upregulated, and antioxidant defenses and Bcl-2 were decreased in CIS-treated rats, while 7-HC prevented liver injury and ameliorated OS, inflammatory and apoptosis markers. In addition, 7-HC enhanced nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase (HO)-1 in CIS-administered rats and in silico studies revealed its binding affinity toward HO-1. In conclusion, 7-HC protected against CIS hepatotoxicity by mitigating OS and inflammatory response and modulating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Demiana H Sami
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman S Soliman
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Akef A Khowailed
- Physiology Department, Faculty of Medicine, Cairo University, Giza, 12613, Egypt
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 71524, Egypt
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
4
|
Salerno L, Sorrenti V, Pittalà V, Consoli V, Modica MN, Romeo G, Marrazzo A, Giuliano M, Zajdel P, Vanella L, Intagliata S. Discovery of SI 1/20 and SI 1/22 as Mutual Prodrugs of 5-Fluorouracil and Imidazole-Based Heme Oxygenase 1 Inhibitor with Improved Cytotoxicity in DU145 Prostate Cancer Cells. ChemMedChem 2023; 18:e202300047. [PMID: 36756924 DOI: 10.1002/cmdc.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
In this work, we extend the concept of 5-fluorouracil/heme oxygenase 1 (5-FU/HO-1) inhibitor hybrid as an effective strategy for enhancing 5-FU-based anticancer therapies. For this purpose, we designed and synthesized new mutual prodrugs, named SI 1/20 and SI 1/22, in which the two active parent drugs (i. e., 5-FU and an imidazole-based HO-1 inhibitor) were connected through an easily cleavable succinic linker. Experimental hydrolysis rate, and in silico ADMET predictions were indicative of good drug-likeness and pharmacokinetic properties. Novel hybrids significantly reduced the viability of prostate DU145 cancer cells compared to the parent compounds 5-FU and HO-1 inhibitor administered alone or in combination. Interestingly, both compounds showed statistically significant lower toxicity, than 5-FU at the same dose, against non-tumorigenic human benign prostatic hyperplasia (BPH-1) cell line. Moreover, the newly synthesized mutual prodrugs inhibited the HO-1 activity both in a cell-free model and in vitro, as well as downregulated the HO-1 expression and increased the reactive oxygen species (ROS) levels.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, 329, Bahrain
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences, and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Paweł Zajdel
- Department of Organic Chemistry, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
5
|
Abduh MS, Alruhaimi RS, Alqhtani HA, Hussein OE, Abukhalil MH, Kamel EM, Mahmoud AM. Rosmarinic acid mitigates chlorpyrifos-induced oxidative stress, inflammation, and kidney injury in rats by modulating SIRT1 and Nrf2/HO-1 signaling. Life Sci 2023; 313:121281. [PMID: 36521549 DOI: 10.1016/j.lfs.2022.121281] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Chlorpyrifos (CPF) is a widely used broad-spectrum pesticide with multi-organ toxic effects. Oxidative stress was found to play a role in the deleterious effects of CPF, including nephrotoxicity. This study investigated the protective effect of the antioxidant polyphenol rosmarinic acid (RA) against CPF-induced kidney injury, with an emphasis on oxidative injury, inflammation, SIRT1, and Nrf2/HO-1 signaling. Rats received 10 mg/kg CPF and 25, 50, and 100 mg/kg RA orally for 28 days, and the samples were collected for analysis. CPF increased serum urea and creatinine and kidney Kim-1 and caused several histopathological alterations. ROS, MDA, NO, NF-κB p65, TNF-α, and IL-1β were elevated in the kidney of CPF-intoxicated rats. RA ameliorated kidney function markers, prevented tissue injury, suppressed ROS, MDA, and NO, and downregulated NF-κB p65, TNF-α, and IL-1β in CPF-intoxicated rats in a dose-dependent manner. RA decreased Bax, caspase-3, oxidative DNA damage, and Keap1, boosted antioxidant enzymes and Bcl-2, and upregulated Nrf2, HO-1, and SIRT1 in CPF-administered rats. Molecular docking simulation revealed the binding affinity of RA toward NF-κB, Keap1, HO-1, and SIRT1. In conclusion, RA prevented CPF nephrotoxicity by attenuating oxidative stress, inflammation, and apoptosis and upregulating SIRT1 and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Emadeldin M Kamel
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
6
|
Iacopucci APM, da Silva Pereira P, Pereira DA, Calmasini FB, Pittalà V, Reis LO, Burnett AL, Costa FF, Silva FH. Intravascular hemolysis leads to exaggerated corpus cavernosum relaxation: Implication for priapism in sickle cell disease. FASEB J 2022; 36:e22535. [PMID: 36070139 DOI: 10.1096/fj.202200867r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
Patients with sickle cell disease (SCD) display priapism. Clinical studies have shown a strong positive correlation between priapism and high levels of intravascular hemolysis in men with SCD. However, there are no experimental studies that show that intravascular hemolysis promotes alterations in erectile function. Therefore, we aimed to evaluate the corpus cavernosum smooth muscle relaxant function in a murine model that displays intravascular hemolysis induced by phenylhydrazine (PHZ), as well as the role of intravascular hemolysis in increasing the stress oxidative in the penis. Corpus cavernosum strips were dissected free and placed in organ baths. Acetylcholine and electrical field stimulation (EFS)-induced corpus cavernosum relaxations in vitro were obtained. Increased corpus cavernosum relaxant responses to acetylcholine and EFS were observed in the PHZ group. Protein expression of heme oxygenase-1 increased in the corpus cavernosum of the PHZ group, but PDE5 protein expression was not modified. Preincubation with the heme oxygenase inhibitor 1 J completely reversed the increased relaxant responses to acetylcholine and EFS in PHZ mice. Protein expression of NADPH oxidase subunit gp91phox, 3-nitrotyrosine, and 4-hydroxynonenal increased in the corpus cavernosum of the PHZ group, suggesting a state of oxidative stress. Basal cGMP production was lower in the PHZ group. Our results show that intravascular hemolysis promotes increased corpus cavernosum smooth muscle relaxation associated with increased HO-1 expression, as well as increased oxidative stress associated with upregulation of gp91phox expression. Moreover, our study supports clinical studies that point to a strong positive correlation between priapism and high levels of intravascular hemolysis in men with SCD.
Collapse
Affiliation(s)
- Ana Paula Magrini Iacopucci
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | | | - Dalila Andrade Pereira
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| |
Collapse
|
7
|
Preliminary studies of an imidazole-based alcohol derivative for imaging of Heme oxygenase 1. Bioorg Med Chem Lett 2022; 64:128674. [PMID: 35292342 DOI: 10.1016/j.bmcl.2022.128674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022]
Abstract
Heme oxygenase-1 (HO-1) has been involved in the pathogenesis of Alzheimer's disease (AD), thus constituting a promising target for AD drug development. Positron emission tomography (PET) is a fully translational imaging technology, which will help us understand the role of HO-1 in the progression of AD, facilitating to validate promising HO-1 inhibitors in clinical trials. To our knowledge, there is no report on PET imaging probe targeting HO-1 in animals and humans. We report herein the synthesis and characterization of a 11C-labeled imidazole-based alcohol derivative ([11C]QC-33) for imaging of HO-1 in the brain. The desired product [11C]QC-33 was afforded with a radiochemical yield of 16 ± 9% (n = 3, decay corrected). The radiochemical purity was greater than 99%, and the molar radioactivity was greater than 185 GBq/μmol. In vitro autoradiography studies indicated specific binding of [11C]QC-33 in the HO-1 rich regions, showing 75%, 75%, and 69% radioactivity binding reductions in cerebellum, brain stem, and midbrain, respectively. PET/CT scanning in C57BL/6 mice showed low brain uptake and poor blood-brain barrier (BBB) penetration of [11C]QC-33. These results suggested that [11C]QC-33 can serve as a lead compound to advance the development of next generation PET tracer with the potential to monitor HO-1 in AD progression.
Collapse
|
8
|
Antar SA, Abdo W, Taha RS, Farage AE, El-Moselhy LE, Amer ME, Abdel Monsef AS, Abdel Hamid AM, Kamel EM, Ahmeda AF, Mahmoud AM. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats. Life Sci 2022; 291:120260. [DOI: 10.1016/j.lfs.2021.120260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
|
9
|
Floresta G, Fallica AN, Patamia V, Sorrenti V, Greish K, Rescifina A, Pittalà V. From Far West to East: Joining the Molecular Architecture of Imidazole-like Ligands in HO-1 Complexes. Pharmaceuticals (Basel) 2021; 14:ph14121289. [PMID: 34959690 PMCID: PMC8704944 DOI: 10.3390/ph14121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
HO-1 overexpression has been reported in several cases/types of human malignancies. Unfortunately, poor clinical outcomes are reported in most of these cases, and the inhibition of HO-1 is considered a valuable and proven anticancer approach. To identify novel hit compounds suitable as HO-1 inhibitors, we report here a fragment-based approach where ligand joining experiments were used. The two most important parts of the classical structure of the HO-1 inhibitors were used as a starting point, and 1000 novel compounds were generated and then virtually evaluated by structure and ligand-based approaches. The joining experiments led us to a novel series of indole-based compounds. A synthetic pathway for eight selected molecules was designed, and the compounds were synthesized. The biological activity revealed that some molecules reach the micromolar activity, whereas molecule 4d inhibits the HO-1 with an IC50 of 1.03 μM. This study suggested that our joining approach was successful, and a novel hit compound was generated. These results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
- Department of Analytics, Environmental & Forensics, King’s College London, London SE1 9NH, UK
| | - Antonino Nicolò Fallica
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
| | - Khaled Greish
- Department of Molecular Medicine and Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
- Correspondence: (A.R.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
- Correspondence: (A.R.); (V.P.)
| |
Collapse
|
10
|
Floresta G, Fallica AN, Salerno L, Sorrenti V, Pittalà V, Rescifina A. Growing the molecular architecture of imidazole-like ligands in HO-1 complexes. Bioorg Chem 2021; 117:105428. [PMID: 34710668 DOI: 10.1016/j.bioorg.2021.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Up-regulation of HO-1 had been frequently reported in different cases and types of human malignancies. Since poor clinical outcomes are reported in these cases, this enzyme's inhibition is considered a valuable and proven anticancer approach. To identify novel HO-1 inhibitors suitable for drug development, we report a structure-guided fragment-based approach to identify new lead compounds. Different parts of the selected molecules were analyzed, and the different series of novel compounds were virtually evaluated. The growing experiments of the classical HO-1 inhibitors structure led us to different hit-compounds. A synthetic pathway for six selected molecules was designed, and the compounds were synthesized. The biological activity revealed that molecules 10 and 12 inhibit the HO-1 activity with an IC50 of 1.01 and 0.90 μM, respectively. This study suggested that our growing approach was successful, and these results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.
| | - Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Fallica A, Sorrenti V, D’Amico AG, Salerno L, Romeo G, Intagliata S, Consoli V, Floresta G, Rescifina A, D’Agata V, Vanella L, Pittalà V. Discovery of Novel Acetamide-Based Heme Oxygenase-1 Inhibitors with Potent In Vitro Antiproliferative Activity. J Med Chem 2021; 64:13373-13393. [PMID: 34472337 PMCID: PMC8474116 DOI: 10.1021/acs.jmedchem.1c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 12/25/2022]
Abstract
Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.
Collapse
Affiliation(s)
- Antonino
N. Fallica
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Agata G. D’Amico
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | - Valeria Consoli
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department
of Analytics, Environmental & Forensics, King’s College London, Stamford Street, London SE1 9NH, U.K.
| | - Antonio Rescifina
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Velia D’Agata
- Sections
of Human Anatomy and Histology, Department of Biomedical and Biotechnological
Sciences, University of Catania, 95123 Catania, Italy
| | - Luca Vanella
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| |
Collapse
|
12
|
Galangin Attenuates Liver Injury, Oxidative Stress and Inflammation, and Upregulates Nrf2/HO-1 Signaling in Streptozotocin-Induced Diabetic Rats. Processes (Basel) 2021. [DOI: 10.3390/pr9091562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperglycemia increases the risk of liver damage. Oxidative stress and aberrant inflammatory response are entangled in diabetes-associated liver injury. This study evaluated the protective effect of the flavonoid galangin (Gal) on glucose intolerance, liver injury, oxidative stress, inflammatory response, and Nrf2/HO-1 signaling in diabetic rats. Diabetes was induced by streptozotocin (STZ), and the rats received Gal for six weeks. STZ-induced rats showed glucose intolerance, hypoinsulinemia, elevated glycated hemoglobin (HbA1c), and decreased liver glycogen. Gal ameliorated glucose intolerance, reduced HbA1c%, increased serum insulin and liver glycogen and hexokinase activity, and suppressed glycogen phosphorylase, glucose-6-phosphatase and fructose-1,6-biphosphatase in diabetic rats. Circulating transaminases, ALP and LDH, and liver ROS, MDA, TNF-α, IL-1β, and IL-6 were increased and GSH, SOD, and CAT were diminished in diabetic rats. In addition, diabetic rats exhibited multiple histopathological alterations and marked collagen deposition. Treatment with Gal mitigated liver injury, prevented histopathological alterations, decreased ROS, MDA, pro-inflammatory cytokines, Bax and caspase-3, and enhanced cellular antioxidants and Bcl-2. Gal downregulated hepatic Keap1 in diabetic rats and upregulated Nrf2 and HO-1 mRNA as well as HO-1 activity. Molecular modeling studies revealed the ability of Gal to bind to and inhibit NF-κB and Keap1, and also showed its binding pattern with HO-1. In conclusion, Gal ameliorates hyperglycemia, glucose intolerance, oxidative stress, inflammation, and apoptosis in diabetic rats. Gal improved carbohydrate metabolizing enzymes and upregulated Nrf2/HO-1 signaling.
Collapse
|
13
|
Salerno L, Vanella L, Sorrenti V, Consoli V, Ciaffaglione V, Fallica AN, Canale V, Zajdel P, Pignatello R, Intagliata S. Novel mutual prodrug of 5-fluorouracil and heme oxygenase-1 inhibitor (5-FU/HO-1 hybrid): design and preliminary in vitro evaluation. J Enzyme Inhib Med Chem 2021; 36:1378-1386. [PMID: 34167427 PMCID: PMC8231349 DOI: 10.1080/14756366.2021.1928111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this work, the first mutual prodrug of 5-fluorouracil and heme oxygenase1 inhibitor (5-FU/HO-1 hybrid) has been designed, synthesised, and evaluated for its in vitro chemical and enzymatic hydrolysis stability. Predicted in silico physicochemical properties of the newly synthesised hybrid (3) demonstrated a drug-like profile with suitable Absorption, Distribution, Metabolism, and Excretion (ADME) properties and low toxic liabilities. Preliminary cytotoxicity evaluation towards human prostate (DU145) and lung (A549) cancer cell lines demonstrated that 3 exerted a similar effect on cell viability to that produced by the reference drug 5-FU. Among the two tested cancer cell lines, the A549 cells were more susceptible for 3. Of note, hybrid 3 also had a significantly lower cytotoxic effect on healthy human lung epithelial cells (BEAS-2B) than 5-FU. Altogether our results served as an initial proof-of-concept to develop 5-FU/HO-1 mutual prodrugs as potential novel anticancer agents.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Vittorio Canale
- Department of Organic Chemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
14
|
Combination of Heme Oxygenase-1 Inhibition and Sigma Receptor Modulation for Anticancer Activity. Molecules 2021; 26:molecules26133860. [PMID: 34202711 PMCID: PMC8270315 DOI: 10.3390/molecules26133860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a multifactorial disease that may be tackled by targeting different signaling pathways. Heme oxygenase-1 (HO-1) and sigma receptors (σRs) are both overexpressed in different human cancers, including prostate and brain, contributing to the cancer spreading. In the present study, we investigated whether HO-1 inhibitors and σR ligands, as well a combination of the two, may influence DU145 human prostate and U87MG human glioblastoma cancer cells proliferation. In addition, we synthesized, characterized, and tested a small series of novel hybrid compounds (HO-1/σRs) 1–4 containing the chemical features needed for HO-1 inhibition and σR modulation. Herein, we report for the first time that targeting simultaneously HO-1 and σR proteins may be a good strategy to achieve increased antiproliferative activity against DU145 and U87MG cells, with respect to the mono administration of the parent compounds. The obtained outcomes provide an initial proof of concept useful to further optimize the structure of HO-1/σRs hybrids to develop novel potential anticancer agents.
Collapse
|
15
|
|
16
|
Identification of a potent heme oxygenase-2 (HO-2) inhibitor by targeting the secondary hydrophobic pocket of the HO-2 western region. Bioorg Chem 2020; 104:104310. [DOI: 10.1016/j.bioorg.2020.104310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
|
17
|
Ianni F, Carotti A, Intagliata S, Macchiarulo A, Chankvetadze B, Pittalà V, Sardella R. Laboratory-Scale Semipreparative Enantioresolution of Phenylethanolic-Azole Heme Oxygenase-1 Inhibitors. Chromatographia 2020. [DOI: 10.1007/s10337-020-03972-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Synthesis, in vitro and in silico studies of HO-1 inducers and lung antifibrotic agents. Future Med Chem 2020; 11:1523-1536. [PMID: 31469335 DOI: 10.4155/fmc-2018-0448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Dimethyl fumarate (DMF) analogs were synthesized to obtain inducers of HO-1 and antifibrotic agents. Methods: HO-1 expression levels were measured on lung fibroblasts (MRC5). NMR and docking studies were performed. Heme oxygenase activity, gene levels and protein expression have been measured for the most active compound 1a. Collagen production by fibroblast after exposure to TGF-β was measured. Results: Compound 1a showed to be a strong HO-1 inducer. Its activity seems to be mediated by activation of nuclear factor erythroid 2 related factor 2 (Nrf2). TGF-β-induced collagen production was significantly decreased on MRC5, pretreated with DMF or 1a. DMF and 1a have a high potential for treatment of lung fibrotic injuries.
Collapse
|
19
|
Heme Oxygenase-1 in Central Nervous System Malignancies. J Clin Med 2020; 9:jcm9051562. [PMID: 32455831 PMCID: PMC7290325 DOI: 10.3390/jcm9051562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system tumors are the most common pediatric solid tumors and account for 20–25% of all childhood malignancies. Several lines of evidence suggest that brain tumors show altered redox homeostasis that triggers the activation of various survival pathways, leading to disease progression and chemoresistance. Among these pathways, heme oxygenase-1 (HO-1) plays an important role. HO-1 catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. The biological effects of HO-1 in tumor cells have been shown to be cell-specific since, in some tumors, its upregulation promotes cell cycle arrest and cellular death, whereas, in other neoplasms, it is associated with tumor survival and progression. This review focuses on the role of HO-1 in central nervous system malignancies and the possibility of exploiting such a target to improve the outcome of well-established therapeutic regimens. Finally, several studies show that HO-1 overexpression is involved in the development and resistance of brain tumors to chemotherapy and radiotherapy, suggesting the use of HO-1 as an innovative therapeutic target to overcome drug resistance. The following keywords were used to search the literature related to this topic: nuclear factor erythroid 2 p45-related factor 2, heme oxygenase, neuroblastoma, medulloblastoma, meningioma, astrocytoma, oligodendroglioma, glioblastoma multiforme, and gliomas.
Collapse
|
20
|
Vargas-Oviedo D, Butassi E, Zacchino S, Portilla J. Eco-friendly synthesis and antifungal evaluation of N-substituted benzimidazoles. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02575-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Floresta G, Carotti A, Ianni F, Sorrenti V, Intagliata S, Rescifina A, Salerno L, Di Michele A, Sardella R, Pittalà V. Chromatograpic resolution of phenylethanolic-azole racemic compounds highlighted stereoselective inhibition of heme oxygenase-1 by (R)-enantiomers. Bioorg Chem 2020; 99:103777. [PMID: 32222619 DOI: 10.1016/j.bioorg.2020.103777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Heme oxygenase-1 (HO-1) has been recognized as extensively involved in the development and aggravation of cancer, cell propagation and at in the mechanism of chemoresistance development. Low micromolar HO-1 inhibitors selective towards HO-2 has been recently reported, wherein the azole core and the hydrophobic residues are linked through a phenylethanolic spacer bearing a chiral center. Since less information are known about the stereoselective requirements for HO-1 inhibition, here we report the enantiomeric resolution of 1-(biphenyl-3-yl)-2-(1H-imidazol-1-yl)ethanol (1) and 1-[4-[(4-bromobenzyl)oxy]phenyl]-2-(1H-imidazol-1-yl)ethanol (2), two among the most potent and selective HO-1 inhibitors known thus far when tested as racemates. The absolute configuration was established for 1 by a combination of experimental and in silico derived electronic circular dichroism spectra, while docking approaches were useful in the case of compound 2. Biological evaluation of pure enantiomers highlighted higher HO-1 inhibitory activity of (R)-enantiomers. Docking studies demonstrated the importance of hydrogen bond interaction, more pronounced for the (R)-enantiomers, with a consensus water molecule within the binding pocket. The present study demonstrates that differences in three-dimensional structure amongst compounds 1 and 2 enantiomers affect significantly the selectivity of these HO-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Valeria Sorrenti
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli 1, 06123 Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
22
|
New Arylethanolimidazole Derivatives as HO-1 Inhibitors with Cytotoxicity against MCF-7 Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21061923. [PMID: 32168943 PMCID: PMC7139504 DOI: 10.3390/ijms21061923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, a novel series of imidazole-based heme oxygenase-1 (HO-1) inhibitors is reported. These compounds were obtained by modifications of previously described high potent and selective arylethanolimidazoles. In particular, simplification of the central linker and repositioning of the hydrophobic portion were carried out. Results indicate that a hydroxyl group in the central region is crucial for the potency as well as the spatial distribution of the hydrophobic portion. Docking studies revealed a similar interaction of the classical HO-1 inhibitors with the active site of the protein. The most potent and selective compound (5a) was tested for its potential cytotoxic activity against hormone-sensitive and hormone-resistant breast cancer cell lines (MCF-7 and MDA-MB-231).
Collapse
|
23
|
Non-competitive heme oxygenase-1 activity inhibitor reduces non-small cell lung cancer glutathione content and regulates cell proliferation. Mol Biol Rep 2020; 47:1949-1964. [PMID: 32056044 DOI: 10.1007/s11033-020-05292-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death mainly due to its high metastatic rate. Impairment of redox homeostasis mechanisms has been previously described in NSCLC and is associated with the disease itself as well as with comorbidities such as smoking. The aim of the present in vitro study was to evaluate the effect of selective and non-competitive inhibition of heme oxygenase-1 (HO-1) on cancer redox homeostasis with particular regards to glutathione (GSH) metabolism related enzymes. NSCLC cell line (A549) was treated with the HO-1 activity inhibitor VP13/47 (10 µM) and we further evaluated cell viability, apoptosis, mitochondrial dysfunction and oxidative stress. Our results showed that VP13/47 significantly reduced HO-1 expression and total HO activity thus, resulting in a significant reduction of cell viability, proliferation and increased apoptosis, mitochondrial dysfunction and oxidative stress. Consistently with increased oxidative stress, we also showed that reduced GSH was significantly decreased and such effect was also accompanied by a significant downregulation of the enzymes involved in its biosynthesis. Taken all together our results show that selective HO-1 inhibition significantly impairs NSCLC progression and may represent a possible pharmacological strategy for new chemotherapy agents.
Collapse
|
24
|
Floresta G, Patamia V, Gentile D, Molteni F, Santamato A, Rescifina A, Vecchio M. Repurposing of FDA-Approved Drugs for Treating Iatrogenic Botulism: A Paired 3D-QSAR/Docking Approach †. ChemMedChem 2019; 15:256-262. [PMID: 31774239 DOI: 10.1002/cmdc.201900594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Indexed: 12/17/2022]
Abstract
Botulinum neurotoxin (BoNT) is widely used for the treatment of spasticity, focal dystonia, chronic migraine, facial hemispasm, and facial aesthetic treatments. Generally, treatment with botulinum toxin is a safe procedure when conducted by clinicians with expertise, and local side effects are rare and transient. However, occasionally adverse effects can occur due to the spread of the drug to nontargeted muscles and organs, producing dry mouth, fatigue, and flu-like symptoms, up to signs of systemic botulism, which appears to be more frequent in children treated for spasticity than in adults. In silico 3D-QSAR and molecular docking studies were performed to build a structure-based model on selected potent known botulinum neurotoxin type A inhibitors; this was used to screen the US Food and Drug Administration (FDA) database. Thirty molecules were identified as possible light-chain BoNT/A inhibitors. In this study, we applied a well-established ligand- and structure-based methodology for the identification of hit compounds among a database of FDA-approved drugs. The identification of budesonide, protirelin, and ciclesonide followed by other compounds can be considered a starting point for investigations of selected compounds that could bypass much of the time and costs involved in the drug approval process.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Vincenzo Patamia
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, 23845, Costa Masnaga, Lecco, Italy
| | - Andrea Santamato
- Spasticity and Movement Disorders "ReSTaRt" Unit, Physical Medicine and Rehabilitation Section, OORR Hospital, University of Foggia, 71122, Foggia, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy.,Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125, Bari, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via S. Sofia 67, 95123, Catania, Italy
| |
Collapse
|
25
|
Zou Y, Hu Y, Ge S, Zheng Y, Li Y, Liu W, Guo W, Zhang Y, Xu Q, Lai Y. Effective Virtual Screening Strategy toward heme-containing proteins: Identification of novel IDO1 inhibitors. Eur J Med Chem 2019; 184:111750. [DOI: 10.1016/j.ejmech.2019.111750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/22/2019] [Accepted: 09/28/2019] [Indexed: 01/11/2023]
|
26
|
Computational Tools in the Discovery of FABP4 Ligands: A Statistical and Molecular Modeling Approach. Mar Drugs 2019; 17:md17110624. [PMID: 31683588 PMCID: PMC6891735 DOI: 10.3390/md17110624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4) have received interest following the recent publication of their pharmacologically beneficial effects. Recently, it was revealed that FABP4 is an attractive molecular target for the treatment of type 2 diabetes, other metabolic diseases, and some type of cancers. In past years, hundreds of effective FABP4 inhibitors have been synthesized and discovered, but, unfortunately, none have reached the clinical research phase. The field of computer-aided drug design seems to be promising and useful for the identification of FABP4 inhibitors; hence, different structure- and ligand-based computational approaches have been used for their identification. In this paper, we searched for new potentially active FABP4 ligands in the Marine Natural Products (MNP) database. We retrieved 14,492 compounds from this database and filtered through them with a statistical and computational filter. Seven compounds were suggested by our methodology to possess a potential inhibitory activity upon FABP4 in the range of 97–331 nM. ADMET property prediction was performed to validate the hypothesis of the interaction with the intended target and to assess the drug-likeness of these derivatives. From these analyses, three molecules that are excellent candidates for becoming new drugs were found.
Collapse
|
27
|
Heme Oxygenase-2 (HO-2) as a therapeutic target: Activators and inhibitors. Eur J Med Chem 2019; 183:111703. [PMID: 31550661 DOI: 10.1016/j.ejmech.2019.111703] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022]
Abstract
Heme oxygenase (HO) enzymes are involved in heme catabolism and several physiological functions. Among the different HO isoforms, HO-2 stands out for its neuroprotective properties and modulatory activity in male reproduction. However, unlike the HO-1 ligands, the potential therapeutic applications of HO-2 inhibitors/activators have not been extensively explored yet. Moreover, the physiological role of HO-2 is still unclear, mostly due to the lack of highly selective HO-2 chemical probes. To boost the interest on this intriguing target, the present review updates the knowledge on the structure-activity relationships of HO-2 inhibitors and activators, as well as their potential therapeutic applications. To the best of our knowledge, among HO-2 inhibitors, clemizole derivatives are the most selective HO-2 inhibitors reported so far (IC50 HO-1 >100 μM, IC50 HO-2 = 3.4 μM), while the HO-2 nonselective inhibitors described herein possess IC50 HO-2 values ≤ 10 μM. Furthermore, the development of HO-2 activators, such as menadione analogues, helped to understand the critical moieties required for HO-2 activation. Recent advances in the potential therapeutic applications of HO-2 inhibitors/activators cover the fields of neurodegenerative, cardiovascular, inflammatory, and reproductive diseases further stimulating the interest towards this target.
Collapse
|
28
|
Raffaele M, Pittalà V, Zingales V, Barbagallo I, Salerno L, Li Volti G, Romeo G, Carota G, Sorrenti V, Vanella L. Heme Oxygenase-1 Inhibition Sensitizes Human Prostate Cancer Cells towards Glucose Deprivation and Metformin-Mediated Cell Death. Int J Mol Sci 2019; 20:ijms20102593. [PMID: 31137785 PMCID: PMC6566853 DOI: 10.3390/ijms20102593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
High levels of heme oxygenase (HO)-1 have been frequently reported in different human cancers, playing a major role in drug resistance and regulation of cancer cell redox homeostasis. Metformin (MET), a drug widely used for type 2 diabetes, has recently gained interest for treating several cancers. Recent studies indicated that the anti-proliferative effects of metformin in cancer cells are highly dependent on glucose concentration. The present work was directed to determine whether use of a specific inhibitor of HO-1 activity, alone or in combination with metformin, affected metastatic prostate cancer cell viability under different concentrations of glucose. MTT assay and the xCELLigence system were used to evaluate cell viability and cell proliferation in DU145 human prostate cancer cells. Cell apoptosis and reactive oxygen species were analyzed by flow cytometry. The activity of HO-1 was inhibited using a selective imidazole-based inhibitor; genes associated with antioxidant systems and cell death were evaluated by qRT-PCR. Our study demonstrates that metformin suppressed prostate cancer growth in vitro and increased oxidative stress. Disrupting the antioxidant HO-1 activity, especially under low glucose concentration, could be an attractive approach to potentiate metformin antineoplastic effects and could provide a biochemical basis for developing HO-1-targeting drugs against solid tumors.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Veronica Zingales
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
29
|
Cardullo N, Catinella G, Floresta G, Muccilli V, Rosselli S, Rescifina A, Bruno M, Tringali C. Synthesis of Rosmarinic Acid Amides as Antioxidative and Hypoglycemic Agents. JOURNAL OF NATURAL PRODUCTS 2019; 82:573-582. [PMID: 30785286 DOI: 10.1021/acs.jnatprod.8b01002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is an important metabolic disorder for which there is an urgent need for new antidiabetic drugs. α-Glucosidase inhibition is an established protocol for T2DM therapy. Because hyperglycemia causes oxidative tissue damage, the development of agents with both α-glucosidase inhibition and antioxidant activity from natural or natural-derived polyphenols such derivatives of rosmarinic acid (RA) represents an attractive therapeutic option. We report a study on amides 1-10 derived from RA and their evaluation for yeast α-glucosidase inhibition and antioxidant activity (DPPH and ORAC tests). All amides showed higher inhibitory activity than that of RA, were by far more potent than the antidiabetic drug acarbose, and proved to be effective antioxidants. A molecular docking study displayed significant binding interactions of RA amides with the active site of α-glucosidase. This in silico optimization study led to the design and synthesis of amides 9 (IC50 = 42.3 μM) and 10 (IC50 = 35.2 μM), showing the most potent α-glucosidase inhibition and good antioxidative properties. A kinetic study showed that 10 acts as a mixed type inhibitor.
Collapse
|
30
|
Floresta G, Amata E, Gentile D, Romeo G, Marrazzo A, Pittalà V, Salerno L, Rescifina A. Fourfold Filtered Statistical/Computational Approach for the Identification of Imidazole Compounds as HO-1 Inhibitors from Natural Products. Mar Drugs 2019; 17:md17020113. [PMID: 30759842 PMCID: PMC6409521 DOI: 10.3390/md17020113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present in most of the classical HO-1 inhibitors and seems indispensable to the inhibitory activity due to its strong interaction with the Fe(II) of the heme group. In this paper, we searched for new potentially HO-1 inhibitors among three different databases: Marine Natural Products (MNP), ZINC Natural Products (ZNP) and Super Natural II (SN2). 484,527 compounds were retrieved from the databases and filtered through four statistical/computational filters (2D descriptors, 2D-QSAR pharmacophoric model, 3D-QSAR pharmacophoric model, and docking). Different imidazole-based compounds were suggested by our methodology to be potentially active in inhibiting the HO-1, and the results have been rationalized by the bioactivity of the filtered molecules reported in the literature.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
31
|
Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittalà V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 2019; 167:439-453. [PMID: 30784878 DOI: 10.1016/j.ejmech.2019.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Heme oxygenases (HOs) are a family of enzymes involved in the selective catabolism of free circulating heme. While HO-2 is constitutively expressed, HO-1 is strongly overexpressed under stressful stimuli (e.g., oxidative stress). Under these conditions, HO-1 exerts its strong cytoprotective activities and plays a crucial role in stimulating cell survival by removing the pro-oxidant heme and by producing carbon monoxide and biliverdin (promptly reduced to bilirubin). Unfortunately, the broad spectrum of HO-1 cytoprotective effects has been well experimentally documented both in normal and tumor cells, where the enzyme can be overexpressed, making it an exciting target in the management of some type of tumors. Development of non-competitive HO-1 inhibitors dates back in 2002 with the discovery of Azalanstat. Since then, many efforts have been devoted to the identification of selective HO-1 and HO-2 inhibitors and to unravel the molecular determinants responsible for selectivity. Molecular modeling studies supported the identification of chemical features involved in the recognition and inhibition of these enzymes. Herein, medicinal chemistry aspects and in silico studies related to the development of HO inhibitors will be discussed. The purpose of this review is to highlight recent advances in the development of new selective HO-1 and HO-2 inhibitors and covers the last six years (2013-2018).
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Valeria Ciaffaglione
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Fatima Margani
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, Bari, 70125, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
32
|
Floresta G, Pistarà V, Christensen KE, Amata E, Marrazzo A, Gentile D, Rescifina A, Punzo F. A Pseudouridine Isoxazolidinyl Nucleoside Analogue Structural Analysis: A Morphological Approach. Molecules 2018; 23:molecules23123381. [PMID: 30572684 PMCID: PMC6321120 DOI: 10.3390/molecules23123381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/03/2022] Open
Abstract
An in silico study has been conducted upon (3′RS,5′SR)-5-[2′-benzyl-5′-hydroxymethyl-1′,2′-isoxazolidin-3′-yl]uracil through a molecular dynamics/docking approach that highlights its potential inhibitory activity upon the wild-type pseudouridine 5′-monophosphate glycosidase. The crystal structure of this compound has been solved by means of X-ray single crystal diffraction and the data inferred were used to predict its crystal morphology. These data were compared with optical microscopy images and confirmed the validity of the computed models. This robust approach, already used for several other different compounds, provides a fast and reliable tool to standardize a crystallization method in order to get similar and good quality crystals. As different crystal shapes could be associated with different polymorphic forms, this method could be considered a fast and cheap screening to choose among different and coexistent polymorphic forms. Furthermore, a match with the original crystal structure of pseudouridine 5′-monophosphate is provided.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Davide Gentile
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Francesco Punzo
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
33
|
Floresta G, Cilibrizzi A, Abbate V, Spampinato A, Zagni C, Rescifina A. FABP4 inhibitors 3D-QSAR model and isosteric replacement of BMS309403 datasets. Data Brief 2018; 22:471-483. [PMID: 30619925 PMCID: PMC6312796 DOI: 10.1016/j.dib.2018.12.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The data have been obtained from FABP4 inhibitor molecules previously published. The 120 compounds were used to build a 3D-QSAR model. The development of the QSAR model has been undertaken with the use of Forge software using the PM3 optimized structure and the experimental IC50 of each compound. The QSAR model was also employed to predict the activity of 3000 new isosteric derivatives of BMS309403. The isosteric replacement was also validated by the synthesis and the biological screening of three new compounds reported in the related research article “3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation” (Floresta et al., 2019).
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.,Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.,Institute of Pharmaceutical Science, King׳s College London, Stamford Street, London SE1 9NH, UK
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King׳s College London, Stamford Street, London SE1 9NH, UK.,King׳s Forensics, School of Population Health & Environmental Sciences, King׳s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Vincenzo Abbate
- King׳s Forensics, School of Population Health & Environmental Sciences, King׳s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ambra Spampinato
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
34
|
Floresta G, Cilibrizzi A, Abbate V, Spampinato A, Zagni C, Rescifina A. 3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation. Bioorg Chem 2018; 84:276-284. [PMID: 30529845 DOI: 10.1016/j.bioorg.2018.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 02/09/2023]
Abstract
Following on the recent publication of pharmacologically relevant effects, small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4) have attracted high interest. FABP4 is mainly expressed in macrophages and adipose tissue, where it regulates fatty acid storage and lipolysis, being also an important mediator of inflammation. In this regard, FABP4 recently demonstrated an interesting molecular target for the treatment of type 2 diabetes, other metabolic diseases and some type of cancers. In the past years, hundreds of effective FABP4 inhibitors have been synthesized. In this paper, a quantitative structure-activity relationship (QSAR) model has been produced, in order to predict the bioactivity of FABP4 inhibitors. The methodology has been combined with a scaffold-hopping approach, allowing to identify three new molecules that act as effective inhibitors of this protein. These molecules, synthesized and tested for their FABP4 inhibitor activity, showed IC50 values between 3.70 and 5.59 μM, with a high level of agreement with the predicted values.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy; Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK.
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK; King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Vincenzo Abbate
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ambra Spampinato
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
35
|
Cilibrizzi A, Floresta G, Abbate V, Giovannoni MP. iVS analysis to evaluate the impact of scaffold diversity in the binding to cellular targets relevant in cancer. J Enzyme Inhib Med Chem 2018; 34:44-50. [PMID: 30362379 PMCID: PMC6211261 DOI: 10.1080/14756366.2018.1518960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study reports the application of inverse virtual screening (iVS) methodologies to identify cellular proteins as suitable targets for a library of heterocyclic small-molecules, with potential pharmacological implications. Standard synthetic procedures allow facile generation of these ligands showing a high degree of core scaffold diversity. Specifically, we have computationally investigated the binding efficacy of the new series for target proteins which are involved in cancer pathogenesis. As a result, nine macromolecules demonstrated efficient binding interactions for the molecular dataset, in comparison to the co-crystallised ligand for each target. Moreover, the iVS analysis led us to confirm that 27 analogues have high affinity for one or more examined cellular proteins. The additional evaluation of ADME and drug score for selected hits also highlights their capability as drug candidates, demonstrating valuable leads for further structure optimisation and biological studies.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- a Institute of Pharmaceutical Science , King's College London , London , UK.,b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Giuseppe Floresta
- a Institute of Pharmaceutical Science , King's College London , London , UK.,c Department of Drug Sciences , University of Catania , Catania , Italy
| | - Vincenzo Abbate
- b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Maria Paola Giovannoni
- d NEUROFARBA, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
36
|
Floresta G, Amata E, Barbaraci C, Gentile D, Turnaturi R, Marrazzo A, Rescifina A. A Structure- and Ligand-Based Virtual Screening of a Database of "Small" Marine Natural Products for the Identification of "Blue" Sigma-2 Receptor Ligands. Mar Drugs 2018; 16:md16100384. [PMID: 30322188 PMCID: PMC6212963 DOI: 10.3390/md16100384] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Sigma receptors are a fascinating receptor protein class whose ligands are actually under clinical evaluation for the modulation of opioid analgesia and their use as positron emission tomography radiotracers. In particular, peculiar biological and therapeutic functions are associated with the sigma-2 (σ2) receptor. The σ2 receptor ligands determine tumor cell death through apoptotic and non-apoptotic pathways, and the overexpression of σ2 receptors in several tumor cell lines has been well documented, with significantly higher levels in proliferating tumor cells compared to quiescent ones. This acknowledged feature has found practical application in the development of cancer cell tracers and for ligand-targeting therapy. In this context, the development of new ligands that target the σ2 receptors is beneficial for those diseases in which this protein is involved. In this paper, we conducted a search of new potential σ2 receptor ligands among a database of 1517 “small” marine natural products constructed by the union of the Seaweed Metabolite and the Chemical Entities of Biological Interest (ChEBI) Databases. The structures were passed through two filters that were constituted by our developed two-dimensional (2D) and three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) statistical models, and successively docked upon a σ2 receptor homology model that we built according to the FASTA sequence of the σ2/TMEM97 (SGMR2_HUMAN) receptor.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Carla Barbaraci
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| |
Collapse
|
37
|
Targeting heme Oxygenase-1 with hybrid compounds to overcome Imatinib resistance in chronic myeloid leukemia cell lines. Eur J Med Chem 2018; 158:937-950. [DOI: 10.1016/j.ejmech.2018.09.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
|
38
|
Floresta G, Pittalà V, Sorrenti V, Romeo G, Salerno L, Rescifina A. Development of new HO-1 inhibitors by a thorough scaffold-hopping analysis. Bioorg Chem 2018; 81:334-339. [PMID: 30189413 DOI: 10.1016/j.bioorg.2018.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 01/18/2023]
Abstract
HO-1 inhibition is considered a valuable anticancer approach. In fact, up-regulation of HO-1 had been repeatedly reported in many types of human malignancies, and in these clinical cases, poor outcomes are reported. To identify novel HO-1 inhibitors suitable for drug development, a scaffold-hopping strategy calculation was utilized to design novel derivatives. Different parts of the selected molecule were analyzed and the different series of novel compounds were virtually evaluated. The calculation for the linker moiety of the classical HO-1 inhibitors structure led us to compounds 5 and 6. A synthetic pathway for the two molecules was designed and the compounds were synthesized. The biological activity revealed an HO-1 inhibition of 0.9 and 54 μM for molecules 5 and 6 respectively. This study suggested that our scaffold-hopping approach was successful and these results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
39
|
Heme Oxygenase Inhibition Sensitizes Neuroblastoma Cells to Carfilzomib. Mol Neurobiol 2018; 56:1451-1460. [PMID: 29948946 DOI: 10.1007/s12035-018-1133-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Neuroblastoma (NB) is an embryonic malignancy affecting the physiological development of adrenal medulla and paravertebral sympathetic ganglia in early infancy. Proteasome inhibitors (PIs) (i.e., carfilzomib (CFZ)) may represent a possible pharmacological treatment for solid tumors including NB. In the present study, we tested the effect of a novel non-competitive inhibitor of heme oxygenase-1 (HO-1), LS1/71, as a possible adjuvant therapy for the efficacy of CFZ in neuroblastoma cells. Our results showed that CFZ increased both HO-1 gene expression (about 18-fold) and HO activity (about 8-fold), following activation of the ER stress pathway. The involvement of HO-1 in CFZ-mediated cytotoxicity was further confirmed by the protective effect of pharmacological induction of HO-1, significantly attenuating cytotoxicity. In addition, HO-1 selective inhibition by a specific siRNA increased the cytotoxic effect following CFZ treatment in NB whereas SnMP, a competitive pharmacological inhibitor of HO, showed no changes in cytotoxicity. Our data suggest that treatment with CFZ produces ER stress in NB without activation of CHOP-mediated apoptosis, whereas co-treatment with CFZ and LS1/71 led to apoptosis activation and CHOP expression induction. In conclusion, our study showed that treatment with the non-competitive inhibitor of HO-1, LS1 / 71, increased cytotoxicity mediated by CFZ, triggering apoptosis following ER stress activation. These results suggest that PIs may represent a possible pharmacological treatment for solid tumors and that HO-1 inhibition may represent a possible strategy to overcome chemoresistance and increase the efficacy of chemotherapic regimens.
Collapse
|
40
|
Novel Structural Insight into Inhibitors of Heme Oxygenase-1 (HO-1) by New Imidazole-Based Compounds: Biochemical and In Vitro Anticancer Activity Evaluation. Molecules 2018; 23:molecules23051209. [PMID: 29783634 PMCID: PMC6099553 DOI: 10.3390/molecules23051209] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper, the design, synthesis, and molecular modeling of a new azole-based HO-1 inhibitors was reported, using compound 1 as a lead compound, in which an imidazole moiety is linked to a hydrophobic group by means of an ethanolic spacer. The tested compounds showed a good inhibitor activity and possessed IC50 values in the micromolar range. These results were obtained by targeting the hydrophobic western region. Molecular modeling studies confirmed a consolidated binding mode in which the nitrogen of the imidazolyl moiety coordinated the heme ferrous iron, meanwhile the hydrophobic groups were located in the western region of HO-1 binding pocket. Moreover, the new compounds were screened for in silico ADME-Tox properties to predict drug-like behavior with convincing results. Finally, the in vitro antitumor activity profile of compound 1 was investigated in different cancer cell lines and nanomicellar formulation was synthesized with the aim of improving compound's 1 water solubility. Finally, compound 1 was tested in melanoma cells in combination with doxorubicin showing interesting synergic activity.
Collapse
|