1
|
Gan X, Wu Y, Zhu M, Liu B, Kong M, Xi Z, Li K, Wang H, Su T, Yao J, Khushafah F, Yi B, Wang J, Li W, Wu J. Design, synthesis, and evaluation of cyclic C7-bridged monocarbonyl curcumin analogs containing an o-methoxy phenyl group as potential agents against gastric cancer. J Enzyme Inhib Med Chem 2024; 39:2314233. [PMID: 38385332 PMCID: PMC10885745 DOI: 10.1080/14756366.2024.2314233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
The structure-activity relationship (SAR) between toxicity and the types of linking ketones of C7 bridged monocarbonyl curcumin analogs (MCAs) was not clear yet. In the pursuit of effective and less cytotoxic chemotherapeutics, we conducted a SAR analysis using various diketene skeletons of C7-bridged MCAs, synthesized cyclic C7-bridged MCAs containing the identified low-toxicity cyclopentanone scaffold and an o-methoxy phenyl group, and assessed their anti-gastric cancer activity and safety profile. Most compounds exhibited potent cytotoxic activities against gastric cancer cells. We developed a quantitative structure-activity relationship model (R2 > 0.82) by random Forest method, providing important information for optimizing structure. An optimized compound 2 exhibited in vitro and in vivo anti-gastric cancer activity partly through inhibiting the AKT and STAT3 pathways, and displayed a favorable in vivo safety profile. In summary, this paper provided a promising class of MCAs and a potential compound for the development of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xin Gan
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuna Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Min Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miaomiao Kong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zixuan Xi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haibao Wang
- Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Tiande Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiali Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fatehi Khushafah
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Baozhu Yi
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Jiabing Wang
- Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Wen J, Zhao L, Li Z, Pi C, Feng X, Shi P, Yang H, Chen L, Wang X, Liu F, Wei Y, Zhao L. Preparation and anti-colon cancer effect of a novel curcumin analogue (CA8): in vivo and in vitro evaluation. Front Pharmacol 2024; 15:1464626. [PMID: 39600365 PMCID: PMC11589483 DOI: 10.3389/fphar.2024.1464626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Chemotherapy remains the first choice of treatment for colon cancer despite the inevitable adverse effects. Curcumin (CU) possesses antitumor activity but has poor aqueous solubility, low bioavailability, and weak activity. To address this, nine novel monocarbonyl CU analogues were designed, synthesized, and evaluated in the present study. Among them, CA8 exhibited the highest water solubility, which was approximately 2.37 × 106 times that of CU. In addition, compared with CU, its cytotoxicity on Caco-2 cells (19.2 times/48 h) was stronger. Of note, CA8 arrestedthe cell cycle of Caco-2 cells at the G2/M phase and induced apoptosis. Meanwhile, acute toxicity experiments indicated that KM mice tolerated CA8 for up to 300 mg/kg CA8 (oral administration) and 50 mg/kg CA8 (intraperitoneal injection). The oral administration of CA8 to Sprague Dawley rats exhibited higher AUC (0-t) (6.23-fold) and longer MRT (0-t) (3.35-fold) than that of CU. CA8 also inhibited the proliferation and angiogenesis of tumor cells more than CU and tegafur. Finally, CA8 may exert anti-tumor effects through the activation of JNK pathway and inhibition of AKT pathway. These results suggest that CA8 is a safe and highly effective new drug for colon cancer treatment.
Collapse
Affiliation(s)
- Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingmao Zhao
- Luzhou Longmatan District People’s Hospital, Luzhou Third People’s Hospital, Luzhou, Sichuan, China
| | - Zhuohan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianhu Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Peng Shi
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Ma Y, Wang X, Li X, Chen X, Teng Z, Wang X, Yang J, Liu G. COP-22 Alleviates D-Galactose-Induced Brain Aging by Attenuating Oxidative Stress, Inflammation, and Apoptosis in Mice. Mol Neurobiol 2024; 61:6708-6720. [PMID: 38347285 PMCID: PMC11339142 DOI: 10.1007/s12035-024-03976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/18/2024] [Indexed: 08/22/2024]
Abstract
Aging is a natural and inevitable process of organisms. With the intensification of population aging, research on aging has become a hot topic of global attention. The most obvious manifestation of human aging is the aging of brain function, which has been linked to the development of neurodegenerative diseases. In this study, COP-22, a mono-carbonyl curcumin derivative, was evaluated for its anti-aging ability, especially its ability to resist brain aging induced by D-galactose (D-gal) in mice. For brain protection, COP-22 could resist D-gal-induced oxidative stress by increasing the activity of antioxidative defense enzymes and enhancing antioxidant capacity in the brain tissue; COP-22 could improve the dysfunction of the cholinergic system by decreasing the increased activity of acetylcholinesterase and increasing the reduced content of acetylcholine induced by D-gal; and COP-22 could protect nerve cells of the brain. Further, western blot was used to determine related proteins of the brain. We found that COP-22 could effectively protect against brain injury (SIRT1, p53, p21, and p16) by inhibiting oxidative stress (Nrf2 and HO-1), inflammation (IL-6 and TNF-α), and apoptosis (Bax and caspase-3) in D-gal-induced aging mice. Additionally, COP-22 demonstrated the ability to reduce oxidative stress in serum and liver caused by D-gal, as well as relieve the damages in the liver and kidney induced by D-gal. These results indicated that COP-22 had potential anti-aging activity and could be used in the therapy of aging and aging-associated diseases like Alzheimer disease.
Collapse
Affiliation(s)
- Yazhong Ma
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xiaotong Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xin Li
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xi Chen
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Zhifeng Teng
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
4
|
Nagargoje AA, Deshmukh TR, Shaikh MH, Khedkar VM, Shingate BB. Anticancer perspectives of monocarbonyl analogs of curcumin: A decade (2014-2024) review. Arch Pharm (Weinheim) 2024; 357:e2400197. [PMID: 38895952 DOI: 10.1002/ardp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Monocarbonyl analogs of curcumin (MACs) represent structurally modified versions of curcumin. The existing literature indicates that MACs exhibit enhanced anticancer properties compared with curcumin. Numerous research articles in recent years have emphasized the significance of MACs as effective anticancer agents. This review focuses on the latest advances in the anticancer potential of MACs, from 2014 to 2024, including discussions on their mechanism of action, structure-activity relationship (SAR), and in silico molecular docking studies.
Collapse
Affiliation(s)
- Amol A Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Khopoli Municipal Council College, Khopoli, Maharashtra, India
| | - Tejshri R Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| | - Mubarak H Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Vijay M Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| |
Collapse
|
5
|
He W, Huang Z, Nian C, Huang L, Kong M, Liao M, Zhang Q, Li W, Hu Y, Wu J. Discovery and evaluation of novel spiroheterocyclic protective agents via a SIRT1 upregulation mechanism in cisplatin-induced premature ovarian failure. Bioorg Med Chem 2024; 110:117834. [PMID: 39029436 DOI: 10.1016/j.bmc.2024.117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Currently, no effective treatment exists for premature ovarian failure (POF). To obtain compounds with protective effects against POF, we aimed to design and synthesize a series of spiroheterocyclic protective agents with a focus on minimizing toxicity while enhancing their protective effect against cisplatin-induced POF. This was achieved through systematic modifications of Michael receptors and linkers within the molecular structure of 1,5-diphenylpenta-1,4-dien-3-one analogs. To assess the cytotoxicity and activity of these compounds, we constructed quantitative conformational relationship models using an artificial intelligence random forest algorithm, resulting in R2 values exceeding 0.87. Among these compounds, j2 exhibited optimal protective activity. It significantly increased the survival of cisplatin-injured ovarian granulosa KGN cells, improved post-injury cell morphology, reduced apoptosis, and enhanced cellular estradiol (E2) levels. Subsequent investigations revealed that j2 may exert its protective effect via a novel mechanism involving the activation of the SIRT1/AKT signal pathway. Furthermore, in cisplatin-injured POF in rats, j2 was effective in increasing body, ovarian, and uterine weights, elevating the number of follicles at all levels in the ovary, improving ovarian and uterine structures, and increasing serum E2 levels in rats with cisplatin-injured POF. In conclusion, this study introduces a promising compound j2 and a novel target SIRT1 with substantial protective activity against cisplatin-induced POF.
Collapse
Affiliation(s)
- Wenfei He
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China.
| | - Zhicheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei 436000, China
| | - Chunhui Nian
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Luoqi Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Miaomiao Kong
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqin Liao
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Qiong Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wulan Li
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou 325027, China.
| |
Collapse
|
6
|
Sazdova I, Keremidarska-Markova M, Dimitrova D, Mitrokhin V, Kamkin A, Hadzi-Petrushev N, Bogdanov J, Schubert R, Gagov H, Avtanski D, Mladenov M. Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery. Cancers (Basel) 2023; 15:5478. [PMID: 38001739 PMCID: PMC10670065 DOI: 10.3390/cancers15225478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Rudolf Schubert
- Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
7
|
Chen J, Zheng Z, Li M, Cao C, Zhou X, Wang B, Gan X, Huang Z, Liu Y, Huang W, Liang F, Chen K, Zhao Y, Wang X, Wu J, Lin L. Design, synthesis and evaluation of monoketene compounds as novel potential Parkinson's disease agents by suppressing ER stress via AKT. Bioorg Chem 2023; 136:106543. [PMID: 37119784 DOI: 10.1016/j.bioorg.2023.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Curcumin is identified that it has the potential to treat Parkinson's disease (PD), but its instability limits its further application in clinic. The mono-carbonyl analogs of curcumin (MACs) with diketene structure can effectively improve its stability, but it is highly toxic. In the present study, a less cytotoxic and more stable monoketene MACs skeleton S2 was obtained, and a series of monoketene MACs were synthesized by combining 4-hydroxy-3‑methoxy groups of curcumin. In the 6-OHDA-induced PD's model in-vitro, some compounds exhibited significant neurotherapeutic effect. The quantitative structure-activity relationship (QSAR) model established by the random forest algorithm (RF) for the cell viability rate of above compounds showed that the statistical results are good (R2 = 0.883507), with strong reliability. Among all compounds, the most active compound A4 played an important role in neuroprotection in the PD models both in vitro and in vivo by activating AKT pathway, and then inhibiting the apoptosis of cells caused by endoplasmic reticulum (ER) stress. In the PD model in-vivo, compound A4 significantly improved survival of dopaminergic neurons and the contents of neurotransmitters. It also enhanced the retention of nigrostriatal function which was better than the effect in the mice treated by Madopar, a classical clinical drug for PD. In summary, we screened out the compound A4 with high stability, less cytotoxic monoketene compounds. And these founding provide evidence that the compound A4 can protect dopaminergic neurons via activating AKT and subsequently suppressing ER stress in PD.
Collapse
Affiliation(s)
- Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiwei Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mingqi Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chengkun Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuli Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bozhen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Gan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhicheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yugang Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 315020, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 315020, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Abou-Salim MA, Shaaban MA, Abd El Hameid MK, Alanazi MM, Halaweish F, Elshaier YAMM. Utilizing Estra-1,3,5,16-Tetraene Scaffold: Design and Synthesis of Nitric Oxide Donors as Chemotherapeutic Resistance Combating Agents in Liver Cancer. Molecules 2023; 28:molecules28062754. [PMID: 36985726 PMCID: PMC10055446 DOI: 10.3390/molecules28062754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
A new series of nitric oxide-releasing estra-1,3,5,16-tetraene analogs (NO-∆-16-CIEAs) was designed and synthesized as dual inhibitors for EGFR and MRP2 based on our previous findings on estra-1,3,5-triene analog NO-CIEA 17 against both HepG2 and HepG2-R cell lines. Among the target compounds, 14a (R-isomer) and 14b (S-isomer) displayed potent anti-proliferative activity against both HepG2 and HepG2-R cell lines in comparison to the reference drug erlotinib. Remarkably, compound 14a resulted in a prominent reduction in EGFR phosphorylation at a concentration of 1.20 µM with slight activity on the phosphorylation of MEK1/2 and ERK1/2. It also inhibits MRP2 expression in a dose-dependent manner with 24% inhibition and arrested the cells in the S phase of the cell cycle. Interestingly, compound 14a (estratetraene core) exhibited a twofold increase in anti-proliferative activity against both HepG2 and HepG2-R in comparison with the lead estratriene analog, demonstrating the significance of the designed ∆-16 unsaturation. The results shed a light on compound 14a and support further investigations to combat multidrug resistance in chemotherapy of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Mahrous A Abou-Salim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A Shaaban
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed K Abd El Hameid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fathi Halaweish
- Department of Chemistry and Biochemistry, South Dakota State University, Box 2202, Brookings, SD 57007, USA
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32958, Egypt
| |
Collapse
|
9
|
Wei T, Zheng Z, Wei X, Liu Y, Li W, Fang B, Yun D, Dong Z, Yi B, Li W, Wu X, Chen D, Chen L, Wu J. Rational design, synthesis, and pharmacological characterisation of dicarbonyl curcuminoid analogues with improved stability against lung cancer via ROS and ER stress mediated cell apoptosis and pyroptosis. J Enzyme Inhib Med Chem 2022; 37:2357-2369. [PMID: 36039017 PMCID: PMC9448362 DOI: 10.1080/14756366.2022.2116015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Curcumin is a natural medicine with a wide range of anti-tumour activities. However, due to β-diketone moiety, curcumin exhibits poor stability and pharmacokinetics which significantly limits its clinical applications. In this article, two types of dicarbonyl curcumin analogues with improved stability were designed through the calculation of molecular stability by density functional theory. Twenty compounds were synthesised, and their anti-tumour activity was screened. A plurality of analogues had significantly stronger activity than curcumin. In particular, compound B2 ((2E,2'E)-3,3'-(1,4-phenylene)bis(1-(2-chlorophenyl)prop-2-en-1-one)) exhibited excellent anti-lung cancer activity in vivo and in vitro. In addition, B2 could upregulate the level of reactive oxygen species in lung cancer cells, which in turn activated the endoplasmic reticulum stress and led to cell apoptosis and pyroptosis. Taken together, curcumin analogue B2 is expected to be a novel candidate for lung cancer treatment with improved chemical and biological characteristics.
Collapse
Affiliation(s)
- Tao Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Zhiwei Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yugang Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wentao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bingqing Fang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Di Yun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhaojun Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Baozhu Yi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoping Wu
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong, China
| | - Dezhi Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liping Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China.,The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Manjula V, Venkateswaramoorthi R, Dharmaraja J, Bharanidharan S. Synthesis, Spectroscopic, Computational, Biological and Molecular docking studies on 3‐allyl 2,6‐diaryl piperidin‐4‐ones. ChemistrySelect 2022. [DOI: 10.1002/slct.202203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- V. Manjula
- Department of Chemistry Periyar University Salem 636 011 Tamilnadu India
| | - R. Venkateswaramoorthi
- Department of Chemistry PGP College of Arts and Science Namakkal 637 207 Tamilnadu India
| | - J. Dharmaraja
- Department of Chemistry Arignar Anna Government Arts College, Vadachennimalai, Attur – 636 121 Tamilnadu India
| | - S. Bharanidharan
- Department of Physics Panimalar Engineering College Chennai 600 123 Tamilnadu India
| |
Collapse
|
11
|
Yang Y, Wu H, Zou X, Chen Y, He R, Jin Y, Zhou B, Ge C, Yang Y. A novel synthetic chalcone derivative, 2,4,6-trimethoxy-4'-nitrochalcone (Ch-19), exerted anti-tumor effects through stimulating ROS accumulation and inducing apoptosis in esophageal cancer cells. Cell Stress Chaperones 2022; 27:645-657. [PMID: 36242757 PMCID: PMC9672279 DOI: 10.1007/s12192-022-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer has always been associated with poor prognosis and a low five-year survival rate. Chalcone, a flavonoid family member, has shown anti-tumor property in several types of cancer. However, few studies reported the potency and mechanisms of action of synthetic Chalcone derivatives against esophageal squamous cell carcinoma. In this study, we designed and synthesized a series of novel chalcone analogs and Ch-19 was selected for its superior anti-tumor potency. Results indicated that Ch-19 shows a dose- and time-dependent anti-tumor activity in both KYSE-450 and Eca-109 esophageal cancer cells. Moreover, treatment of Ch-19 resulted in the regression of KYSE-450 tumor xenografts in nude mice. Furthermore, we investigated the potential mechanism involved in the effective anti-tumor effects of Ch-19. As a result, we observed that Ch-19 treatment promoted ROS accumulation and caused G2/M phase arrest in both Eca-109 and KYSE-450 cancer cell lines, thereby resulting in cell apoptosis. Taken together, our study provided a novel synthetic chalcone derivative as a potential anti-tumor therapeutic candidate for treating esophageal cancer.
Collapse
Affiliation(s)
- Yan Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - He Wu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiao Zou
- Department of Oncology and Hematology, The First People's Hospital of Taian, Taian, China
| | - Yongye Chen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Runjia He
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yibo Jin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bei Zhou
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunpo Ge
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Yun Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
12
|
Zhao W, Xu Y, Guo Q, Qian W, Zhu C, Zheng M. A novel anti-lung cancer agent inhibits proliferation and epithelial-mesenchymal transition. J Int Med Res 2022; 50:3000605211066300. [PMID: 35477254 PMCID: PMC9087257 DOI: 10.1177/03000605211066300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To synthesize a novel chalcone-1,3,4-thiadiazole hybrid and investigate its anticancer effects against NCI-H460 cells. METHODS (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one, 1,3-dibromopropane and 1,3,4-thiadiazole-2-thiol were used as chemical materials to synthesize compound ZW97. The NCI-H460 lung cancer cell line was selected to explore the antitumor effects of compound ZW97 in vitro and in vivo. RESULTS Compound ZW97 selectively inhibited cell proliferation against lung cancer cell lines NCI-H460, HCC-44 and NCI-H3122 with IC50 values of 0.15 μM, 2.06 μM and 1.17 μM, respectively. ZW97 suppressed migration and the epithelial-mesenchymal transition process in NCI-H460 cells in a concentration-dependent manner. Based on the kinase activity results and docking analysis, compound ZW97 is a novel tyrosine-protein kinase Met (c-Met kinase) inhibitor. It also inhibited NCI-H460 cell growth in xenograft models without obvious toxicity to normal tissues. CONCLUSIONS Compound ZW97 is a potential c-Met inhibitor that might be a promising agent to treat lung cancer by inhibiting the epithelial-mesenchymal transition process.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ye Xu
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qingkui Guo
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenliang Qian
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chen Zhu
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Min Zheng
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Mu W, Wang Q, Jia M, Dong S, Li S, Yang J, Liu G. Hepatoprotective Effects of Albumin-Encapsulated Nanoparticles of a Curcumin Derivative COP-22 against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Injury in Mice. Int J Mol Sci 2022; 23:ijms23094903. [PMID: 35563293 PMCID: PMC9102161 DOI: 10.3390/ijms23094903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI) is a severe syndrome and can further develop into acute liver failure (ALF) which can lead to high mortality and cause irreversible liver injuries in the clinic. Liver transplantation is the most common treatment; however, liver donors are lacking, and the progression of ALF is rapid. Nanoparticles can increase the bioavailability and the targeted accumulation of drugs in the liver, so as to significantly improve the therapeutic effect of ALI. Curcumin derivative COP-22 exhibits low cytotoxicity and effective anti-inflammatory activity; however, it has poor water solubility. In this study, COP-22-loaded bovine serum albumin (BSA) nanoparticles (22 NPs) were prepared and characterized. They exhibit effective hepatoprotective effects by inhibiting inflammation, oxidative stress, and apoptosis on Lipopolysaccharide/D-Galactosamine-induced acute liver injury of mice. The anti-inflammatory activity of 22 NPs is related to the regulation of the NF-κB signaling pathways; the antioxidant activity is related to the regulation of the Nrf2 signaling pathways; and the apoptosis activity is related to mitochondrial pathways, involving Bcl-2 family and Caspase-3 protein. These three cellular pathways are interrelated and affected each other. Moreover, 22 NPs could be passively targeted to accumulate in the liver through the retention effect and are more easily absorbed than 22.HCl salt in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Yang
- Correspondence: (J.Y.); (G.L.); Tel.: +86-15063505132 (L.G.)
| | - Guoyun Liu
- Correspondence: (J.Y.); (G.L.); Tel.: +86-15063505132 (L.G.)
| |
Collapse
|
14
|
Cong W, Sun Y, Sun YF, Yan WB, Zhang YL, Gao ZF, Wang CH, Hou GG, Zhang JJ. Trifluoromethyl-substituted 3,5-bis(arylidene)-4-piperidones as potential anti-hepatoma and anti-inflammation agents by inhibiting NF-кB activation. J Enzyme Inhib Med Chem 2021; 36:1622-1631. [PMID: 34284695 PMCID: PMC8297402 DOI: 10.1080/14756366.2021.1953996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Some methoxy-, hydroxyl-, pyridyl-, or fluoro-substituted 3,5-bis(arylidene)-4-piperidones (BAPs) could reduce inflammation and promote hepatoma cell apoptosis by inhibiting activation of NF-κB, especially after introduction of trifluoromethyl. Herein, a series of trifluoromethyl-substituted BAPs (4-30) were synthesised and the biological activities were evaluated. We successfully found the most potential 16, which contains three trifluoromethyl substituents and exhibits the best anti-tumour and anti-inflammatory activities. Preliminary mechanism research revealed that 16 could promote HepG2 cell apoptosis in a dose-dependent manner by down-regulating the expression of Bcl-2 and up-regulating the expression of Bax, C-caspase-3. Meanwhile, 16 inhibited activation of NF-κB by directly inhibiting the phosphorylation of p65 and IκBα induced by LPS, together with indirectly inhibiting MAPK pathway, thereby exhibiting both anti-hepatoma and anti-inflammatory activities. Molecular docking confirmed that 16 could bind to the active sites of Bcl-2, p65, and p38 reasonably. The above results suggested that 16 has enormous potential to be developed as a multifunctional agent for the clinical treatment of liver cancers and inflammatory diseases.
Collapse
Affiliation(s)
- Wei Cong
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Yue Sun
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Yi-Fan Sun
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Wei-Bin Yan
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Yu-Long Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Zhong-Fei Gao
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Chun-Hua Wang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Gui-Ge Hou
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Jia-Jing Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| |
Collapse
|
15
|
He W, Wang J, Jin Q, Zhang J, Liu Y, Jin Z, Wang H, Hu L, Zhu L, Shen M, Huang L, Huang S, Li W, Zhuge Q, Wu J. Design, green synthesis, antioxidant activity screening, and evaluation of protective effect on cerebral ischemia reperfusion injury of novel monoenone monocarbonyl curcumin analogs. Bioorg Chem 2021; 114:105080. [PMID: 34225164 DOI: 10.1016/j.bioorg.2021.105080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Antioxidants with high efficacy and low toxicity have the potential to treat cerebral ischemia reperfusion injury (CIRI). Dienone monocarbonyl curcumin analogs (DMCA) capable of overcoming the instability and pharmacokinetic defects of curcumin possess notable antioxidant activity but are found to be significantly toxic. In this study, a novel skeleton of the monoenone monocarbonyl curcumin analogue sAc possessing reduced toxicity and improved stability was designed on the basis of the DMCA skeleton. Moreover, 32 sAc analogs were obtained by applying a green, simple, and economical synthetic method. Multiple sAc analogs with an antioxidant protective effect in PC12 cells were screened using an H2O2-induced oxidative stress damage model, and quantitative evaluation of structure-activity relationship (QSAR) model with regression coefficient of R2 = 0.918921 was built through random forest algorithm (RF). Among these compounds, the optimally active compound sAc15 elicited a potent protective effect on cell growth of PC12 cells by effectively eliminating ROS generation in response to oxidative stress injury by activating the Nrf2/HO-1 antioxidant signaling pathway. In addition, sAc15 exhibited good protection against CIRI in the mice middle cerebral artery occlusion (MCAO) model. In this paper, we provide a novel class of antioxidants and a potential compound for stroke treatment.
Collapse
Affiliation(s)
- Wenfei He
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingsong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiling Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiafeng Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yugang Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zewu Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hua Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linya Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengya Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lili Huang
- Department of Pharmacy, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315041, China
| | - Shengwei Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Qichuan Zhuge
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jianzhang Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
16
|
Anti-inflammatory activity of ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives in vitro and in vivo. Eur J Pharm Sci 2021; 160:105756. [PMID: 33588045 DOI: 10.1016/j.ejps.2021.105756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Curcumin was reported as an anti-inflammatory agent. However, curcumin's poor bioavailability limited its clinical utility. Here, thirty ortho-substituted mono-carbonyl curcumin derivatives, containing acetone, cyclopentanone, cyclohexanone or 4-piperidione (NH, N-methyl or N-acrylyl) moieties replacing β-diketone moiety of curcumin, were investigated for anti-inflammatory activity. Two active ortho-trifluoromethoxy-substituted 4-piperidione-containing derivatives 22 and 24 owned good cell uptake ability, and displayed excellent anti-inflammatory activity in both lipopolysaccharide-induced Raw264.7 macrophages and a dextran sulfate sodium (DSS)-induced mouse model of colitis. They inhibited the production of nitric oxide, reactive oxygen species, malonic dialdehyde and cyclooxygenase-2; and the expression of pro-inflammatory cytokines interleukin-1β, tumor necrosis factor-α and myeloperoxidase; the phosphorylation of mitogen-activated protein kinases; and the nucleus translocation of p65. What's more, 22 or 24 oral administered reduced the severity of clinical symptoms of ulcerative colitis (body weight and disease activity index), and reduced obviously DSS-induced colonic pathological damage (the colon length and histopathology analysis). These results suggested that ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives 22 and 24 were potential anti-inflammatory agents; and offered the important information for design and discovery of more potent anti-inflammatory drug candidates.
Collapse
|
17
|
Zhao Y, Zheng Z, Zhang M, Wang Y, Hu R, Lin W, Huang C, Xu C, Wu J, Deng H. Design, synthesis, and evaluation of mono-carbonyl analogues of curcumin (MCACs) as potential antioxidants against periodontitis. J Periodontal Res 2021; 56:656-666. [PMID: 33604902 DOI: 10.1111/jre.12862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE The application of curcumin is limited by its instability. Mono-carbonyl analogues of curcumin (MCACs) are structurally stable, yet the intermediate bridging ketones in their skeletons account for increased toxicity. This study aimed to synthesize and screen MCACs that exhibit low cytotoxicity and high antioxidant ability, and the effects of MCACs on experimental periodontitis were also investigated. MATERIALS AND METHODS The cytotoxicity of MCACs on MC3 T3-E1 was determined by MTT assay. The antioxidant capacity was investigated by the cell viability against H2 O2 -induced damage and the level of reactive oxygen species (ROS) and malondialdehyde (MDA). The localization and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was detected by immunofluorescence and western blot, respectively. In addition, MCAC was intragastrically administrated in rats with ligature-induced experimental periodontitis. The effects were assessed by bone resorption, as well as the immunohistology staining of inflammatory and oxidative stress markers. RESULTS MCACs with cyclopentanone and containing pyrone showed lower toxicity than natural curcumin were synthesized (1A-10A, 1H-10H), among which, 1A exhibited the most potent cytoprotective effect against H2 O2 -induced damage. Such effects could be explained by the reduced MDA and ROS level, possibly through the nucleus translocation of Nrf2 and the induction of HO-1. Micro-CT results further indicated that 1A significantly reduced bone loss, along with an increased level of Nrf2 and HO-1, and decreased TNF-α and IL-1β. CONCLUSION The present study has synthesized a novel antioxidant MCAC 1A with good biosafety and stability. MCAC 1A could serve as a host response modulator with preventive and protective effects on periodontitis.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Menghan Zhang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Weijia Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyang Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chuchu Xu
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Zhang WH, Chen S, Liu XL, Liu XW, Zhou Y. Study on antitumor activities of the chrysin-chromene-spirooxindole on Lewis lung carcinoma C57BL/6 mice in vivo. Bioorg Med Chem Lett 2020; 30:127410. [PMID: 32738990 DOI: 10.1016/j.bmcl.2020.127410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
The our previous study synthesized the chrysin-chromene-spirooxindole hybrids 3, and further found compound 3e had good antitumor activity against A549 cells in vitro through multi-target co-regulation of the p53 signalling pathway to inhibit the proliferation of A549 cells. This study was designed to evaluate the antitumor effects of compound 3e on Lewis lung carcinoma of C57BL/6 mice in vivo. Compound 3e significantly inhibited the growth of transplanted tumors in C57BL/6 mice and induced the apoptosis of tumor cells. Further studies showed that compound 3e activates and expands the anti-cancer activity of p53 by inhibiting the expression of MDM2, Akt and 5-Lox proteins, accordingly promotes the expressions Bax and inhibit the Bcl-2 protein, the release of Cyt c as well, which resulted in the activation of apoptotic pathway in tumor cells eventually. Moreover, Compound 3e inhibited tumor metastasis by down-regulating VEGF, ICAM-1 and MMP-2 protein expression and angiogenesis. These results suggested that compound 3e exerts an effective antitumor activity in vivo through activating the p53 signaling pathway, which could be exploited as a promising candidate for the development of new anti-tumour drugs.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shuang Chen
- Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang 550025, China
| | - Xiong-Li Liu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang 550025, China.
| | - Xiong-Wei Liu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
19
|
Discovery of novel NF-кB inhibitor based on scaffold hopping: 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidine. Eur J Med Chem 2020; 198:112366. [PMID: 32371335 DOI: 10.1016/j.ejmech.2020.112366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
NF-κB is a key signaling pathway molecule linking hepatoma and chronic inflammation. Inhibition of NF-κB activation can alleviate inflammation, and promote hepatoma cell apoptosis. In this study, a series of fluoro-substituted 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidines (PPMs, 31-57) were synthesized from 3,5-bis(arylidene)-4-piperidones (BAPs, 4-30) based on scaffold hopping. We successfully discovered the most potent 43 substituted by electron-withdrawing substitutes (3-F and 4-CF3) exhibited less toxicity and higher anti-inflammatory activity. Preliminary mechanistic studies revealed that 43 induced dose-dependent cell apoptosis at cell and protein level, while inhibited NF-κB activation by suppressing LPS-induced phosphorylation levels of p65, IκBα and Akt, and by indirectly suppressing MAPK signaling, and by inhibiting the nuclear translocation of NF-κB induced by TNF-α or LPS. Docking analysis verified simulated 43 could reasonably bind to the active site of Bcl-2, p65 and p38 proteins. This compound, as a novel NF-κB inhibitor, also demonstrated both anti-inflammatory and anti-hepatoma activities, warranting its further development as a potential multifunctional agent for the clinical treatment of liver cancers and inflammatory diseases.
Collapse
|
20
|
Min Z, Zhu Y, Hong X, Yu Z, Ye M, Yuan Q, Hu X. Synthesis and Biological Evaluations of Monocarbonyl Curcumin Inspired Pyrazole Analogues as Potential Anti-Colon Cancer Agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2517-2534. [PMID: 32636614 PMCID: PMC7334020 DOI: 10.2147/dddt.s244865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Purpose The monocarbonyl analogs of curcumin (MCACs) have been widely studied for their promising antitumor activity. Pyrazole is a five-membered aromatic heterocyclic system with various bioactivities incorporated frequently in drugs. However, few of MCACs inspired pyrazole analogues were investigated. To search for more potent cytotoxic agents based on MCACs, a series of new 1,5-diaryl/heteroaryl-1,4-pentadien-3-ones inspired pyrazole moiety was synthesized and evaluated on their anti-colon cancer activities. Methods Fifteen new compounds were synthesized and characterized by spectral datum, and then they were tested preliminarily by MTT assay for their cytotoxic activities against a panel of four human cancer cell lines, namely, gastric (SGC-7901), liver (HepG2), lung (A549), and colon (SW620) cancer cells. Compound 7h exhibited excellent selectivity and outstanding anti-proliferation activity against SW620 cells among these 15 compounds. Further, the mechanisms were investigated by transwell migration and invasion assay, clonogenic assay, cell apoptosis analysis, cell cycle analysis, Western blot analysis. Results The IC50 value of 7h against SW620 cells was 12 nM, being more potent than curcumin (IC50 = 9.36 μM), adriamysin (IC50 = 3.28 μM) and oxaliplatin (IC50 = 13.33 μM). Further assays showed that 7h inhibited SW620 cell migration, invasion and colony formation obviously, which was due to its ability to induce cell cycle arrest in the G2/M and S phases and apoptosis. Western blot assay revealed that 7h decreased the protein expression of ATM gene, which may primarily contribute to its anticancer activity against SW620 cells. Conclusion A new MCACs 7h was synthesized and found to exhibit excellent anti-proliferation activity against SW620 cells. Further studies indicated that 7h exerted its anticancer activity against SW620 cells probably via decreasing the ATM protein expression. The present study suggested that 7h was a promising candidate as an anti-colon cancer drug for future development.
Collapse
Affiliation(s)
- Zhenli Min
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yue Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,Stem Cell Lab, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Xing Hong
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Zhijun Yu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Min Ye
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Qiong Yuan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.,New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Hao G, Zhai J, Jiang H, Zhang Y, Wu M, Qiu Y, Fan C, Yu L, Bai S, Sun L, Yang Z. Acetylshikonin induces apoptosis of human leukemia cell line K562 by inducing S phase cell cycle arrest, modulating ROS accumulation, depleting Bcr-Abl and blocking NF-κB signaling. Biomed Pharmacother 2020; 122:109677. [PMID: 31810012 DOI: 10.1016/j.biopha.2019.109677] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Acetylshikonin, a natural naphthoquinone derivative compound from Lithospermum erythrorhyzon, has been reported to kill bacteria, suppress inflammation, and inhibit tumor growth. However, the effect of acetylshikonin on human chronic myelocytic leukemia (CML) cells apoptosis and its detailed mechanisms remains unknown. The purpose of the present study was to investigate whether acetylshikonin could inhibit proliferation or induce apoptosis of the K562 cells, and whether by regulating the NF-κB signaling pathway to suppress the development of CML. K562 cells were treated with serial diluted acetylshikonin at different concentrations. Our data showed that K562 cell growth was significantly inhibited by acetylshikonin with an IC50 of 2.03 μM at 24 h and 1.13 μM at 48 h, with increased cell cycle arrest in S-phase. The results of annexin V-FITC/PI and AO/EB staining showed that acetylshikonin induced cell apoptosis in a dose-dependent manner. K562 cells treated with acetylshikonin underwent massive apoptosis accompanied by a rapid generation of reactive oxygen species (ROS). Scavenging the ROS completely blocked the induction of apoptosis following acetylshikonin treatment. The levels of the pro-apoptotic proteins Bax, cleaved caspase-9, cleaved PARP and cleaved caspase-3 increased with increased concentrations of acetylshikonin, while the level of the anti-apoptotic protein Bcl-2 was downregulated. The levels of Cyt C and AIF, which are characteristic proteins of the mitochondria-regulated intrinsic apoptotic pathway, also increased in the cytosol after acetylshikonin treatment. However, the mitochondrial fraction of Cyt C and AIF were decreased under acetylshikonin treatment. In addition, acetylshikonin decreased Bcr-Abl expression and inhibited its downstream signaling. Acetylshikonin could lead to a blockage of the NF-κB signaling pathway via decreasing nuclear NF-κB P65 and increasing cytoplasmic NF-κB P65. Moreover, acetylshikonin significantly inhibited the phosphorylation of IkBα and IKKα/β in K562 cells. These results demonstrated that acetylshikonin significantly inhibited K562 cell growth and induced cell apoptosis through the mitochondria-regulated intrinsic apoptotic pathway. The mechanisms may involve the modulating ROS accumulation, inhibition of NF-κB and BCR-ABL expression. The inhibition of BCR-ABL expression and the inactivation of the NF-κB signaling pathway caused by acetylshikonin treatment resulted in K562 cell apoptosis. Together, our results indicate that acetylshikonin could serve as a potential therapeutic agent for the future treatment of CML.
Collapse
Affiliation(s)
- Gangping Hao
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| | - Jing Zhai
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Hanming Jiang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yuanying Zhang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Mengdi Wu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yuyu Qiu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Cundong Fan
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijuan Yu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Suyun Bai
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lingyun Sun
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Institute of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
22
|
Wang LL, Wang LY, Yu YM, Li YT, Wu ZY, Yan CW. Cocrystallization of 5-fluorouracil and l-phenylalanine: the first zwitterionic cocrystal of 5-fluorouracil with amino acid exhibiting perfect in vitro/vivo pharmaceutical properties. CrystEngComm 2020. [DOI: 10.1039/d0ce00713g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first zwitterionic cocrystal of 5-fluorouracil with amino acid has been prepared and its structure and in vitro/vivo properties have been systematically studied.
Collapse
Affiliation(s)
- Lin-Lin Wang
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- PR China
| | - Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- PR China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- PR China
- Laboratory for Marine Drugs and Bioproducts
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- PR China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- PR China
| |
Collapse
|
23
|
Design, synthesis and preliminary in-vitro studies of novel boronated monocarbonyl analogues of Curcumin (BMAC) for antitumor and β-amiloyd disaggregation activity. Bioorg Chem 2019; 93:103324. [DOI: 10.1016/j.bioorg.2019.103324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
|
24
|
Li G, Zheng Y, Yao J, Hu L, Liu Q, Ke F, Feng W, Zhao Y, Yan P, He W, Deng H, Qiu P, Li W, Wu J. Design and Green Synthesis of Piperlongumine Analogs and Their Antioxidant Activity against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2019; 10:4545-4557. [PMID: 31491086 DOI: 10.1021/acschemneuro.9b00402] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The supplementation of exogenous antioxidants to scavenge excessive reactive oxygen species (ROS) is an effective treatment for cerebral ischemia-reperfusion injury (CIRI) in stroke. Piperlongumine (PL), a natural alkaloid, has a great potential as a neuroprotective agent, but it also has obvious toxicity. Moreover, its neuroprotective effects remain to be improved. In this study, we designed a series of novel PL analogs by hybridizing the screened low-toxicity diketene skeleton with antioxidant effect and the 3,4,5-trimethoxyphenyl group, which may increase the antioxidant activity of PL. The intermediate was synthesized by a novel green synthesis method, and 34 compounds were obtained. The compounds without obvious cytotoxicity have remarkable antioxidant effects, especially compared with diketene skeletons and PL. The cytoprotection of the active compound decreased significantly by reduction of the carbon-carbon double bonds of the Michael acceptor in the diketene skeleton. More importantly, further study revealed that compound A9, which has the best activity, can confer protection for cells against oxidative stress and attenuate brain injury in vivo. Overall, this study provided a promising drug candidate for the treatment of CIRI and guided the further development of drug research in oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Ge Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yuantie Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiali Yao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Linya Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Qunpeng Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325035 , China
| | - Furong Ke
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Weixiao Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Ya Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Pencheng Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wenfei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Hui Deng
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
25
|
Li Q, Chen L, Dong Z, Zhao Y, Deng H, Wu J, Wu X, Li W. Piperlongumine analogue L50377 induces pyroptosis via ROS mediated NF-κB suppression in non-small-cell lung cancer. Chem Biol Interact 2019; 313:108820. [PMID: 31518571 DOI: 10.1016/j.cbi.2019.108820] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
Natural products with potent activity and less toxicity provide major sources for development of novel anti-cancer drugs. Herein, we evaluated the effects and the underlying mechanisms of a novel piperlongumine (PL) analogue L50377 on non-small-cell lung cancer (NSCLC) cells. The results revealed that L50377 displayed greater potentials of suppressing cell growth than PL. In addition, L50377 promoted cell apoptosis and pyroptosis via stimulating reactive oxygen species (ROS) generation in NSCLC cells. More interestingly, ROS mediated NF-κB suppression might be implicated in the mechanisms of L50377-induced pyroptosis in NSCLC cells. Taken together, our results suggested that L50377 served as a novel chemical agent might have great potentials for NSCLC treatment.
Collapse
Affiliation(s)
- Qian Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Liping Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Zhaojun Dong
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Ya Zhao
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China; Department of Periodontics, Hospital & School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Deng
- Department of Periodontics, Hospital & School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Xiaoping Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China; Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, China.
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
26
|
Su CM, Hou GG, Wang CH, Zhang HQ, Yang C, Liu M, Hou Y. Potential multifunctional agents with anti-hepatoma and anti-inflammation properties by inhibiting NF-кB activation. J Enzyme Inhib Med Chem 2019; 34:1287-1297. [PMID: 31288582 PMCID: PMC6691761 DOI: 10.1080/14756366.2019.1635124] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inhibition of NF-κB signalling has been demonstrated as a therapeutic option in treating inflammatory diseases and cancers. Herein, we synthesized novel dissymmetric 3,5-bis(arylidene)-4-piperidones (BAPs, 83-102) and characterized fully. MTT and ELISA assay were performed to screen the anti-hepatoma and anti-inflammation properties. 96 showed the most potential bioactivity. 96 could promote HepG2 apoptosis through up-regulating the expression of C-Caspase-3 and Bax, down-regulating the expression of Bcl-2, while markedly inhibit LPS or TNF-α-induced activation of NF-κB through both inhibiting the phosphorylation of IκBα and p65, and preventing the p65 nuclear translocation to exhibit both anti-hepatoma and anti-inflammatory activities. Molecular docking verified that simulated 96 can effectively bond to the active site of Bcl-2 and NF-κB/p65 proteins. 96 inhibited xenografts growth by reducing the expression of TNF-α and Bcl-2 in the tumour tissue. This study suggested that 96 could be developed as a potential multifunctional agent for treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Chang-Ming Su
- a School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , PR China
| | - Gui-Ge Hou
- a School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , PR China
| | - Chun-Hua Wang
- a School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , PR China
| | - Hong-Qin Zhang
- b School of Basic Medical Sciences , Binzhou Medical University , Yantai , PR China
| | - Cheng Yang
- b School of Basic Medical Sciences , Binzhou Medical University , Yantai , PR China
| | - Mei Liu
- c Pharmacy Department , The Second People's Hospital of Dongying , Dongying , PR China
| | - Yun Hou
- b School of Basic Medical Sciences , Binzhou Medical University , Yantai , PR China
| |
Collapse
|
27
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin Drug Discov 2019; 14:821-842. [DOI: 10.1080/17460441.2019.1614560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eirini Chainoglou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
28
|
Abou-Salim MA, Shaaban MA, Abd El Hameid MK, Elshaier YAMM, Halaweish F. Design, synthesis and biological study of hybrid drug candidates of nitric oxide releasing cucurbitacin-inspired estrone analogs for treatment of hepatocellular carcinoma. Bioorg Chem 2019; 85:515-533. [PMID: 30807895 DOI: 10.1016/j.bioorg.2019.01.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023]
Abstract
Development of hybrid drug candidates is well known strategy for designing antitumor agents. Herein, a novel class of nitric oxide donating cucurbitacin inspired estrone analogs (NO-CIEAs) were designed and synthesized as multitarget agents. Synthesized analogs were initially evaluated for their anti-hepatocellular carcinoma activities. Among the tested analogs, NO-CIEAs 17 and 20a exhibited more potent activity against HepG2 cells (IC50 = 4.69 and 12.5 µM, respectively) than the reference drug Erlotinib (IC50 = 25 µM). Interestingly, NO-CIEA 17 exerted also a high potent activity against Erlotinib-resistant HepG2 cell line (HepG2-R) (IC50 = 8.21 µM) giving insight about its importance in drug resistance therapy. Intracellular measurements of NO revealed that NO-CIEAs 17 and 20a showed a significant increase in NO production in tumor cells after 1 h of incubation comparable to the reference prodrug JS-K. Flow cytometric analysis showed that both NO-CIEAs 17 and 20a mainly arrested the HepG2 cells in the G0/G1 phase. Also, In-Cell Based ELISA screening showed that NO-CIEA 17 resulted in a potential inhibitory activity towards the EGFR and MAPK (25% and 29% inhibition compared to untreated control cells, respectively). This data suggests the binding ability of NO-CIEA 17 to the EGFR and ERK to be well correlated along with the docking and cellular studies. Also, treatment of HepG2-R cells with NO-CIEA 17 showed a potential reduction of MRP2 expression in a dose dependent manner providing a significant impact on the chemotherapeutic resistance. Overall, the current study provides a potential new approach for the discovery of a novel antitumor agent against HCC.
Collapse
Affiliation(s)
- Mahrous A Abou-Salim
- Al-Azhar University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry, Assiut 71524, Egypt; South Dakota State University, Chemistry & Biochemistry, Box 2202, Brookings, SD 57007, USA
| | - Mohamed A Shaaban
- Cairo University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry, Cairo 11562, Egypt
| | | | - Yaseen A M M Elshaier
- University of Sadat City, Faculty of Pharmacy, Organic and Medicinal Chemistry, Menoufia 32958, Egypt
| | - Fathi Halaweish
- South Dakota State University, Chemistry & Biochemistry, Box 2202, Brookings, SD 57007, USA
| |
Collapse
|
29
|
He Y, Li W, Hu G, Sun H, Kong Q. Bioactivities of EF24, a Novel Curcumin Analog: A Review. Front Oncol 2018; 8:614. [PMID: 30619754 PMCID: PMC6297553 DOI: 10.3389/fonc.2018.00614] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Curcumin is an attractive agent due to its multiple bioactivities. However, the low oral bioavailability and efficacy profile hinders its clinical application. To improve the bioavailability, many analogs of curcumin have been developed, among which EF24 is an excellent representative. EF24 has enhanced bioavailability over curcumin and shows more potent bioactivity, including anti-cancer, anti-inflammatory, and anti-bacterial. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through its inhibitory effect on the nuclear factor kappa B (NF-κB) pathway and by regulating key genes through microRNA (miRNA) or the proteosomal pathway. Based on the current structure, more potent EF24 analogs have been designed and synthesized. However, some roles of EF24 remain unclear, such as whether it induces or inhibits reactive oxygen species (ROS) production and whether it stimulates or inhibits the mitogen activated kinase-like protein (MAPK) pathway. This review summarizes the known biological and pharmacological activities and mechanisms of action of EF24.
Collapse
Affiliation(s)
- Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Guangrong Hu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Sun
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
30
|
Zhu M, Wang J, Xie J, Chen L, Wei X, Jiang X, Bao M, Qiu Y, Chen Q, Li W, Jiang C, Zhou X, Jiang L, Qiu P, Wu J. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-Unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur J Med Chem 2018; 157:1395-1405. [PMID: 30196062 DOI: 10.1016/j.ejmech.2018.08.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022]
Abstract
Chalcone, a natural structure, demonstrates many pharmacological activities including anticancer, and one promising mechanism is to modulate the generation of ROS. It has been known that pyroptosis is associated with anticancer effects, whereas there is fewer researches about ROS-mediated pyroptosis triggered by chemotherapy drugs. Moreover, incorporation of a α,β-unsaturated ketone unit into chalcone may be an effective strategy for development of chemotherapy drugs. Hence, a number of chalcone analogues bearing a α,β-unsaturated ketone were synthesized from chalcone analogues 1 with modest anticancer activities as the lead compound. Structure-activity relationship (SAR) studies confirmed the function of α,β-unsaturated ketone to improve anticancer activity. Notably, compound 8, bearing a α,β-unsaturated ketone, is the most potent inhibitor of cancer, with IC50 values on NCI-H460, A549 and H1975 cells of 2.3 ± 0.3, 3.2 ± 0.0 and 5.7 ± 1.4 μM, respectively. Besides, 8 showed antiproliferative ability against NCI-H460 cells in a time- and concentration-dependent manner through modulating ROS to induce caspase-3-mediated pyroptosis, and displayed a better safety profile in vivo. Overall, these results demonstrated that compound 8 is a candidate agent and a potential lead compound for development of chemotherapy drugs, and can be used as a probe to further examine the mechanism of ROS-dependent pyroptosis.
Collapse
Affiliation(s)
- Min Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiabing Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Jingwen Xie
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyan Wei
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xing Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Miao Bao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanyi Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; College of Information Science and Computer Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chengxi Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoou Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|