1
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Adamantane-Substituted Purine Nucleosides: Synthesis, Host-Guest Complexes with β-Cyclodextrin and Biological Activity. Int J Mol Sci 2022; 23:ijms232315143. [PMID: 36499470 PMCID: PMC9739181 DOI: 10.3390/ijms232315143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Purine nucleosides represent an interesting group of nitrogen heterocycles, showing a wide range of biological effects. In this study, we designed and synthesized a series of 6,9-disubstituted and 2,6,9-trisubstituted purine ribonucleosides via consecutive nucleophilic aromatic substitution, glycosylation, and deprotection of the ribofuranose unit. We prepared eight new purine nucleosides bearing unique adamantylated aromatic amines at position 6. Additionally, the ability of the synthesized purine nucleosides to form stable host-guest complexes with β-cyclodextrin (β-CD) was confirmed using nuclear magnetic resonance (NMR) and mass spectrometry (ESI-MS) experiments. The in vitro antiproliferative activity of purine nucleosides and their equimolar mixtures with β-CD was tested against two types of human tumor cell line. Six adamantane-based purine nucleosides showed an antiproliferative activity in the micromolar range. Moreover, their effect was only slightly suppressed by the presence of β-CD, which was probably due to the competitive binding of the corresponding purine nucleoside inside the β-CD cavity.
Collapse
|
3
|
Amariucai-Mantu D, Antoci V, Sardaru MC, Al Matarneh CM, Mangalagiu I, Danac R. Fused pyrrolo-pyridines and pyrrolo-(iso)quinoline as anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This work emphasizes the synthesis strategies and antiproliferative related properties of fused pyrrolo-pyridine (including indolizine and azaindoles) and pyrrolo-(iso)quinoline derivatives recently reported in literature.
Collapse
Affiliation(s)
| | - Vasilichia Antoci
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | | | | | - Ionel Mangalagiu
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | - Ramona Danac
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| |
Collapse
|
4
|
Cheng X, Wang W, Wang Y, Xia D, Yin F, Liu Q, Luo H, Li M, Zhang C, Cao H, Lv X. Novel Pyrazolo[3,4- d]pyrimidin-4-one Derivatives as Potential Antifungal Agents: Design, Synthesis, and Biological Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11395-11405. [PMID: 34523907 DOI: 10.1021/acs.jafc.1c02454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant pathogenic fungi seriously threaten agricultural production. There is an urgent need to develop novel fungicides with low toxicity and high efficiency. In this study, we designed and synthesized 44 pyrazolo[3,4-d]pyrimidin-4-one derivatives and evaluated them for their fungicidal activities. The bioassay data revealed that most of the target compounds possessed moderate to high in vitro antifungal activities. Especially compound g22 exhibited remarkable antifungal activity against Sclerotinia sclerotiorum with an EC50 value of 1.25 mg/L, close to that of commercial fungicide boscalid (EC50 = 0.96 mg/L) and fluopyram (EC50 = 1.91 mg/L). Moreover, compound g22 possessed prominent protective activity against S. sclerotiorum in vivo for 24 h (95.23%) and 48 h (93.78%), comparable to positive control boscalid (24 h (96.63%); 48 h (93.23%)). Subsequent studies indicated that compound g22 may impede the growth and reproduction of S. sclerotiorum by affecting the morphology of mycelium, destroying cell membrane integrity, and increasing cell membrane permeability. In addition, the application of compound g22 did not injure the growth or reproduction of Italian bees. This study revealed that compound g22 is expected to be developed for efficient and safe agricultural fungicides.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yunxiao Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Dongguo Xia
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Fang Yin
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qiaoyun Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Huisheng Luo
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Chengqi Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Lin X, Liang C, Zou L, Yin Y, Wang J, Chen D, Lan W. Advance of structural modification of nucleosides scaffold. Eur J Med Chem 2021; 214:113233. [PMID: 33550179 PMCID: PMC7995807 DOI: 10.1016/j.ejmech.2021.113233] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
With Remdesivir being approved by FDA as a drug for the treatment of Corona Virus Disease 2019 (COVID-19), nucleoside drugs have once again received widespread attention in the medical community. Herein, we summarized modification of traditional nucleoside framework (sugar + base), traizole nucleosides, nucleoside analogues assembled by other drugs, macromolecule-modified nucleosides, and their bioactivity rules. 2'-"Ara"-substituted by -F or -CN group, and 3'-"ara" substituted by acetylenyl group can greatly influence their anti-tumor activities. Dideoxy dehydrogenation of 2',3'-sites can enhance antiviral efficiencies. Acyclic nucleosides and L-type nucleosides mainly represented antiviral capabilities. 5-F Substituted uracil analogues exihibit anti-tumor effects, and the substrates substituted by -I, -CF3, bromovinyl group usually show antiviral activities. The sugar coupled with 1-N of triazolid usually displays anti-tumor efficiencies, while the sugar coupled with 2-N of triazolid mainly represents antiviral activities. The nucleoside analogues assembled by cholesterol, polyethylene glycol, fatty acid and phospholipid would improve their bioavailabilities and bioactivities, or reduce their toxicities.
Collapse
Affiliation(s)
- Xia Lin
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Guangxi Medical College, Nanning, 530023, China
| | | | - Lianjia Zou
- Guangxi Medical College, Nanning, 530023, China
| | - Yanchun Yin
- Guangxi Medical College, Nanning, 530023, China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Dandan Chen
- Guangxi Medical College, Nanning, 530023, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
6
|
Bouton J, Furquim d'Almeida A, Maes L, Caljon G, Van Calenbergh S, Hulpia F. Synthesis and evaluation of 3'-fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. Eur J Med Chem 2021; 216:113290. [PMID: 33667845 DOI: 10.1016/j.ejmech.2021.113290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites are the causative agents of neglected tropical diseases with an unmet medical need. These parasites are unable to synthesize the purine ring de novo, and therefore rely on purine salvage to meet their purine demand. Evaluating purine nucleoside analogs is therefore an attractive strategy to identify antikinetoplastid agents. Several anti-Trypanosoma cruzi and anti-Trypanosoma brucei 7-deazapurine nucleosides were previously discovered, with the removal of the 3'-hydroxyl group resulting in a significant boost in activity. In this work we therefore decided to assess the effect of the introduction of a 3'-fluoro substituent in 7-deazapurine nucleosides on the anti-kinetoplastid activities. Hence, we synthesized two series of 3'-deoxy-3'-fluororibofuranosyl and 3'-deoxy-3'-fluoroxylofuranosyl nucleosides comprising 7-deazaadenine and -hypoxanthine bases and assayed these for antiparasitic activity. Several analogs with potent activity against T. cruzi and T. brucei were discovered, indicating that a fluorine atom in the 3'-position is a promising modification for the discovery of antiparasitic nucleosides.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Arno Furquim d'Almeida
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| |
Collapse
|
7
|
Matyugina ES, Kochetkov SN, Khandazhinskaya AL. SYNTHESIS AND BIOLOGICAL ACTIVITY OF AZA- AND DEAZA-ANALOGS OF PURINE NUCLEOSIDES. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Rahman FI, Hussain F, Saqueeb N, Abdur Rahman SM. Synthesis and evaluation of pharmacological activities of some 3-O-benzyl-4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-D-ribofuranose derivatives as potential anti-inflammatory agents and analgesics. Res Pharm Sci 2020; 15:209-217. [PMID: 33088321 PMCID: PMC7540815 DOI: 10.4103/1735-5362.288423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/04/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background and purpose: α-D-ribofuranose analogues are reported to have multifarious biological properties such as analgesic, anti-inflammatory, and antiviral activities. The present study aims to synthesize some α-D- ribofuranose derivatives and investigate their biological properties. Experimental approach: Four derivatives (2a, 2b, 3, and 4) were synthesized from the starting material 3-O- benzyl-4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-D-ribofuranose via subsequent benzylation, tosylation, and acetylation reactions in good yields. The compounds were confirmed by spectroscopic methods such as Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1HNMR), and then evaluated for various pharmacological activities using standard in vitro and in vivo procedures. Findings / Results: Compound 2a (50 mg/kg) exhibited both central and peripheral analgesic activity in the tail immersion test (2.52 ± 0.14 min tail flicking reaction time after 30 min from administration, P < 0.001) and the acetic acid-induced writhing test (65.33 ± 2.06% reduction in abdominal writhing, P < 0.001) respectively. In the anti-inflammatory assay, percent paw edema inhibition of carrageenan-induced rats for compounds 2a and 4 (100 mg/kg) after 4 h of administration were 82.6% (P < 0.001) and 87.6% (P < 0.001), respectively. The compounds were also tested for antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, antimicrobial property in disk diffusion assay, and cytotoxicity in HeLa cell line; however, no significant results were observed in any of those tests. Conclusion and Implications: Our study indicated that some of the synthesized compounds exhibited promising analgesic and anti-inflammatory effects and may serve as potential lead compounds.
Collapse
Affiliation(s)
- Fahad Imtiaz Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahad Hussain
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Nazmus Saqueeb
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - S M Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
9
|
Hulpia F, Bouton J, Campagnaro GD, Alfayez IA, Mabille D, Maes L, de Koning HP, Caljon G, Van Calenbergh S. C6-O-alkylated 7-deazainosine nucleoside analogues: Discovery of potent and selective anti-sleeping sickness agents. Eur J Med Chem 2020; 188:112018. [PMID: 31931339 DOI: 10.1016/j.ejmech.2019.112018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023]
Abstract
African trypanosomiasis, a deadly infectious disease caused by the protozoan Trypanosoma brucei spp., is spread to new hosts by bites of infected tsetse flies. Currently approved therapies all have their specific drawbacks, prompting a search for novel therapeutic agents. T. brucei lacks the enzymes necessary to forge the purine ring from amino acid precursors, rendering them dependent on the uptake and interconversion of host purines. This dependency renders analogues of purines and corresponding nucleosides an interesting source of potential anti-T. brucei agents. In this study, we synthesized and evaluated a series of 7-substituted 7-deazainosine derivatives and found that 6-O-alkylated analogues in particular showed highly promising in vitro activity with EC50 values in the mid-nanomolar range. SAR investigation of the O-alkyl chain showed that antitrypanosomal activity increased, and also cytotoxicity, with alkyl chain length, at least in the linear alkyl chain series. However, this could be attenuated by introducing a terminal branch point, resulting in the highly potent and selective analogues, 36, 37 and 38. No resistance related to transporter-mediated uptake could be identified, earmarking several of these analogues for further in vivo follow-up studies.
Collapse
Affiliation(s)
- Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Ibrahim A Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| |
Collapse
|
10
|
Marzo-Mas A, Conesa-Milián L, Noppen S, Liekens S, Falomir E, Murga J, Carda M, Marco JA. N-alpha-Aminoacyl Colchicines as Promising Anticancer Agents. Med Chem 2019; 17:21-32. [PMID: 31793423 DOI: 10.2174/1573406415666191203112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/18/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last years, many efforts have been made to find colchicine derivatives with reduced toxicity. Additionally, the deregulation of amino acid uptake by cancer cells provides an opportunity to improve anticancer drug effectiveness. OBJECTIVE To design new colchicine derivatives with reduced cytotoxicity and enhanced selectivity by means of introducing aminoacyl groups. METHODS 34 colchicine analogues bearing L- and D-amino acid pendants were synthetized and characterized by NMR, IR and MS techniques. Cytotoxicity and antimitotic properties were assessed by spectrophotometry and cell cycle assays. Oncogene downregulation was studied by RTqPCR whereas in vivo studies were performed in SCID mice. RESULTS Compounds exhibit high antiproliferative activities at the nanomolar level while being, in general, less cytotoxic than colchicine. Most compounds inhibit the polymerization of tubulin in a way similar to colchicine itself, with L-amino acid derivatives being the most active in the inhibition of tubulin polymerization. All selected compounds caused cell cycle arrest at the G2/M phase when tested at 1 μM. More specifically, Boc-L-proline derivative 6 arrested half of the population and showed one of the highest Selectivity Indexes. Derivatives 1 (Boc-glycine), 27 (D-leucine) and 31 (Boc-glycine-glycine) proved fairly active in downregulating the expression of the c-Myc, hTERT and VEGF oncogenes, with compound 6 (Boc-L-proline) having the highest activity. This compound was shown to exert a potent anti-tumor effect when administered intraperitoneally (LD50 > 100 mg/kg for 6, compared with 2.5 mg/kg for colchicine). CONCLUSION Compound 6 offers an opportunity to be used in cancer therapy with less toxicity problems than colchicine.
Collapse
Affiliation(s)
- Ana Marzo-Mas
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, E-12071 Castellón, Spain
| | - Laura Conesa-Milián
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, E-12071 Castellón, Spain
| | - Sam Noppen
- Laboratorium Virologie en Chemotherapie (Rega Instituut), Rega - Herestraat 49 - bus 1043, 3000 Leuven, Belgium
| | - Sandra Liekens
- Laboratorium Virologie en Chemotherapie (Rega Instituut), Rega - Herestraat 49 - bus 1043, 3000 Leuven, Belgium
| | - Eva Falomir
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, E-12071 Castellón, Spain
| | - Juan Murga
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, E-12071 Castellón, Spain
| | - Miguel Carda
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, E-12071 Castellón, Spain
| | - Juan A Marco
- Departamento de Química Orgánica, Univ. Valencia, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
11
|
Lin C, Hulpia F, da Silva CF, Batista DDGJ, Van Hecke K, Maes L, Caljon G, Soeiro MDNC, Van Calenbergh S. Discovery of Pyrrolo[2,3-b]pyridine (1,7-Dideazapurine) Nucleoside Analogues as Anti-Trypanosoma cruzi Agents. J Med Chem 2019; 62:8847-8865. [DOI: 10.1021/acs.jmedchem.9b01275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Cristiane França da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Denise da Gama Jaen Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
12
|
Bege M, Kiss A, Kicsák M, Bereczki I, Baksa V, Király G, Szemán-Nagy G, Szigeti MZ, Herczegh P, Borbás A. Synthesis and Cytostatic Effect of 3'-deoxy-3'- C-Sulfanylmethyl Nucleoside Derivatives with d- xylo Configuration. Molecules 2019; 24:molecules24112173. [PMID: 31185601 PMCID: PMC6600393 DOI: 10.3390/molecules24112173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
A small library of 3’-deoxy-C3’-substituted xylofuranosyl-pyrimidine nucleoside analogues were prepared by photoinduced thiol-ene addition of various thiols, including normal and branched alkyl-, 2-hydroxyethyl, benzyl-, and sugar thiols, to 3’-exomethylene derivatives of 2’,5’-di-O-tert-butyldimethylsilyl-protected ribothymidine and uridine. The bioactivity of these derivatives was studied on tumorous SCC (mouse squamous carcinoma cell) and immortalized control HaCaT (human keratinocyte) cell lines. Several alkyl-substituted analogues elicited promising cytostatic activity in low micromolar concentrations with a slight selectivity toward tumor cells. Near-infrared live-cell imaging revealed SCC tumor cell-specific mitotic blockade via genotoxicity of analogue 10, bearing an n-butyl side chain. This analogue essentially affects the chromatin structure of SCC tumor cells, inducing a condensed nuclear material and micronuclei as also supported by fluorescent microscopy. The results highlight that thiol-ene chemistry represents an efficient strategy to discover novel nucleoside analogues with non-natural sugar structures as anticancer agents.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Alexandra Kiss
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Máté Kicsák
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Viktória Baksa
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Gábor Király
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Gábor Szemán-Nagy
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - M Zsuzsa Szigeti
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| |
Collapse
|