1
|
Luo Z, Su J, Luo S, Ju Y, Chen B, Gu Q, Zhou H. Structure-guided inhibitor design targeting CntL provides the first chemical validation of the staphylopine metallophore system in bacterial metal acquisition. Eur J Med Chem 2024; 280:116991. [PMID: 39442338 DOI: 10.1016/j.ejmech.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
To survive in the metal-scarce environment within the host, pathogens synthesize various small molecular metallophores to facilitate the acquisition of transition metals. The cobalt and nickel transporter (Cnt) system synthesizes and transports staphylopine, a nicotianamine-like metallophore, and serves as a primary transition metal uptake system in Gram-positive bacteria including the human pathogen Staphylococcus aureus. In this study, we report the design of the first inhibitor of the Cnt system by targeting the key aminobutanoyltransferase CntL which is involved in the biosynthesis of staphylopine. Through structure-guided fragment linking and optimization, a class of acceptor-adenosine dual-site inhibitors against S. aureus CntL (SaCntL) were designed and synthesized. The most potent inhibitor, compound 9, demonstrated a ΔTm value of 9.4 °C, a Kd value of 0.021 ± 0.004 μM, and an IC50 value of 0.06 μM against SaCntL. The detailed mechanism by which compound 9 inhibits SaCntL has been elucidated through a high-resolution co-crystal structure. Treatment with compound 9 resulted in a moderate downregulation of intracellular concentrations of iron, nickel, and cobalt ions in the S. aureus cells cultured in the metal-scarce medium, providing the first chemical validation of the important role of Cnt system in bacterial metal acquisition. Our findings pave the way for the development of CntL-based antibacterial agents in future.
Collapse
Affiliation(s)
- Zhiteng Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingtian Su
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siting Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingchen Ju
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huihao Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Di Stefano M, Galati S, Piazza L, Gado F, Granchi C, Macchia M, Giordano A, Tuccinardi T, Poli G. Watermelon: setup and validation of an in silico fragment-based approach. J Enzyme Inhib Med Chem 2024; 39:2356179. [PMID: 38864179 PMCID: PMC11232643 DOI: 10.1080/14756366.2024.2356179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/11/2024] [Indexed: 06/13/2024] Open
Abstract
We present a new computational approach, named Watermelon, designed for the development of pharmacophore models based on receptor structures. The methodology involves the sampling of potential hotspots for ligand interactions within a protein target's binding site, utilising molecular fragments as probes. By employing docking and molecular dynamics (MD) simulations, the most significant interactions formed by these probes within distinct regions of the binding site are identified. These interactions are subsequently transformed into pharmacophore features that delineates key anchoring sites for potential ligands. The reliability of the approach was experimentally validated using the monoacylglycerol lipase (MAGL) enzyme. The generated pharmacophore model captured features representing ligand-MAGL interactions observed in various X-ray co-crystal structures and was employed to screen a database of commercially available compounds, in combination with consensus docking and MD simulations. The screening successfully identified two new MAGL inhibitors with micromolar potency, thus confirming the reliability of the Watermelon approach.
Collapse
Affiliation(s)
- Miriana Di Stefano
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lisa Piazza
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Mori M, Cocorullo M, Tresoldi A, Cazzaniga G, Gelain A, Stelitano G, Chiarelli LR, Tomaiuolo M, Delre P, Mangiatordi GF, Garofalo M, Cassetta A, Covaceuszach S, Villa S, Meneghetti F. Structural basis for specific inhibition of salicylate synthase from Mycobacterium abscessus. Eur J Med Chem 2024; 265:116073. [PMID: 38169270 DOI: 10.1016/j.ejmech.2023.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 μM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.
Collapse
Affiliation(s)
- Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Mario Cocorullo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100, Pavia, Italy
| | - Andrea Tresoldi
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100, Pavia, Italy
| | - Martina Tomaiuolo
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, 34149, Trieste, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council, Via G. Amendola 122/o, 70126, Bari, Italy
| | - Giuseppe F Mangiatordi
- Institute of Crystallography, National Research Council, Via G. Amendola 122/o, 70126, Bari, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Alberto Cassetta
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, 34149, Trieste, Italy
| | - Sonia Covaceuszach
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, 34149, Trieste, Italy.
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
4
|
Huang J, Zheng D, Fang Y, Dehaen W. Design and synthesis of a BOAHY-derived tracker for fluorescent labeling of mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123201. [PMID: 37541090 DOI: 10.1016/j.saa.2023.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Fluorescence microscopy has proven to be a crucial powerful tool to specifically visualize cellular organelles. In-depth visualization of the structure of mitochondria in living cells is of great value to better understand their function. Herein, based on our experience in construction of fluorescent difluoroboronate anchored acylhydrazones (BOAHY) chromophores, we rationally designed a novel monoboron complex with a connected triphenylphosphonium moiety, and evaluated its spectroscopic properties, cytotoxicity and intracellular localization. Owing to the positive charge on our fluorescent dye, the molecule had an excellent mitochondria-targeting ability (Pearson's correlation is 0.86).To the best of our knowledge, this is the first example of a BOAHY dye which has been applied as an efficient tracker to target mitochondria in living cells.
Collapse
Affiliation(s)
- Jianjun Huang
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dongbin Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Mori M, Villa S, Chiarelli LR, Meneghetti F, Bellinzoni M. Structural Study of a New MbtI-Inhibitor Complex: Towards an Optimized Model for Structure-Based Drug Discovery. Pharmaceuticals (Basel) 2023; 16:1559. [PMID: 38004425 PMCID: PMC10675255 DOI: 10.3390/ph16111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
MbtI from Mycobacterium tuberculosis (Mtb) is a Mg2+-dependent salicylate synthase, belonging to the chorismate-utilizing enzyme (CUE) family. As a fundamental player in iron acquisition, MbtI promotes the survival and pathogenicity of Mtb in the infected host. Hence, it has emerged in the last decade as an innovative, potential target for the anti-virulence therapy of tuberculosis. In this context, 5-phenylfuran-2-carboxylic acids have been identified as potent MbtI inhibitors. The first co-crystal structure of MbtI in complex with a member of this class was described in 2020, showing the enzyme adopting an open configuration. Due to the high mobility of the loop adjacent to the binding pocket, large portions of the amino acid chain were not defined in the electron density map, hindering computational efforts aimed at structure-driven ligand optimization. Herein, we report a new, high-resolution co-crystal structure of MbtI with a furan-based derivative, in which the closed configuration of the enzyme allowed tracing the entirety of the active site pocket in the presence of the bound inhibitor. Moreover, we describe a new crystal structure of MbtI in open conformation and in complex with the known inhibitor methyl-AMT, suggesting that in vitro potency is not related to the observed enzyme conformation. These findings will prove fundamental to enhance the potency of this series via rational structure-based drug-design approaches.
Collapse
Affiliation(s)
- Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (S.V.); (F.M.)
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (S.V.); (F.M.)
| | - Laurent R. Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy;
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (S.V.); (F.M.)
| | - Marco Bellinzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015 Paris, France
| |
Collapse
|
6
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
7
|
Capela R, Félix R, Clariano M, Nunes D, Perry MDJ, Lopes F. Target Identification in Anti-Tuberculosis Drug Discovery. Int J Mol Sci 2023; 24:10482. [PMID: 37445660 DOI: 10.3390/ijms241310482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that, although preventable and curable, remains a global epidemic due to the emergence of resistance and a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of the pathophysiology of the disease. The limited permeability of the cell wall and the presence of multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation. While the complete genome sequence of Mtb has been determined and several potential protein targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of the most important processes exploited for TB chemotherapeutics. This review provides an overview on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains how chemical probes for protein profiling enabled the identification of new targets and biomarkers, paving the way to disruptive therapeutic regimens and diagnostic tools.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Félix
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Clariano
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diogo Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria de Jesus Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
8
|
Dai J, Battini N, Zang Z, Luo Y, Zhou C. Novel Thiazolylketenyl Quinazolinones as Potential Anti-MRSA Agents and Allosteric Modulator for PBP2a. Molecules 2023; 28:molecules28104240. [PMID: 37241983 DOI: 10.3390/molecules28104240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial infections caused by methicillin-resistant Staphylococcus aureus have seriously threatened public health. There is an urgent need to propose an existing regimen to overcome multidrug resistance of MRSA. A unique class of novel anti-MRSA thiazolylketenyl quinazolinones (TQs) and their analogs were developed. Some synthesized compounds showed good bacteriostatic potency. Especially TQ 4 was found to exhibit excellent inhibition against MRSA with a low MIC of 0.5 μg/mL, which was 8-fold more effective than norfloxacin. The combination of TQ 4 with cefdinir showed stronger antibacterial potency. Further investigation revealed that TQ 4, with low hemolytic toxicity and low drug resistance, was not only able to inhibit biofilm formation but also could reduce MRSA metabolic activity and showed good drug-likeness. Mechanistic explorations revealed that TQ 4 could cause leakage of proteins by disrupting membrane integrity and block DNA replication by intercalated DNA. Furthermore, the synergistic antibacterial effect with cefdinir might be attributed to TQ 4 with the ability to induce PBP2a allosteric regulation of MRSA and further trigger the opening of the active site to promote the binding of cefdinir to the active site, thus inhibiting the expression of PBP2a, thereby overcoming MRSA resistance and significantly enhancing the anti-MRSA activity of cefdinir. A new strategy provided by these findings was that TQ 4, possessing both excellent anti-MRSA activity and allosteric effect of PBP2a, merited further development as a novel class of antibacterial agents to overcome increasingly severe MRSA infections.
Collapse
Affiliation(s)
- Jie Dai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhonglin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chenghe Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Stelitano G, Cocorullo M, Mori M, Villa S, Meneghetti F, Chiarelli LR. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int J Mol Sci 2023; 24:ijms24076181. [PMID: 37047161 PMCID: PMC10094389 DOI: 10.3390/ijms24076181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.
Collapse
|
10
|
Identification of New L-Fucosyl and L-Galactosyl Amides as Glycomimetic Ligands of TNF Lectin Domain of BC2L-C from Burkholderia cenocepacia. Molecules 2023; 28:molecules28031494. [PMID: 36771163 PMCID: PMC9919437 DOI: 10.3390/molecules28031494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The inhibition of carbohydrate-lectin interactions is being explored as an efficient approach to anti adhesion therapy and biofilm destabilization, two alternative antimicrobial strategies that are being explored against resistant pathogens. BC2L-C is a new type of lectin from Burkholderia cenocepacia that binds (mammalian) fucosides at the N-terminal domain and (bacterial) mannosides at the C-terminal domain. This double carbohydrate specificity allows the lectin to crosslink host cells and bacterial cells. We have recently reported the design and generation of the first glycomimetic antagonists of BC2L-C, β-C- or β-N-fucosides that target the fucose-specific N-terminal domain (BC2L-C-Nt). The low water solubility of the designed N-fucosides prevented a full examination of this promising series of ligands. In this work, we describe the synthesis and biophysical evaluation of new L-fucosyl and L-galactosyl amides, designed to be water soluble and to interact with BC2L-C-Nt. The protein-ligand interaction was investigated by Saturation Transfer Difference NMR, Isothermal Titration Calorimetry and crystallographic studies. STD-NMR experiments showed that both fucosyl and galactosyl amides compete with α-methyl fucoside for lectin binding. A new hit compound was identified with good water solubility and an affinity for BC2L-C-Nt of 159 μM (ITC), which represents a one order of magnitude gain over α-methyl fucoside. The x-ray structure of its complex with BC2L-C-Nt was solved at 1.55 Å resolution.
Collapse
|
11
|
Targeting Siderophore-Mediated Iron Uptake in M. abscessus: A New Strategy to Limit the Virulence of Non-Tuberculous Mycobacteria. Pharmaceutics 2023; 15:pharmaceutics15020502. [PMID: 36839823 PMCID: PMC9966845 DOI: 10.3390/pharmaceutics15020502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Targeting pathogenic mechanisms, rather than essential processes, represents a very attractive approach for the development of new antimycobacterial drugs. In this context, iron acquisition routes have recently emerged as potentially druggable pathways. However, the importance of siderophore biosynthesis in the virulence and pathogenicity of M. abscessus (Mab) is still poorly understood. In this study, we investigated the Salicylate Synthase (SaS) of Mab as an innovative molecular target for the development of inhibitors of siderophore production. Notably, Mab-SaS does not have any counterpart in human cells, making it an interesting candidate for drug discovery. Starting from the analysis of the binding of a series of furan-based derivatives, previously identified by our group as inhibitors of MbtI from M. tuberculosis (Mtb), we successfully selected the lead compound 1, exhibiting a strong activity against Mab-SaS (IC50 ≈ 5 µM). Computational studies characterized the key interactions between 1 and the enzyme, highlighting the important roles of Y387, G421, and K207, the latter being one of the residues involved in the first step of the catalytic reaction. These results support the hypothesis that 5-phenylfuran-2-carboxylic acids are also a promising class of Mab-SaS inhibitors, paving the way for the optimization and rational design of more potent derivatives.
Collapse
|
12
|
5-(4-Nitrophenyl)furan-2-carboxylic Acid. MOLBANK 2022. [DOI: 10.3390/m1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ever-evolving research in the field of antitubercular agents has led to the identification of several new potential drug classes. Among them, 5-phenyl-furan-2-carboxylic acids have emerged as innovative potential therapeutics, targeting iron acquisition in mycobacterial species. In our efforts to characterize the molecular interactions between these compounds and their protein target (MbtI from M. tuberculosis) by means of co-crystallization experiments, we unexpectedly obtained the structure of 5-(4-nitrophenyl)furan-2-carboxylic acid (1). Herein, we describe the preparation of the compound and its analysis by 1H NMR, 13C NMR, HRMS, and SC-XRD.
Collapse
|
13
|
Methyl 5-(2-Fluoro-4-nitrophenyl)furan-2-carboxylate. MOLBANK 2022. [DOI: 10.3390/m1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
5-Phenyl-furan-2-carboxylic acids have emerged as a new, promising class of antimycobacterial agents that have the ability to interfere with iron homeostasis. Considering the lack of structural data on these compounds, we analyzed the crystal of a fluorinated ester derivative of 5-(4-nitrophenyl)furan-2-carboxylic acid, one of the most potent candidates in the series. Here, we describe the preparation of methyl 5-(2-fluoro-4-nitrophenyl)furan-2-carboxylate (1) and its analysis by 1H-NMR, 13C-NMR, HRMS, and SC-XRD.
Collapse
|
14
|
Synthesis and Assessment of the In Vitro and Ex Vivo Activity of Salicylate Synthase (Mbti) Inhibitors as New Candidates for the Treatment of Mycobacterial Infections. Pharmaceuticals (Basel) 2022; 15:ph15080992. [PMID: 36015139 PMCID: PMC9413995 DOI: 10.3390/ph15080992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of M. tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new anti-TB agents is the salicylate synthase MbtI, the first enzyme of the mycobacterial siderophore biochemical machinery, absent in human cells. In this work, a set of analogues of 5-(3-cyanophenyl)furan-2-carboxylic acid (I), the most potent MbtI inhibitor identified to date, was synthesized, characterized, and tested to further elucidate the structural requirements for achieving an efficient MbtI inhibition and potent antitubercular activity. The structure–activity relationships (SAR) discussed herein evidenced the importance of the side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity. In detail, 1f emerged as the most effective analogue against the pathogen, acting without cytotoxicity issues. To deepen the understanding of its mechanism of action, we established a fluorescence-based screening test to quantify the pathogen infectivity within host cells, using MPI-2 murine cells, a robust surrogate for alveolar macrophages. The set-up of the new assay demonstrates significant potential to accelerate the discovery of new anti-TB drugs.
Collapse
|
15
|
Galati S, Sainas S, Giorgis M, Boschi D, Lolli ML, Ortore G, Poli G, Tuccinardi T. Identification of Human Dihydroorotate Dehydrogenase Inhibitor by a Pharmacophore-Based Virtual Screening Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123660. [PMID: 35744791 PMCID: PMC9228440 DOI: 10.3390/molecules27123660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is an enzyme belonging to a flavin mononucleotide (FMN)-dependent family involved in de novo pyrimidine biosynthesis, a key biological pathway for highly proliferating cancer cells and pathogens. In fact, hDHODH proved to be a promising therapeutic target for the treatment of acute myelogenous leukemia, multiple myeloma, and viral and bacterial infections; therefore, the identification of novel hDHODH ligands represents a hot topic in medicinal chemistry. In this work, we reported a virtual screening study for the identification of new promising hDHODH inhibitors. A pharmacophore-based approach combined with a consensus docking analysis and molecular dynamics simulations was applied to screen a large database of commercial compounds. The whole virtual screening protocol allowed for the identification of a novel compound that is endowed with promising inhibitory activity against hDHODH and is structurally different from known ligands. These results validated the reliability of the in silico workflow and provided a valuable starting point for hit-to-lead and future lead optimization studies aimed at the development of new potent hDHODH inhibitors.
Collapse
Affiliation(s)
- Salvatore Galati
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
| | - Stefano Sainas
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Marco L. Lolli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Gabriella Ortore
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
- Correspondence: ; Tel.: +39-050-221-9603
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
| |
Collapse
|
16
|
Shyam M, Shilkar D, Rakshit G, Jayaprakash V. Approaches for Targeting the Mycobactin Biosynthesis Pathway for Novel Anti-tubercular Drug Discovery: Where We Stand. Expert Opin Drug Discov 2022; 17:699-715. [PMID: 35575503 DOI: 10.1080/17460441.2022.2077328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Several decades of antitubercular drug discovery efforts have focused on novel antitubercular chemotherapies. However, recent efforts have greatly shifted towards countering extremely/multi/total drug-resistant species. Targeting the conditionally essential elements inside Mycobacterium is a relatively new approach against tuberculosis and has received lackluster attention. The siderophore, Mycobactin, is a conditionally essential molecule expressed by mycobacteria in iron-stress conditions. It helps capture the micronutrient iron, essential for the smooth functioning of cellular processes. AREAS COVERED The authors discuss opportunities to target the conditionally essential pathways to help develop newer drugs and prolong the shelf life of existing therapeutics, emphasizing the bottlenecks in fast-tracking antitubercular drug discovery. EXPERT OPINION While the lack of iron supply can cripple bacterial growth and multiplication, excess iron can cause oxidative overload. Constant up-regulation can strain the bacterial synthetic machinery, further slowing its growth. Mycobactin synthesis is tightly controlled by a genetically conserved mega enzyme family via up-regulation (HupB) or down-regulation (IdeR) based on iron availability in its microenvironment. Furthermore, the recycling of siderophores by the MmpL-MmpS4/5 orchestra provides endogenous drug targets to beat the bugs with iron-toxicity contrivance. These processes can be exploited as chinks in the armor of Mycobacterium and be used for new drug development.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
17
|
Cazzaniga G, Mori M, Meneghetti F, Chiarelli LR, Stelitano G, Caligiuri I, Rizzolio F, Ciceri S, Poli G, Staver D, Ortore G, Tuccinardi T, Villa S. Virtual screening and crystallographic studies reveal an unexpected γ-lactone derivative active against MptpB as a potential antitubercular agent. Eur J Med Chem 2022; 234:114235. [DOI: 10.1016/j.ejmech.2022.114235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
|
18
|
Kottapalle G, Deshmukh N, Shinde A. Synthesis of 2-Hydroxynaphthyl Pyrazolines Containing Isoniazid Moiety:
A Potential Antitubercular Agent. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210427103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The new series of pyrazolines derivatives containing isoniazid moiety were synthesized from
2-hydroxynaphthyl functionalized chalcones and isoniazid using sodium hydroxide as a base in 2-
ethoxy ethanol. We evaluated their antitubercular activity against Mycobacterium tuberculosis strain
(H37Rv) by Microplate Alamar Blue Assay (MABA). Some of the tested compounds 3a, 3b, and 3c,
were found to have higher antitubercular activity than the selected standard drugs, whereas compounds
3d, 3e, 3i and 3j were found to have higher antitubercular activity than Streptomycin and same as that
of Pyrazinamide and Ciprofloxacin, while remaining compound showed moderate activity. Whereas it
is found that the disubstituted halogen compound and electron-withdrawing group on the phenyl ring
are important substitutions for an increase in antitubercular activity.
Collapse
Affiliation(s)
- Gajanan Kottapalle
- PG Research Center & Department of Chemistry, N.E.S. Science College, Nanded, Dist-Nanded 431602, Maharashtra,
India
| | - Nagesh Deshmukh
- PG Research Center & Department of Chemistry, N.E.S. Science College, Nanded, Dist-Nanded 431602, Maharashtra,
India
| | - Avinash Shinde
- PG Research Center & Department of Chemistry, N.E.S. Science college, Nanded, Dist-Nanded 431602, Maharashtra, India
| |
Collapse
|
19
|
Mi J, Gong W, Wu X. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5099312. [PMID: 35252448 PMCID: PMC8896939 DOI: 10.1155/2022/5099312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a severe infectious disease worldwide. The increasing emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has markedly hampered TB control. Therefore, there is an urgent need to develop new anti-TB drugs to treat drug-resistant TB and shorten the standard therapy. The discovery of targets of drug action will lay a theoretical foundation for new drug development. With the development of molecular biology and the success of Mtb genome sequencing, great progress has been made in the discovery of new targets and their relevant inhibitors. In this review, we summarized 45 important drug targets and 15 new drugs that are currently being tested in clinical stages and several prospective molecules that are still at the level of preclinical studies. A comprehensive understanding of the drug targets of Mtb can provide extensive insights into the development of safer and more efficient drugs and may contribute new ideas for TB control and treatment.
Collapse
Affiliation(s)
- Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
20
|
Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int J Mol Sci 2021; 22:ijms222413259. [PMID: 34948055 PMCID: PMC8703488 DOI: 10.3390/ijms222413259] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.
Collapse
|
21
|
An Outline of the Latest Crystallographic Studies on Inhibitor-Enzyme Complexes for the Design and Development of New Therapeutics against Tuberculosis. Molecules 2021; 26:molecules26237082. [PMID: 34885662 PMCID: PMC8659263 DOI: 10.3390/molecules26237082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/04/2022] Open
Abstract
The elucidation of the structure of enzymes and their complexes with ligands continues to provide invaluable insights for the development of drugs against many diseases, including bacterial infections. After nearly three decades since the World Health Organization’s (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. The structural elucidation of enzyme-ligand complexes is fundamental to identify hot-spots, define possible interaction sites, and elaborate strategies to develop optimized molecules with high affinity. This review offers a critical and comprehensive overview of the most recent structural information on traditional and emerging mycobacterial enzymatic targets. A selection of more than twenty enzymes is here discussed, with a special emphasis on the analysis of their binding sites, the definition of the structure–activity relationships (SARs) of their inhibitors, and the study of their main intermolecular interactions. This work corroborates the potential of structural studies, substantiating their relevance in future anti-mycobacterial drug discovery and development efforts.
Collapse
|
22
|
Kingdon ADH, Alderwick LJ. Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:3708-3719. [PMID: 34285773 PMCID: PMC8258792 DOI: 10.1016/j.csbj.2021.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of TB and was estimated to cause 1.4 million death in 2019, alongside 10 million new infections. Drug resistance is a growing issue, with multi-drug resistant infections representing 3.3% of all new infections, hence novel antimycobacterial drugs are urgently required to combat this growing health emergency. Alongside this, increased knowledge of gene essentiality in the pathogenic organism and larger compound databases can aid in the discovery of new drug compounds. The number of protein structures, X-ray based and modelled, is increasing and now accounts for greater than > 80% of all predicted M. tuberculosis proteins; allowing novel targets to be investigated. This review will focus on structure-based in silico approaches for drug discovery, covering a range of complexities and computational demands, with associated antimycobacterial examples. This includes molecular docking, molecular dynamic simulations, ensemble docking and free energy calculations. Applications of machine learning onto each of these approaches will be discussed. The need for experimental validation of computational hits is an essential component, which is unfortunately missing from many current studies. The future outlooks of these approaches will also be discussed.
Collapse
Key Words
- CV, collective variable
- Docking
- Drug discovery
- In silico
- LIE, Linear Interaction Energy
- MD, Molecular Dynamic
- MDR, multi-drug resistant
- MMPB(GB)SA, Molecular Mechanics with Poisson Boltzmann (or generalised Born) and Surface Area solvation
- Machine learning
- Mt, Mycobacterium tuberculosis
- Mycobacterium tuberculosis
- PTC, peptidyl transferase centre
- RMSD, root-mean square-deviation
- Tuberculosis, TB
- cMD, Classical Molecular Dynamic
- cryo-EM, cryogenic electron microscopy
- ns, nanosecond
Collapse
Affiliation(s)
- Alexander D H Kingdon
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
23
|
Mori M, Stelitano G, Chiarelli LR, Cazzaniga G, Gelain A, Barlocco D, Pini E, Meneghetti F, Villa S. Synthesis, Characterization, and Biological Evaluation of New Derivatives Targeting MbtI as Antitubercular Agents. Pharmaceuticals (Basel) 2021; 14:155. [PMID: 33668554 PMCID: PMC7918538 DOI: 10.3390/ph14020155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of Mycobacterium tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new antitubercular agents is the salicylate synthase MbtI, an essential enzyme for the mycobacterial siderophore biochemical machinery, absent in human cells. A set of analogues of I and II, two of the most potent MbtI inhibitors identified to date, was synthesized, characterized, and tested to elucidate the structural requirements for achieving an efficient MbtI inhibition and a potent antitubercular activity with this class of compounds. The structure-activity relationships (SAR) here discussed evidenced the importance of the furan as part of the pharmacophore and led to the preparation of six new compounds (IV-IX), which gave us the opportunity to examine a hitherto unexplored position of the phenyl ring. Among them emerged 5-(3-cyano-5-(trifluoromethyl)phenyl)furan-2-carboxylic acid (IV), endowed with comparable inhibitory properties to the previous leads, but a better antitubercular activity, which is a key issue in MbtI inhibitor research. Therefore, compound IV offers promising prospects for future studies on the development of novel agents against mycobacterial infections.
Collapse
Affiliation(s)
- Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Giovanni Stelitano
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via A. Ferrata 9, 27100 Pavia, Italy; (G.S.); (L.R.C.)
| | - Laurent R. Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via A. Ferrata 9, 27100 Pavia, Italy; (G.S.); (L.R.C.)
| | - Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Elena Pini
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| |
Collapse
|
24
|
Bose P, Harit AK, Das R, Sau S, Iyer AK, Kashaw SK. Tuberculosis: current scenario, drug targets, and future prospects. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Shyam M, Shilkar D, Verma H, Dev A, Sinha BN, Brucoli F, Bhakta S, Jayaprakash V. The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis. J Med Chem 2020; 64:71-100. [PMID: 33372516 DOI: 10.1021/acs.jmedchem.0c01176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The alarming rise in drug-resistant clinical cases of tuberculosis (TB) has necessitated the rapid development of newer chemotherapeutic agents with novel mechanisms of action. The mycobactin biosynthesis pathway, conserved only among the mycolata family of actinobacteria, a group of intracellularly surviving bacterial pathogens that includes Mycobacterium tuberculosis, generates a salicyl-capped peptide mycobactin under iron-stress conditions in host macrophages to support the iron demands of the pathogen. This in vivo essentiality makes this less explored mycobactin biosynthesis pathway a promising endogenous target for novel lead-compounds discovery. In this Perspective, we have provided an up-to-date account of drug discovery efforts targeting selected enzymes (MbtI, MbtA, MbtM, and PPTase) from the mbt gene cluster (mbtA-mbtN). Furthermore, a succinct discussion on non-specific mycobactin biosynthesis inhibitors and the Trojan horse approach adopted to impair iron metabolism in mycobacteria has also been included in this Perspective.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harshita Verma
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
26
|
Discovery of Monoacylglycerol Lipase (MAGL) Inhibitors Based on a Pharmacophore-Guided Virtual Screening Study. Molecules 2020; 26:molecules26010078. [PMID: 33375358 PMCID: PMC7794939 DOI: 10.3390/molecules26010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 01/02/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is an important enzyme of the endocannabinoid system that catalyzes the degradation of the major endocannabinoid 2-arachidonoylglycerol (2-AG). MAGL is associated with pathological conditions such as pain, inflammation and neurodegenerative diseases like Parkinson’s and Alzheimer’s disease. Furthermore, elevated levels of MAGL have been found in aggressive breast, ovarian and melanoma cancer cells. Due to its different potential therapeutic implications, MAGL is considered as a promising target for drug design and the discovery of novel small-molecule MAGL inhibitors is of great interest in the medicinal chemistry field. In this context, we developed a pharmacophore-based virtual screening protocol combined with molecular docking and molecular dynamics simulations, which showed a final hit rate of 50% validating the reliability of the in silico workflow and led to the identification of two promising and structurally different reversible MAGL inhibitors, VS1 and VS2. These ligands represent a valuable starting point for structure-based hit-optimization studies aimed at identifying new potent MAGL inhibitors.
Collapse
|
27
|
Facchetti G, Christodoulou MS, Mendoza LB, Cusinato F, Dalla Via L, Rimoldi I. Biological Properties of New Chiral 2-Methyl-5,6,7,8-tetrahydroquinolin-8-amine-based Compounds. Molecules 2020; 25:molecules25235561. [PMID: 33260896 PMCID: PMC7729733 DOI: 10.3390/molecules25235561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
The synthesis of a small library of 8-substituted 2-methyl-5,6,7,8-tetrahydroquinoline derivatives is presented. All the compounds were tested for their antiproliferative activity in non-cancer human dermal microvascular endothelial cells (HMEC-1) and cancer cells: human T-lymphocyte cells (CEM), human cervix carcinoma cells (HeLa), human dermal microvascular endothelial cells (HMEC-1), colorectal adenocarcinoma (HT-29), ovarian carcinoma (A2780), and biphasic mesothelioma (MSTO-211H). Compounds 3a, 5a, and 2b, showing significant IC50 values against the whole panel of the selected cells, were further synthesized and tested as pure enantiomers in order to shed light on how their stereochemistry might impact on the related biological effect. The most active compound (R)-5a was able to affect cell cycle phases and to induce mitochondrial membrane depolarization and cellular ROS production in A2780 cells.
Collapse
Affiliation(s)
- Giorgio Facchetti
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
- Correspondence: (G.F.); (L.D.V.)
| | - Michael S. Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| | - Lina Barragán Mendoza
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Facultad de Ciencias Químicas, Universidad de Colima, Carr. Colima-Coquimatlán km 9, Coquimatlán 28400, Colima, Mexico
| | - Federico Cusinato
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Correspondence: (G.F.); (L.D.V.)
| | - Isabella Rimoldi
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| |
Collapse
|
28
|
Poli G, Bozdag M, Berrino E, Angeli A, Tuccinardi T, Carta F, Supuran CT. N-aryl-N′-ureido-O-sulfamates as potent and selective inhibitors of hCA VB over hCA VA: Deciphering the binding mode of new potential agents in mitochondrial dysfunctions. Bioorg Chem 2020; 100:103896. [DOI: 10.1016/j.bioorg.2020.103896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
|
29
|
Mori M, Stelitano G, Gelain A, Pini E, Chiarelli LR, Sammartino JC, Poli G, Tuccinardi T, Beretta G, Porta A, Bellinzoni M, Villa S, Meneghetti F. Shedding X-ray Light on the Role of Magnesium in the Activity of Mycobacterium tuberculosis Salicylate Synthase (MbtI) for Drug Design. J Med Chem 2020; 63:7066-7080. [PMID: 32530281 PMCID: PMC8008425 DOI: 10.1021/acs.jmedchem.0c00373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The
Mg2+-dependent Mycobacterium tuberculosis salicylate synthase (MbtI) is a key enzyme involved in the biosynthesis
of siderophores. Because iron is essential for the survival and pathogenicity
of the microorganism, this protein constitutes an attractive target
for antitubercular therapy, also considering the absence of homologous
enzymes in mammals. An extension of the structure–activity
relationships of our furan-based candidates allowed us to disclose
the most potent competitive inhibitor known to date (10, Ki = 4 μM), which also proved
effective on mycobacterial cultures. By structural studies, we characterized
its unexpected Mg2+-independent binding mode. We also investigated
the role of the Mg2+ cofactor in catalysis, analyzing the
first crystal structure of the MbtI–Mg2+–salicylate
ternary complex. Overall, these results pave the way for the development
of novel antituberculars through the rational design of improved MbtI
inhibitors.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Giovanni Stelitano
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Elena Pini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Laurent R Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy
| | - José C Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy
| | - Giulio Poli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Giangiacomo Beretta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - Alessio Porta
- Dipartimento di Chimica, Università degli Studi di Pavia, via T. Taramelli 12, 27100 Pavia, Italy
| | - Marco Bellinzoni
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, F-75015 Paris, France
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| |
Collapse
|
30
|
6-Hydroxy-2-methylbenzofuran-4-carboxylic Acid. MOLBANK 2020. [DOI: 10.3390/m1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
6-Hydroxy-2-methylbenzofuran-4-carboxylic acid was synthesized in two steps, starting from 3,5-dihydroxybenzoate. The product was obtained through a direct thermal one-pot cyclization with propargyl bromide, followed by a base-catalyzed hydrolysis. Its molecular structure was elucidated by means of mono- and bidimensional NMR techniques, ESI-MS, FT-IR and single-crystal X-ray diffraction.
Collapse
|
31
|
Abstract
Background:
Molecular docking is probably the most popular and profitable approach in
computer-aided drug design, being the staple technique for predicting the binding mode of bioactive
compounds and for performing receptor-based virtual screening studies. The growing attention received
by docking, as well as the need for improving its reliability in pose prediction and virtual screening
performance, has led to the development of a wide plethora of new docking algorithms and scoring
functions. Nevertheless, it is unlikely to identify a single procedure outperforming the other ones in
terms of reliability and accuracy or demonstrating to be generally suitable for all kinds of protein targets.
Methods:
In this context, consensus docking approaches are taking hold in computer-aided drug design.
These computational protocols consist in docking ligands using multiple docking methods and then
comparing the binding poses predicted for the same ligand by the different methods. This analysis is
usually carried out calculating the root-mean-square deviation among the different docking results obtained
for each ligand, in order to identify the number of docking methods producing the same binding
pose.
Results:
The consensus docking approaches demonstrated to improve the quality of docking and virtual
screening results compared to the single docking methods. From a qualitative point of view, the improvement
in pose prediction accuracy was obtained by prioritizing ligand binding poses produced by a
high number of docking methods, whereas with regards to virtual screening studies, high hit rates were
obtained by prioritizing the compounds showing a high level of pose consensus.
Conclusion:
In this review, we provide an overview of the results obtained from the performance assessment
of various consensus docking protocols and we illustrate successful case studies where consensus
docking has been applied in virtual screening studies.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
32
|
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104:5633-5662. [PMID: 32372202 DOI: 10.1007/s00253-020-10606-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
Collapse
|
33
|
Macalino SJY, Billones JB, Organo VG, Carrillo MCO. In Silico Strategies in Tuberculosis Drug Discovery. Molecules 2020; 25:E665. [PMID: 32033144 PMCID: PMC7037728 DOI: 10.3390/molecules25030665] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) remains a serious threat to global public health, responsible for an estimated 1.5 million mortalities in 2018. While there are available therapeutics for this infection, slow-acting drugs, poor patient compliance, drug toxicity, and drug resistance require the discovery of novel TB drugs. Discovering new and more potent antibiotics that target novel TB protein targets is an attractive strategy towards controlling the global TB epidemic. In silico strategies can be applied at multiple stages of the drug discovery paradigm to expedite the identification of novel anti-TB therapeutics. In this paper, we discuss the current TB treatment, emergence of drug resistance, and the effective application of computational tools to the different stages of TB drug discovery when combined with traditional biochemical methods. We will also highlight the strengths and points of improvement in in silico TB drug discovery research, as well as possible future perspectives in this field.
Collapse
Affiliation(s)
- Stephani Joy Y. Macalino
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0992, Philippines;
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Junie B. Billones
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Voltaire G. Organo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Maria Constancia O. Carrillo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| |
Collapse
|
34
|
Discovery of Novel µ-Opioid Receptor Inverse Agonist from a Combinatorial Library of Tetrapeptides through Structure-Based Virtual Screening. Molecules 2019; 24:molecules24213872. [PMID: 31717871 PMCID: PMC6865014 DOI: 10.3390/molecules24213872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 11/18/2022] Open
Abstract
Morphine, oxycodone, fentanyl, and other µ-opioid receptors (MOR) agonists have been used for decades in antinociceptive therapies. However, these drugs are associated with numerous side effects, such as euphoria, addiction, respiratory depression, and adverse gastrointestinal reactions, thus, circumventing these drawbacks is of extensive importance. With the aim of identifying novel peptide ligands endowed with MOR inhibitory activity, we developed a virtual screening protocol, including receptor-based pharmacophore screening, docking studies, and molecular dynamics simulations, which was used to filter an in-house built virtual library of tetrapeptide ligands. The three top-scored compounds were synthesized and subjected to biological evaluation, revealing the identity of a hit compound (peptide 1) endowed with appreciable MOR inverse agonist effect and selectivity over δ-opioid receptors. These results confirmed the reliability of our computational approach and provided a promising starting point for the development of new potent MOR modulators.
Collapse
|
35
|
Russo Spena C, De Stefano L, Poli G, Granchi C, El Boustani M, Ecca F, Grassi G, Grassi M, Canzonieri V, Giordano A, Tuccinardi T, Caligiuri I, Rizzolio F. Virtual screening identifies a PIN1 inhibitor with possible antiovarian cancer effects. J Cell Physiol 2019; 234:15708-15716. [PMID: 30697729 DOI: 10.1002/jcp.28224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase, NIMA-interacting 1 (PIN1) is a peptidyl-prolyl isomerase that binds phospho-Ser/Thr-Pro motifs in proteins and catalyzes the cis-trans isomerization of proline peptide bonds. PIN1 is overexpressed in several cancers including high-grade serous ovarian cancer. Since few therapies are effective against this cancer, PIN1 could be a therapeutic target but effective PIN1 inhibitors are lacking. To identify molecules with in vivo inhibitory effects on PIN1, we used consensus docking to model existing PIN1-ligand X-ray structures and to screen a chemical database for candidate inhibitors. Ten molecules were selected and tested in cellular assays, leading to the identification of VS10 that bound and inhibited PIN1. VS10 treatment reduced the viability of ovarian cancer cell lines by inducing proteasomal PIN1 degradation, without effects on PIN1 transcription, and also reduced the levels of downstream targets β-catenin, cyclin D1, and pSer473-Akt. VS10 is a selective PIN1 inhibitor that may offer new opportunities for treating PIN1-overexpressing tumors.
Collapse
Affiliation(s)
- Concetta Russo Spena
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Chemistry, University of Trieste, Trieste, Italy
| | - Lucia De Stefano
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Chemistry, University of Trieste, Trieste, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Maguie El Boustani
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Molecular Biomedicine, University of Trieste, Trieste, Italy
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Isabella Caligiuri
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | - Flavio Rizzolio
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venezia-Mestre, Italy
| |
Collapse
|
36
|
Cerchia C, Nasso R, Mori M, Villa S, Gelain A, Capasso A, Aliotta F, Simonetti M, Rullo R, Masullo M, De Vendittis E, Ruocco MR, Lavecchia A. Discovery of Novel Naphthylphenylketone and Naphthylphenylamine Derivatives as Cell Division Cycle 25B (CDC25B) Phosphatase Inhibitors: Design, Synthesis, Inhibition Mechanism, and in Vitro Efficacy against Melanoma Cell Lines. J Med Chem 2019; 62:7089-7110. [PMID: 31294975 DOI: 10.1021/acs.jmedchem.9b00632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CDC25 phosphatases play a critical role in the regulation of the cell cycle and thus represent attractive cancer therapeutic targets. We previously discovered the 4-(2-carboxybenzoyl)phthalic acid (NSC28620) as a new CDC25 inhibitor endowed with promising anticancer activity in breast, prostate, and leukemia cells. Herein, we report a structure-based optimization of NSC28620, leading to the identification of a series of novel naphthylphenylketone and naphthylphenylamine derivatives as CDC25B inhibitors. Compounds 7j, 7i, 6e, 7f, and 3 showed higher inhibitory activity than the initial lead, with Ki values in the low micromolar range. Kinetic analysis, intrinsic fluorescence studies, and induced fit docking simulations provided a mechanistic understanding of the activity of these derivatives. All compounds were tested in the highly aggressive human melanoma cell lines A2058 and A375. Compound 4a potently inhibited cell proliferation and colony formation, causing an increase of the G2/M phase and a reduction of the G0/G1 phase of the cell cycle in both cell lines.
Collapse
Affiliation(s)
- Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory , University of Naples Federico II , Via D. Montesano, 49 , 80131 Naples , Italy
| | - Rosarita Nasso
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Via S. Pansini 5 , 80131 Naples , Italy.,Department of Movement Sciences and Wellness , University of Naples "Parthenope" , 80133 Naples , Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences , University of Milan , Via Mangiagalli, 25 , 20133 Milan , Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences , University of Milan , Via Mangiagalli, 25 , 20133 Milan , Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences , University of Milan , Via Mangiagalli, 25 , 20133 Milan , Italy
| | - Alessandra Capasso
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Via S. Pansini 5 , 80131 Naples , Italy
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Via S. Pansini 5 , 80131 Naples , Italy
| | - Martina Simonetti
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Via S. Pansini 5 , 80131 Naples , Italy
| | - Rosario Rullo
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Via S. Pansini 5 , 80131 Naples , Italy.,Institute for the Animal Production Systems in the Mediterranean Environment , Via Argine 1085 , 80147 Naples , Italy
| | - Mariorosario Masullo
- Department of Movement Sciences and Wellness , University of Naples "Parthenope" , 80133 Naples , Italy
| | - Emmanuele De Vendittis
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Via S. Pansini 5 , 80131 Naples , Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Via S. Pansini 5 , 80131 Naples , Italy
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory , University of Naples Federico II , Via D. Montesano, 49 , 80131 Naples , Italy
| |
Collapse
|
37
|
Facchetti G, Ferri N, Lupo MG, Giorgio L, Rimoldi I. Monofunctional PtII
Complexes Based on 8-Aminoquinoline: Synthesis and Pharmacological Characterization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milan Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Via Marzolo 5 35131 Padua Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Via Marzolo 5 35131 Padua Italy
| | - Lucchini Giorgio
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia epartment; Università degli Studi di Milano; Via Celoria 2 20133 Milan Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milan Italy
| |
Collapse
|
38
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
39
|
Fassi EMA, Sgrignani J, D'Agostino G, Cecchinato V, Garofalo M, Grazioso G, Uguccioni M, Cavalli A. Oxidation State Dependent Conformational Changes of HMGB1 Regulate the Formation of the CXCL12/HMGB1 Heterocomplex. Comput Struct Biotechnol J 2019; 17:886-894. [PMID: 31333815 PMCID: PMC6617219 DOI: 10.1016/j.csbj.2019.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
High-mobility Group Box 1 (HMGB1) is an abundant protein present in all mammalian cells and involved in several processes. During inflammation or tissue damage, HMGB1 is released in the extracellular space and, depending on its redox state, can form a heterocomplex with CXCL12. The heterocomplex acts exclusively via the chemokine receptor CXCR4 enhancing leukocyte recruitment. Here, we used multi-microsecond molecular dynamics (MD) simulations to elucidate the effect of the disulfide bond on the structure and dynamics of HMGB1. The results of the MD simulations show that the presence or lack of the disulfide bond between Cys23 and Cys45 modulates the conformational space explored by HMGB1, making the reduced protein more suitable to form a complex with CXCL12.
Collapse
Key Words
- CXCL12
- CXCL12, C-X-C motif chemokine 12
- CXCR4, C-X-C chemokine receptor type 4
- Conformational ensemble
- HMGB1
- HMGB1, High-mobility Group Box 1
- MD, Molecular dynamics
- Molecular dynamics
- Protein-protein docking
- RMSD, Root mean square deviation
- RoG, Radius of gyration
- SASA, Solvent accessible surface area
- TLR2 or TLR4, Toll-like Receptor 2 or 4
- ds-HMGB1, Disulfide High-mobility Group Box 1
- fr-HMGB1, Full reduced High-mobility Group Box 1
Collapse
Affiliation(s)
- Enrico M A Fassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Maura Garofalo
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,University of Lausanne (UNIL), CH-1015, Lausanne, Switzerland
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Humanitas University, Department of Biomedical Sciences, 20090, Pieve Emanuele, Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
40
|
N-aryl-N'-ureido-O-sulfamates: Potent and selective inhibitors of the human Carbonic Anhydrase VII isoform with neuropathic pain relieving properties. Bioorg Chem 2019; 89:103033. [PMID: 31212085 DOI: 10.1016/j.bioorg.2019.103033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Herein we report for the first time an efficient synthetic procedure for the preparation of N-aryl-N'-ureido-O-sulfamates (AUSs) as a new class of Carbonic Anhydrase Inhibitors (CAIs). The compounds were tested for the inhibition of several human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) isoforms. Interesting inhibition activity and high selectivity against CA VII and XII versus CA I and II, with KIs in the low nanomolar range, were observed. Molecular modeling studies allowed us to decipher the structural features underpinning the selective inhibitory profile of AUSs towards isoforms CAs VII and XII. A selection of sulfamates showed promising neuropathic pain modulating effects in an in vivo animal model of oxaliplatin induced pain.
Collapse
|
41
|
Martínez R, Zamudio GJN, Pretelin-Castillo G, Torres-Ochoa RO, Medina-Franco JL, Espitia Pinzón CI, Miranda MS, Hernández E, Alanís-Garza B. Synthesis and antitubercular activity of new N-[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]-(nitroheteroaryl)carboxamides. HETEROCYCL COMMUN 2019. [DOI: 10.1515/hc-2019-0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractNitro-substituted heteroaromatic carboxamides 1a-e were synthesized and tested against three Mycobacterium tuberculosis cell lines. The activities can be explained in terms of the distribution of the electronic density across the nitro-substituted heteroaromatic ring attached to the amide group. 1,3,5-Oxadiazole derivatives 1c-e are candidates for the development of novel antitubercular agents. Ongoing studies are focused on exploring the mechanism by which these compounds inhibit M. tuberculosis cell growth.
Collapse
Affiliation(s)
- Roberto Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - Gladys J. Nieves Zamudio
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - Gustavo Pretelin-Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - Rubén O. Torres-Ochoa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - José L. Medina-Franco
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad3000, 04510Cd. México, México
| | - Clara I. Espitia Pinzón
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, México
| | - Mayra Silva Miranda
- Catedrática CONACYT adscrita al Insituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, México
| | - Eugenio Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, México
| | - Blanca Alanís-Garza
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero s/n Col. Mitras Centro. Monterrey, N. L. MéxicoC. P. 64460
| |
Collapse
|
42
|
Lapillo M, Salis B, Palazzolo S, Poli G, Granchi C, Minutolo F, Rotondo R, Caligiuri I, Canzonieri V, Tuccinardi T, Rizzolio F. First-of-its-kind STARD 3 Inhibitor: In Silico Identification and Biological Evaluation as Anticancer Agent. ACS Med Chem Lett 2019; 10:475-480. [PMID: 30996782 DOI: 10.1021/acsmedchemlett.8b00509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/20/2019] [Indexed: 01/17/2023] Open
Abstract
STARD3 is a cellular protein that represents an attractive target for cancer therapy, being overexpressed in breast cancer and implied in the development of colorectal, gastric, and prostate cancers. Unfortunately, no STARD3 inhibitor has been identified yet. In this work, an in silico strategy was applied to predict a reliable binding mode of cholesterol into STARD3 and to develop a pharmacophore-based virtual screening protocol that allowed the identification of the first STARD3 inhibitor ever reported. The identified compound VS1 binds STARD3 with micromolar affinity (IC50 = 35 μM) and shows antiproliferative activity in breast (MCF7 and MDA- MB-231) and colon (HCT-116) cancer cell lines in the same concentration range (IC50 = 49.7-105.5 μM). Although VS1 has a moderate potency, we demonstrated that it specifically targets STARD3 in the cells and induces its degradation. Overall, the results confirm the reliability of the computational strategies herein applied and the identification of the first hit compound for the development of novel potent STARD3 inhibitors.
Collapse
Affiliation(s)
| | - Barbara Salis
- Department of Translational Research, Pathology Unit, National Cancer Institute−CRO-IRCSS, 33081 Aviano, Italy
- Doctoral School in Biomolecolar Medicine, University of Trieste, 34127 Trieste, Italy
| | - Stefano Palazzolo
- Department of Translational Research, Pathology Unit, National Cancer Institute−CRO-IRCSS, 33081 Aviano, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Rossella Rotondo
- Department of Translational Research, Pathology Unit, National Cancer Institute−CRO-IRCSS, 33081 Aviano, Italy
| | - Isabella Caligiuri
- Department of Translational Research, Pathology Unit, National Cancer Institute−CRO-IRCSS, 33081 Aviano, Italy
| | - Vincenzo Canzonieri
- Department of Translational Research, Pathology Unit, National Cancer Institute−CRO-IRCSS, 33081 Aviano, Italy
| | | | - Flavio Rizzolio
- Department of Translational Research, Pathology Unit, National Cancer Institute−CRO-IRCSS, 33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venezia, 30172 Mestre, Italy
| |
Collapse
|
43
|
Chiarelli LR, Mori M, Beretta G, Gelain A, Pini E, Sammartino JC, Stelitano G, Barlocco D, Costantino L, Lapillo M, Poli G, Caligiuri I, Rizzolio F, Bellinzoni M, Tuccinardi T, Villa S, Meneghetti F. New insight into structure-activity of furan-based salicylate synthase (MbtI) inhibitors as potential antitubercular agents. J Enzyme Inhib Med Chem 2019; 34:823-828. [PMID: 30889995 PMCID: PMC6427685 DOI: 10.1080/14756366.2019.1589462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Starting from the analysis of the hypothetical binding mode of our previous furan-based hit (I), we successfully achieved our objective to replace the nitro moiety, leading to the disclosure of a new lead exhibiting a strong activity against MbtI. Our best candidate 1 h displayed a Ki of 8.8 µM and its antimycobacterial activity (MIC99 = 250 µM) is conceivably related to mycobactin biosynthesis inhibition. These results support the hypothesis that 5-phenylfuran-2-carboxylic derivatives are a promising class of MbtI inhibitors.
Collapse
Affiliation(s)
- Laurent R Chiarelli
- a Department of Biology and Biotechnology "L Spallanzani" , University of Pavia , Pavia , Italy
| | - Matteo Mori
- b Department of Pharmaceutical Sciences , University of Milano , Milano , Italy
| | - Giangiacomo Beretta
- c Department of Environmental Science and Policy , University of Milano , Milano , Italy
| | - Arianna Gelain
- b Department of Pharmaceutical Sciences , University of Milano , Milano , Italy
| | - Elena Pini
- b Department of Pharmaceutical Sciences , University of Milano , Milano , Italy
| | - Josè Camilla Sammartino
- a Department of Biology and Biotechnology "L Spallanzani" , University of Pavia , Pavia , Italy
| | - Giovanni Stelitano
- a Department of Biology and Biotechnology "L Spallanzani" , University of Pavia , Pavia , Italy
| | - Daniela Barlocco
- b Department of Pharmaceutical Sciences , University of Milano , Milano , Italy
| | - Luca Costantino
- d Department of Life Sciences , University of Modena e Reggio Emilia , Modena , Italy
| | | | - Giulio Poli
- e Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Isabella Caligiuri
- f Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy
| | - Flavio Rizzolio
- f Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy.,g Department of Molecular Science and Nanosystems , Ca' Foscari University of Venezia , Venezia-Mestre , Italy
| | | | | | - Stefania Villa
- b Department of Pharmaceutical Sciences , University of Milano , Milano , Italy
| | - Fiorella Meneghetti
- b Department of Pharmaceutical Sciences , University of Milano , Milano , Italy
| |
Collapse
|
44
|
Rossetti A, Bono N, Candiani G, Meneghetti F, Roda G, Sacchetti A. Synthesis and Antimicrobial Evaluation of Novel Chiral 2-Amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine Derivatives. Chem Biodivers 2019; 16:e1900097. [PMID: 30942951 DOI: 10.1002/cbdv.201900097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/01/2019] [Indexed: 11/06/2022]
Abstract
New N-substituted-2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives were synthesized employing a convenient one-pot three-component method and their structures were characterized by 1 H-NMR and single crystal X-ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram-positive (Sarcina lutea) and Gram-negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram-positive bacteria and the (R)-enantiomers displayed a greater antimicrobial potency than their (S)-counterparts. The structure-activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.
Collapse
Affiliation(s)
- Arianna Rossetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta' Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Nina Bono
- Research Unit Milano Politecnico, INSTM, Via Mancinelli 7, 20131, Milano, Italy
| | - Gabriele Candiani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta' Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy.,Research Unit Milano Politecnico, INSTM, Via Mancinelli 7, 20131, Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Alessandro Sacchetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta' Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy.,Research Unit Milano Politecnico, INSTM, Via Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
45
|
Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery? Future Med Chem 2019; 11:771-791. [DOI: 10.4155/fmc-2018-0495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metallo-enzymes are a large class of biomolecules promoting specialized chemical reactions. Quantum-classical quantum mechanics/molecular mechanics molecular dynamics, describing the metal site at quantum mechanics level, while accounting for the rest of system at molecular mechanics level, has an accessible time-scale limited by its computational cost. Hence, it must be integrated with classical molecular dynamics and enhanced sampling simulations to disentangle the functions of metallo-enzymes. In this review, we provide an overview of these computational methods and their capabilities. In particular, we will focus on some systems such as CYP19A1 a Fe-dependent enzyme involved in estrogen biosynthesis, and on Mg2+-dependent DNA/RNA processing enzymes/ribozymes and the spliceosome, a protein-directed ribozyme. This information may guide the discovery of drug-like molecules and genetic manipulation tools.
Collapse
|
46
|
Poli G, Lapillo M, Jha V, Mouawad N, Caligiuri I, Macchia M, Minutolo F, Rizzolio F, Tuccinardi T, Granchi C. Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. J Enzyme Inhib Med Chem 2019; 34:589-596. [PMID: 30696302 PMCID: PMC6352951 DOI: 10.1080/14756366.2019.1571271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) is an attractive therapeutic target for many pathologies, including neurodegenerative diseases, cancer as well as chronic pain and inflammatory pathologies. The identification of reversible MAGL inhibitors, devoid of the side effects associated to prolonged MAGL inactivation, is a hot topic in medicinal chemistry. In this study, a novel phenyl(piperazin-1-yl)methanone inhibitor of MAGL was identified through a virtual screening protocol based on a fingerprint-driven consensus docking (CD) approach. Molecular modeling and preliminary structure-based hit optimization studies allowed the discovery of derivative 4, which showed an efficient reversible MAGL inhibition (IC50 = 6.1 µM) and a promising antiproliferative activity on breast and ovarian cancer cell lines (IC50 of 31-72 µM), thus representing a lead for the development of new and more potent reversible MAGL inhibitors. Moreover, the obtained results confirmed the reliability of the fingerprint-driven CD approach herein developed.
Collapse
Affiliation(s)
- Giulio Poli
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | | - Vibhu Jha
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Nayla Mouawad
- a Department of Pharmacy , University of Pisa , Pisa , Italy.,b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy
| | - Isabella Caligiuri
- b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy
| | - Marco Macchia
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | | - Flavio Rizzolio
- b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy.,c Department of Molecular Science and Nanosystems , Ca' Foscari Università di Venezia , Venezia , Italy
| | | | - Carlotta Granchi
- a Department of Pharmacy , University of Pisa , Pisa , Italy.,d Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| |
Collapse
|
47
|
Lapillo M, Tuccinardi T, Martinelli A, Macchia M, Giordano A, Poli G. Extensive Reliability Evaluation of Docking-Based Target-Fishing Strategies. Int J Mol Sci 2019; 20:ijms20051023. [PMID: 30818741 PMCID: PMC6429110 DOI: 10.3390/ijms20051023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
The development of target-fishing approaches, aimed at identifying the possible protein targets of a small molecule, represents a hot topic in medicinal chemistry. A successful target-fishing approach would allow for the elucidation of the mechanism of action of all therapeutically interesting compounds for which the actual target is still unknown. Moreover, target-fishing would be essential for preventing adverse effects of drug candidates, by predicting their potential off-targets, and it would speed up drug repurposing campaigns. However, due to the huge number of possible protein targets that a small-molecule might interact with, experimental target-fishing approaches are out of reach. In silico target-fishing represents a valuable alternative, and examples of receptor-based approaches, exploiting the large number of crystallographic protein structures determined to date, have been reported in the literature. To the best of our knowledge, no proper evaluation of such approaches is, however, reported yet. In the present work, we extensively assessed the reliability of docking-based target-fishing strategies. For this purpose, a set of X-ray structures belonging to different targets was selected, and a dataset of compounds, including 10 experimentally active ligands for each target, was created. A target-fishing benchmark database was then obtained, and used to assess the performance of 13 different docking procedures, in identifying the correct target of the dataset ligands. Moreover, a consensus docking-based target-fishing strategy was developed and evaluated. The analysis highlighted that specific features of the target proteins could affect the reliability of the protocol, which however, proved to represent a valuable tool in the proper applicability domain. Our study represents the first extensive performance assessment of docking-based target-fishing approaches, paving the way for the development of novel efficient receptor-based target fishing strategies.
Collapse
Affiliation(s)
| | | | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
48
|
Wang X, Guo J, Ning Z, Wu X. Discovery of a Natural Syk Inhibitor from Chinese Medicine through a Docking-Based Virtual Screening and Biological Assay Study. Molecules 2018; 23:molecules23123114. [PMID: 30487406 PMCID: PMC6320911 DOI: 10.3390/molecules23123114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is a critical target protein for treating immunoreceptor signalling-mediated allergies. In this study, a virtual screening of an in-house Chinese medicine database followed by biological assays was carried out to identify novel Syk inhibitors. A molecular docking method was employed to screen for compounds with potential Syk inhibitory activity. Then, an in vitro kinase inhibition assay was performed to verify the Syk inhibitory activity of the virtual screening hits. Subsequently, a β-hexosaminidase release assay was conducted to evaluate the anti-mast cell degranulation activity of the active compounds. Finally, tanshinone I was confirmed as a Syk inhibitor (IC50 = 1.64 μM) and exhibited anti-mast cell degranulation activity in vitro (IC50 = 2.76 μM). Docking studies showed that Pro455, Gln462, Leu377, and Lys458 were key amino acid residues for Syk inhibitory activity. This study demonstrated that tanshinone I is a Syk inhibitor with mast cell degranulation inhibitory activity. Tanshinone I may be a potential lead compound for developing effective and safe Syk-inhibiting drugs.
Collapse
Affiliation(s)
- Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing 100069, China.
| | - Junfang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
| | - Zhongqi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing 100069, China.
| |
Collapse
|
49
|
Aleksandrov A, Myllykallio H. Advances and challenges in drug design against tuberculosis: application of in silico approaches. Expert Opin Drug Discov 2018; 14:35-46. [PMID: 30477360 DOI: 10.1080/17460441.2019.1550482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains the deadliest infectious disease in the world with one-third of the world's population thought to be infected. Over the years, TB mortality rate has been largely reduced; however, this progress has been threatened by the increasing appearance of multidrug-resistant Mtb. Considerable recent efforts have been undertaken to develop new generation antituberculosis drugs. Many of these attempts have relied on in silico approaches, which have emerged recently as powerful tools complementary to biochemical attempts. Areas covered: The authors review the status of pharmaceutical drug development against TB with a special emphasis on computational work. They focus on those studies that have been validated by in vitro and/or in vivo experiments, and thus, that can be considered as successful. The major goals of this review are to present target protein systems, to highlight how in silico efforts compliment experiments, and to aid future drug design endeavors. Expert opinion: Despite having access to all of the gene and protein sequences of Mtb, the search for new optimal treatments against this deadly pathogen are still ongoing. Together with the geometric growth of protein structural and sequence databases, computational methods have become a powerful technique accelerating the successful identification of new ligands.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- a Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182) , Ecole Polytechnique , Palaiseau , France
| | - Hannu Myllykallio
- a Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182) , Ecole Polytechnique , Palaiseau , France
| |
Collapse
|
50
|
Pini E, Poli G, Tuccinardi T, Chiarelli LR, Mori M, Gelain A, Costantino L, Villa S, Meneghetti F, Barlocco D. New Chromane-Based Derivatives as Inhibitors of Mycobacterium tuberculosis Salicylate Synthase (MbtI): Preliminary Biological Evaluation and Molecular Modeling Studies. Molecules 2018; 23:molecules23071506. [PMID: 29933627 PMCID: PMC6099841 DOI: 10.3390/molecules23071506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis is the leading cause of death from a single infectious agent worldwide; therefore, the need for new antitubercular drugs is desperate. The recently validated target salicylate synthase MbtI is the first enzyme involved in the biosynthesis of mycobactins, compounds able to chelate iron, an essential cofactor for the survival of Mycobacterium tuberculosis in the host. Here, we report on the synthesis and biological evaluation of chromane-based compounds as new potential inhibitors of MbtI. Our approach successfully allowed the identification of a novel lead compound (1), endowed with a promising activity against this enzyme (IC50 = 55 μM). Molecular modeling studies were performed in order to evaluate the binding mode of 1 and rationalize the preliminary structure-activity relationships, thus providing crucial information to carry out further optimization studies.
Collapse
Affiliation(s)
- Elena Pini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Giulio Poli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Luca Costantino
- Dipartimento Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy.
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Daniela Barlocco
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| |
Collapse
|