1
|
Zhao ZY, Wan J, Chen HW, Sun ZS, Tao YT, Tong Y, Zang Y, Choo YM, Wang P, Li YL, Jiang CX, Li J, Xiong J, Li J, Jin ZX, Hu JF. Major specialized natural products from the endangered plant Heptacodium miconioides, potential medicinal uses and insights into its longstanding unresolved systematic classification. PHYTOCHEMISTRY 2024; 228:114259. [PMID: 39186996 DOI: 10.1016/j.phytochem.2024.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
A comprehensive phytochemical investigation of the flower buds and leaves/twigs of Heptacodium miconioides, a cultivated ornamental plant native to China and categorized as 'vulnerable', has led to the isolation of 45 structurally diverse compounds, which comprise 18 phenylpropanoids (1-4, 7-20), 11 pentacyclic triterpenoids (5, 6, 21-29), eight secoiridoid glycosides (30-37), three quinic acid derivatives (38-40), and a few miscellaneous components (41-45). Among them, (+)-α-intermedianol (1), (+)-holophyllol A (2), and (-)-pseudolarkaemin A (3) represent previously unreported enantiomeric lignans, while (+)-7'(R)-hydroxymatairesinol (4) is an undescribed naturally occurring lignan. Heptacoacids A (5) and B (6) are undescribed 24-nor-urs-28-oic acid derivatives. Their chemical structures were determined by 2D-NMR, supplemented by evidence from specific rotations and circular dichroism spectra. Given the uncertainty surrounding the systematic position of Heptacodium, integrative taxonomy (ITA), a method utilized to define contentious species, is applied. Chemotaxonomy, a vital aspect of ITA, becomes significant. By employing hierarchical clustering analysis (HCA) and syntenic pattern analysis methods, a taxonomic examination based on the major specialized natural products from the flower buds of H. miconioides and two other Caprifoliaceae plants (i.e., Lonicera japonica and Abelia × grandiflora) could offer enhanced understanding of the systematic placement of Heptacodium. Additionally, compounds 39 and 40 displayed remarkable inhibitory activities against ATP-citrate lyase (ACL), with IC50 values of 0.11 and 1.10 μM, respectively. In summary, the discovery of medical properties and refining systematic classification can establish a sturdy groundwork for conservation efforts aimed at mitigating species diversity loss while addressing human diseases.
Collapse
Affiliation(s)
- Ze-Yu Zhao
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiang Wan
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Hao-Wei Chen
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhong-Shuai Sun
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Yu-Tian Tao
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County & Dapanshan National Natural Reserve, Zhejiang, 322300, China
| | - Yue-Ling Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Chun-Xiao Jiang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Junming Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ze-Xin Jin
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Zongqi A, Marshall AC, Jayawardana JMDR, Weeks M, Loveday SM, McNabb W, Lopez-Villalobos N. Genome-wide association studies for citric and lactic acids in dairy sheep milk in a New Zealand flock. Anim Biotechnol 2024; 35:2379897. [PMID: 39102232 DOI: 10.1080/10495398.2024.2379897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The objectives of this study were to estimate genetic parameters for citric acid content (CA) and lactic acid content (LA) in sheep milk and to identify the associated candidate genes in a New Zealand dairy sheep flock. Records from 165 ewes were used. Heritability estimates based on pedigree records for CA and LA were 0.65 and 0.33, respectively. The genetic and phenotypic correlations between CA and LA were strong-moderate and negative. Estimates of genomic heritability for CA and LA were also high (0.85, 0.51) and the genomic correlation between CA and LA was strongly negative (-0.96 ± 0.11). No significant associations were found at the Bonferroni level. However, one intragenic SNP in C1QTNF1 (chromosome 11) was associated with CA, at the chromosomal significance threshold. Another SNP associated with CA was intergenic (chromosome 15). For LA, the most notable SNP was intragenic in CYTH1 (chromosome 11), the other two SNPs were intragenic in MGAT5B and TIMP2 (chromosome 11), and four SNPs were intergenic (chromosomes 1 and 24). The functions of candidate genes indicate that CA and LA could potentially be used as biomarkers for energy balance and clinical mastitis. Further research is recommended to validate the present results.
Collapse
Affiliation(s)
- An Zongqi
- Sichuan Agricultural University, College of Science and Technology, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu, P. R. China
| | - Ana C Marshall
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - J M D R Jayawardana
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Mike Weeks
- Smart Foods & Bioproducts Group, AgResearch Ltd, Massey University, Palmerston North, New Zealand
| | - Simon M Loveday
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Warren McNabb
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
3
|
Cai Q, Zhu H, Dai Y, Zhou Q, Zhang Q, Zhu Q. ATP citrate lyase promotes the progression of hepatocellular carcinoma by activating the REGγ-proteasome pathway. Mol Carcinog 2024; 63:1874-1891. [PMID: 38888205 DOI: 10.1002/mc.23777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The search for novel tumor biomarkers and targets is of significant importance for the early clinical diagnosis and treatment of Hepatocellular Carcinoma (HCC). The mechanisms by which ATP citrate lyase (ACLY) promotes HCC progression remain unclear, and the connection between ACLY and REGγ has not been reported in the literature. In vitro, we will perform overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to investigate the impact of ACLY on HCC cells and its underlying mechanisms. In vivo, we will establish mouse tumor models with overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to study the effect of ACLY on mouse tumors and its mechanisms. Firstly, ACLY overexpression upregulated REGγ expression and activated the REGγ-proteasome pathway, leading to changes in the expression of downstream signaling pathway proteins. This promoted HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Secondly, ACLY overexpression increased acetyl-CoA production, upregulated the acetylation level of the REGγ promoter region histone H3K27ac, and subsequently induced REGγ expression. Lastly, enhanced acetylation of the REGγ promoter region histone H3K27ac resulted in upregulated REGγ expression, activation of the REGγ-proteasome pathway, changes in downstream signaling pathway protein expression, and promotion of HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Conversely, REGγ knockdown reversed these effects. ACLY and REGγ may serve as potential biomarkers and clinical therapeutic targets for HCC.
Collapse
Affiliation(s)
- Qihong Cai
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Honghua Zhu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yile Dai
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qingqing Zhou
- Departments of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qiyu Zhang
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qiandong Zhu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
4
|
Sun X, Zhao X, Wang S, Liu Q, Wei W, Xu J, Wang H, Yang W. The pathological significance and potential mechanism of ACLY in cholangiocarcinoma. Front Immunol 2024; 15:1477267. [PMID: 39399493 PMCID: PMC11466796 DOI: 10.3389/fimmu.2024.1477267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aim Cholangiocarcinoma (CCA) is a rare cancer, yet its incidence and mortality rates have been steadily increasing globally over the past few decades. Currently, there are no effective targeted treatment strategies available for patients. ACLY (ATP Citrate Lyase), a key enzyme in de novo lipogenesis, is aberrantly expressed in several tumors and is associated with malignant progression. However, its role and mechanisms in CCA have not yet been elucidated. Methods The expression of ACLY in CCA was assessed using transcriptomic profiles and tissue microarrays. Kaplan-Meier curves were employed to evaluate the prognostic significance of ACLY in CCA. Functional enrichment analysis was used to explore the potential mechanisms of ACLY in CCA. A series of assays were conducted to examine the effects of ACLY on the proliferation and migration of CCA cells. Ferroptosis inducers and inhibitors, along with lipid peroxide probes and MDA assay kits, were utilized to explore the role of ACLY in ferroptosis within CCA. Additionally, lipid-depleted fetal bovine serum and several fatty acids were used to evaluate the impact of fatty acids on ferroptosis induced by ACLY inhibition. Correlation analyses were performed to elucidate the relationship between ACLY and tumor stemness as well as tumor microenvironment. Results The expression of ACLY was found to be higher in CCA tissues compared to adjacent normal tissues. Patients with elevated ACLY expression demonstrated poorer overall survival outcomes. ACLY were closed associated with fatty acid metabolism and tumor-initiating cells. Knockdown of ACLY did not significantly impact the proliferation and migration of CCA cells. However, ACLY inhibition led to increased accumulation of lipid peroxides and enhanced sensitivity of CCA cells to ferroptosis inducers. Polyunsaturated fatty acids were observed to inhibit the proliferation of ACLY-knockdown cells; nonetheless, this inhibitory effect was diminished when the cells were cultured in medium supplemented with lipid-depleted fetal bovine serum. Additionally, ACLY expression was negatively correlated with immune cell infiltration and immune scores in CCA. Conclusion ACLY promotes ferroptosis by disrupting the balance of saturated and unsaturated fatty acids. ACLY may therefore serve as a potential diagnostic and therapeutic target for CCA.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofang Zhao
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Senyan Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Wei
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Xu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Yang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
5
|
Li D, Yuan X, Ma J, Lu T, Zhang J, Liu H, Zhang G, Wang Y, Liu X, Xie Q, Zhou L, Xu M. Morusin, a novel inhibitor of ACLY, induces mitochondrial apoptosis in hepatocellular carcinoma cells through ROS-mediated mitophagy. Biomed Pharmacother 2024; 180:117510. [PMID: 39341077 DOI: 10.1016/j.biopha.2024.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE Morusin (Mor), a prenylated flavonoid isolated from the root bark of Morus alba L., exhibits potent anti-tumour effects; however, the molecular target of Mor is still not entirely clear. This study aimed to elucidate the mechanism of Mor against hepatocellular carcinoma (HCC) and identify potential molecular targets. METHODS Mitochondrial function was assessed by measuring the mitochondrial membrane potential, mitochondrial ultrastructure, oxygen consumption, and ATP levels. Mor-induced mitophagy was confirmed using western blotting, immunofluorescence, and fluorescent probes. Transcriptomics, flow cytometry, western blotting, qRT-PCR and biochemical assays were used to reveal the molecular mechanisms and targets of Mor against HCC. We further validated the interaction between Mor and the target proteins using molecular docking and biolayer interferometry (BLI). The inhibitory effect of Mor in vivo was evaluated using a Hep3B murine xenograft model. RESULTS Mor significantly reduced the ATP citrate lyase (ACLY) expression and inhibited ACLY activity in HCC cells. BLI analysis demonstrated a direct interaction between Mor and the ACLY active domain. Mor-induced ACLY inhibition led to ROS accumulation in HCC cells, which caused mitochondrial damage, triggered PINK1/Parkin-mediated mitophagy, and ultimately induced mitochondrial apoptosis. We further verified that ROS is crucial in the apoptotic action of Mor through experiments regarding an ROS scavenger. Mor also significantly inhibited tumour xenograft growth in vivo. In addition, analysis of human liver cancer clinical samples revealed elevated ACLY levels positively correlated with histologic grade. CONCLUSION Collectively, our findings highlight Mor as a potent bioactive inhibitor of ACLY and a promising candidate for HCC therapy.
Collapse
Affiliation(s)
- Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jianjun Ma
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong 264002, PR China
| | - Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jinjin Zhang
- Medical Research Center, Binzhou Medical University, Yantai 264003, PR China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yue Wang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaohan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qiqiang Xie
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
6
|
Yu L, Zhou X, Liu Z, Liu H, Zhang XZ, Luo GF, Shang Z. Carrier-Free Nanoagent Interfering with Cancer-Associated Fibroblasts' Metabolism to Promote Tumor Penetration for Boosted Chemotherapy. NANO LETTERS 2024; 24:11976-11984. [PMID: 39270053 DOI: 10.1021/acs.nanolett.4c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Elevated production of extracellular matrix (ECM) in tumor stroma is a critical obstacle for drug penetration. Here we demonstrate that ATP-citrate lyase (ACLY) is significantly upregulated in cancer-associated fibroblasts (CAFs) to produce tumor ECM. Using a self-assembling nanoparticle-design approach, a carrier-free nanoagent (CFNA) is fabricated by simply assembling NDI-091143, a specific ACLY inhibitor, and doxorubicin (DOX) or paclitaxel (PTX), the first-line chemotherapeutic drug, via multiple noncovalent interactions. After arriving at the CAFs-rich tumor site, NDI-091143-mediated ACLY inhibition in CAFs can block the de novo synthesis of fatty acid, thereby dampening the fatty acid-involved energy metabolic process. As the lack of enough energy, the energetic CAFs will be in a dispirited state that is unable to produce abundant ECM, thereby significantly improving drug perfusion in tumors and enhancing the efficacy of chemotherapy. Such a simple drug assembling strategy aimed at CAFs' ACLY-mediated metabolism pathway presents the feasibility of stromal matrix reduction to potentiate chemotherapy.
Collapse
Affiliation(s)
- Lili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Xiaocheng Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zhenan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Guo-Feng Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, P. R. China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
7
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
8
|
Shi D, Zhu X, Zhang H, Yan J, Bai C. Catalytic mechanism study of ATP-citrate lyase during citryl-CoA synthesis process. iScience 2024; 27:110605. [PMID: 39220258 PMCID: PMC11365397 DOI: 10.1016/j.isci.2024.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
ATP-citrate lyase (ACLY) is a critical metabolic enzyme and promising target for drug development. The structure determinations of ACLY have revealed its homotetramer states with various subunit symmetries, but catalytic mechanism of ACLY tetramer and the importance of subunit symmetry have not been clarified. Here, we constructed the free energy landscape of ACLY tetramer with arbitrary subunit symmetries and investigated energetic and conformational coupling of subunits during citryl-CoA synthesis process. The optimal conformational pathway indicates that ACLY tetramer encounters three critical conformational barriers and undergoes a loss of rigid-D2 symmetry to gain an energetic advantage. Energetic coupling of conformational changes and biochemical reactions suggests that these biological events are not independent but rather coupled with each other, showing a comparable energy barrier to the experimental data for the rate-limiting step. These findings could contribute to further research on catalytic mechanism, functional modulation, and inhibitor design of ACLY.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Xuzhou College of Industrial Technology, Xuzhou 221140, China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Junfang Yan
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- Chenzhu Biotechnology Co., Ltd, Hangzhou 310005, China
| |
Collapse
|
9
|
Espadas I, Cáliz‐Molina MÁ, López‐Fernández‐Sobrino R, Panadero‐Morón C, Sola‐García A, Soriano‐Navarro M, Martínez‐Force E, Venegas‐Calerón M, Salas JJ, Martín F, Gauthier BR, Alfaro‐Cervelló C, Martí‐Aguado D, Capilla‐González V, Martín‐Montalvo A. Hydroxycitrate delays early mortality in mice and promotes muscle regeneration while inducing a rich hepatic energetic status. Aging Cell 2024; 23:e14205. [PMID: 38760909 PMCID: PMC11488303 DOI: 10.1111/acel.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
ATP citrate lyase (ACLY) inhibitors have the potential of modulating central processes in protein, carbohydrate, and lipid metabolism, which can have relevant physiological consequences in aging and age-related diseases. Here, we show that hepatic phospho-active ACLY correlates with overweight and Model for End-stage Liver Disease score in humans. Wild-type mice treated chronically with the ACLY inhibitor potassium hydroxycitrate exhibited delayed early mortality. In AML12 hepatocyte cultures, the ACLY inhibitors potassium hydroxycitrate, SB-204990, and bempedoic acid fostered lipid accumulation, which was also observed in the liver of healthy-fed mice treated with potassium hydroxycitrate. Analysis of soleus tissue indicated that potassium hydroxycitrate produced the modulation of wound healing processes. In vivo, potassium hydroxycitrate modulated locomotor function toward increased wire hang performance and reduced rotarod performance in healthy-fed mice, and improved locomotion in mice exposed to cardiotoxin-induced muscle atrophy. Our findings implicate ACLY and ACLY inhibitors in different aspects of aging and muscle regeneration.
Collapse
Affiliation(s)
- Isabel Espadas
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María Ángeles Cáliz‐Molina
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Raúl López‐Fernández‐Sobrino
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Concepción Panadero‐Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Alejandro Sola‐García
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Mario Soriano‐Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | | | | | - Joaquin J. Salas
- Instituto de la Grasa (CSIC)Universidad Pablo de OlavideSevillaSpain
| | - Franz Martín
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | - Benoit R. Gauthier
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | - Clara Alfaro‐Cervelló
- Pathology Department, INCLIVA Health Research Institute, Clinic University HospitalUniversity of ValenciaValenciaSpain
| | - David Martí‐Aguado
- Digestive Disease Department, Clinic University HospitalINCLIVA Health Research InstituteValenciaSpain
- Division of Gastroenterology, Hepatology and NutritionCenter for Liver Diseases
| | - Vivian Capilla‐González
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Alejandro Martín‐Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
da Silva-Diz V, Singh A, Aleksandrova M, Kim O, Thai C, Lancho O, Nunes PR, Affronti H, Su X, Wellen KE, Herranz D. Therapeutic targeting of ACLY in T-ALL in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.27.534395. [PMID: 37034581 PMCID: PMC10081278 DOI: 10.1101/2023.03.27.534395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) is a hematological malignancy in need of novel therapeutic approaches. Here, we identify the ATP-citrate lyase ACLY as overexpressed and as a novel therapeutic target in T-ALL. To test the effects of ACLY in leukemia progression, we developed an isogenic model of NOTCH1-induced Acly conditional knockout leukemia. Importantly, we observed intrinsic antileukemic effects upon loss of ACLY, which further synergized with NOTCH1 inhibition in vivo. Metabolomic profiling upon ACLY loss revealed a metabolic crisis with reduced acetyl-CoA levels, as well as a decreased oxygen consumption rate. Gene expression profiling analyses showed that the transcriptional signature of ACLY loss very significantly correlates with the signature of MYC loss in vivo . Mechanistically, the decrease in acetyl-CoA led to reduced H3K27ac levels in Myc , resulting in transcriptional downregulation of Myc and drastically reduced MYC protein levels. Interestingly, our analyses also revealed a reciprocal relationship whereby ACLY itself is a direct transcriptional target of MYC, thus establishing a feedforward loop that is important for leukemia progression. Overall, our results identified a relevant ACLY-MYC axis and unveiled ACLY as a novel promising target for T-ALL treatment.
Collapse
|
11
|
Zhu X, Cui S, Liu X, Zhang M, Xie Z, Li W, Li J, Nan F, Zhang Y, Zhan Y, Chen X. Simultaneous determination of BGT-002 and its acyl glucuronide metabolite ZM326E-M2 in human plasma by liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study. J Pharm Biomed Anal 2024; 243:116056. [PMID: 38428245 DOI: 10.1016/j.jpba.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
BGT-002, a new type of ATP-citrate lyase inhibitor, is a promising therapeutic for treatment of hypercholesterolemia. After an oral administration of BGT-002 to subjects, it underwent extensive metabolism and an acyl monoglucuronide (ZM326E-M2) on 1- carboxylic acid group was the major circulating metabolite. In this study, an LC-MS/MS method was developed and validated for the simultaneous determination of BGT-002 and ZM326E-M2 in plasma and the evaluation of their pharmacokinetic characteristics in humans. After extraction from the plasma by acetonitrile-induced protein precipitation, the analytes were separated on a Waters ACQUITY UPLC® BEH C18 column using acetonitrile and 2 mM ammonium acetate containing 0.1% formic acid as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) of m/z 501.3→325.4 for ZM326E-M2 and m/z 507.3→331.2 for D6-ZM326E-M2, and pseudo-MRM of m/z 325.3→325.3 for BGT-002 and m/z 331.3→331.3 for D6-ZM326E, respectively. The method was validated with respect to accuracy, precision, linearity, stability, selectivity, matrix effect, and recovery. The analytical range in human plasma was linear over a concentration range of 0.0500-50.0 μg/mL for BGT-002 and 0.0100-10.0 μg/mL for ZM326E-M2. The pharmacokinetic results showed that after a single oral administration of 100 mg BGT-002, the parent drug was rapidly absorbed with a mean time to peak concentration (tmax) of 1.13 h, compared with BGT-002, the tmax (4.00 h) of ZM326E-M2 was significantly delayed. The peak concentration and plasma exposure of ZM326E-M2 were about 14.1% and 19.5% of the parent drug, suggesting that attention should be paid to the safety and efficacy of ZM326E-M2 in clinical research.
Collapse
Affiliation(s)
- Xueran Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shumin Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Xinjing Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Mei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Wei Li
- Burgeon Therapeutics Co., Ltd., Shanghai 201203, PR China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Yangming Zhang
- Burgeon Therapeutics Co., Ltd., Shanghai 201203, PR China.
| | - Yan Zhan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China.
| | - Xiaoyan Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
13
|
Meddeb M, Koleini N, Jun S, Keykhaei M, Farshidfar F, Zhao L, Kwon S, Lin B, Keceli G, Paolocci N, Hahn V, Sharma K, Pearce EL, Kass DA. ATP Citrate Lyase Supports Cardiac Function and NAD+/NADH Balance And Is Depressed in Human Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598152. [PMID: 38915649 PMCID: PMC11195057 DOI: 10.1101/2024.06.09.598152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND ATP-citrate lyase (ACLY) converts citrate into acetyl-CoA and oxaloacetate in the cytosol. It plays a prominent role in lipogenesis and fat accumulation coupled to excess glucose, and its inhibition is approved for treating hyperlipidemia. In RNAseq analysis of human failing myocardium, we found ACLY gene expression is reduced; however the impact this might have on cardiac function and/or metabolism has not been previously studied. As new ACLY inhibitors are in development for cancer and other disorders, such understanding has added importance. METHODS Cardiomyocytes, ex-vivo beating hearts, and in vivo hearts with ACLY inhibited by selective pharmacologic (BMS303141, ACLYi) or genetic suppression, were studied. Regulation of ACLY gene/protein expression, and effects of ACLYi on function, cytotoxicity, tricarboxylic acid (TCA)-cycle metabolism, and redox and NAD+/NADH balance were assessed. Mice with cardiac ACLY knockdown induced by AAV9-acly-shRNA or cardiomyocyte tamoxifen-inducible Acly knockdown were studied. RESULTS Acly gene expression was reduced more in obese patients with heart failure and preserved EF (HFpEF) than HF with reduced EF. In vivo pressure-overload and in vitro hormonal stress increased ACLY protein expression, whereas it declined upon fatty-acid exposure. Acute ACLYi (1-hr) dose-dependently induced cytotoxicity in adult and neonatal cardiomyocytes, and caused substantial reduction of systolic and diastolic function in myocytes and ex-vivo beating hearts. In the latter, ATP/ADP ratio also fell and lactate increased. U13C-glucose tracing revealed an ACLYdependent TCA-bypass circuit in myocytes, where citrate generated in mitochondria is transported to the cytosol, metabolized by ACLY and then converted to malate to re-enter mitochondria,bypassing several NADH-generating steps. ACLYi lowered NAD+/NADH ratio and restoring this balance ameliorated cardiomyocyte toxicity. Oxidative stress was undetected with ACLYi. Adult hearts following 8-weeks of reduced cardiac and/or cardiomyocyte ACLY downregulation exhibited ventricular dilation and reduced function that was prevented by NAD augmentation. Cardiac dysfunction from ACLY knockdown was worse in hearts subjected to sustained pressureoverload, supporting a role in stress responses. CONCLUSIONS ACLY supports normal cardiac function through maintenance of the NAD+/NADH balance and is upregulated by hemodynamic and hormonal stress, but depressed by lipid excess. ACLY levels are most reduced in human HFpEF with obesity potentially worsening cardio-metabolic reserve.
Collapse
|
14
|
Wang P, Guo X, Hou T, Luo F, Li M, Wang X, Zhang J, Wang J, Wang C, Liang X. Discovery and characterization of novel ATP citrate lyase inhibitors from Acanthopanax senticosus (Rupr. & Maxim.) Harms. Fitoterapia 2024; 175:105956. [PMID: 38604261 DOI: 10.1016/j.fitote.2024.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 μM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.
Collapse
Affiliation(s)
- Pan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiujie Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Zhejiang Acchrom Technologies Co.Ltd., Wenling 317503, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengbin Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Miao Li
- Heilongjiang Provincial Drug Audit and Inspection Center, Harbin 150090, China
| | - Xiaoyu Wang
- Heilongjiang Wusuli River Pharmaceutical Co.Ltd., Hulin 158417, China
| | - Jie Zhang
- Heilongjiang Wusuli River Pharmaceutical Co.Ltd., Hulin 158417, China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
15
|
Chen M, Li H, Zheng S, Shen J, Chen Y, Li Y, Yuan M, Wu J, Sun Q. Nobiletin targets SREBP1/ACLY to induce autophagy-dependent cell death of gastric cancer cells through PI3K/Akt/mTOR signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155360. [PMID: 38547624 DOI: 10.1016/j.phymed.2024.155360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Autophagy could sense metabolic conditions and safeguard cells against nutrient deprivation, ultimately supporting the survival of cancer cells. Nobiletin (NOB) is a kind of bioactive component of the traditional Chinese medicine Citri Reticulatae Pericarpium and has been proven to induce GC cell death by reducing de novo fatty acid synthesis in our previous study. Nevertheless, the precise mechanisms by which NOB induces cell death in GC cells still need further elucidation. OBJECTIVES To examine the mechanism by which NOB inhibits gastric cancer progression through the regulation of autophagy under the condition of lipid metabolism inhibition. METHODS/ STUDY DESIGN Proliferation was detected by the CCK-8 assay. RNA sequencing (RNA-seq) was used to examine signaling pathway changes. Electron microscopy and mRFP-GFP-LC3 lentiviral transfection were performed to observe autophagy in vitro. Western blot, plasmid transfection, immunofluorescence staining, and CUT & Tag-qPCR techniques were utilized to explore the mechanisms by which NOB affects GC cells. Molecular docking and molecular dynamics simulations were conducted to predict the binding mode of NOB and SREBP1. CETSA was adopted to verify the predicted of binding model. A patient-derived xenograft (PDX) model was employed to verify the therapeutic efficacy of NOB in vivo. RESULTS We conducted functional studies and discovered that NOB inhibited the protective effect of autophagy via the PI3K/Akt/mTOR axis in GC cells. Based on previous research, we found that the overexpression of ACLY abrogated the NOB-induced autophagy-dependent cell death. In silico analysis predicted the formation of a stable complex between NOB and SREBP1. In vitro assays confirmed that NOB treatment increased the thermal stability of SREBP1 at the same temperature conditions. Moreover, CUT&TAG-qPCR analysis revealed that NOB could inhibit SREBP1 binding to the ACLY promoter. In the PDX model, NOB suppressed tumor growth, causing SREBP1 nuclear translocation inhibition, PI3K/Akt/mTOR inactivation, and autophagy-dependent cell death. CONCLUSION NOB demonstrated the ability to directly bind to SREBP1, inhibiting its nuclear translocation and binding to the ACLY promoter, thereby inducing autophagy-dependent cell death via PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Menglin Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huaizhi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shanshan Zheng
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Junyu Shen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuxuan Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaqi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mengyun Yuan
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Wu
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| | - Qingmin Sun
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
16
|
Su R, Shao Y, Huang M, Liu D, Yu H, Qiu Y. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov 2024; 10:236. [PMID: 38755125 PMCID: PMC11099033 DOI: 10.1038/s41420-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Maturing immunometabolic research empowers immune regulation novel approaches. Progressive metabolic adaptation of tumor cells permits a thriving tumor microenvironment (TME) in which immune cells always lose the initial killing capacity, which remains an unsolved dilemma even with the development of immune checkpoint therapies. In recent years, many studies on tumor immunometabolism have been reported. The development of immunometabolism may facilitate anti-tumor immunotherapy from the recurrent crosstalk between metabolism and immunity. Here, we discuss clinical studies of the core signaling pathways of immunometabolism and their inhibitors or agonists, as well as the specific functions of these pathways in regulating immunity and metabolism, and discuss some of the identified immunometabolic checkpoints. Understanding the comprehensive advances in immunometabolism helps to revise the status quo of cancer treatment. An overview of the new landscape of immunometabolism. The PI3K pathway promotes anabolism and inhibits catabolism. The LKB1 pathway inhibits anabolism and promotes catabolism. Overactivation of PI3K/AKT/mTOR pathway and IDO, IL4I1, ACAT, Sirt2, and MTHFD2 promote immunosuppression of TME formation, as evidenced by increased Treg and decreased T-cell proliferation. The LKBI-AMPK pathway promotes the differentiation of naive T cells to effector T cells and memory T cells and promotes anti-tumor immunity in DCs.
Collapse
Affiliation(s)
- Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Donghui Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
17
|
Figueiredo JC, Bhowmick NA, Karlstaedt A. Metabolic basis of cardiac dysfunction in cancer patients. Curr Opin Cardiol 2024; 39:138-147. [PMID: 38386340 PMCID: PMC11185275 DOI: 10.1097/hco.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW The relationship between metabolism and cardiovascular diseases is complex and bidirectional. Cardiac cells must adapt metabolic pathways to meet biosynthetic demands and energy requirements to maintain contractile function. During cancer, this homeostasis is challenged by the increased metabolic demands of proliferating cancer cells. RECENT FINDINGS Tumors have a systemic metabolic impact that extends beyond the tumor microenvironment. Lipid metabolism is critical to cancer cell proliferation, metabolic adaptation, and increased cardiovascular risk. Metabolites serve as signals which provide insights for diagnosis and prognosis in cardio-oncology patients. SUMMARY Metabolic processes demonstrate a complex relationship between cancer cell states and cardiovascular remodeling with potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Neil Adri Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anja Karlstaedt
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
18
|
Ji X, Nie C, Yao Y, Ma Y, Huang H, Hao C. S100A8/9 modulates perturbation and glycolysis of macrophages in allergic asthma mice. PeerJ 2024; 12:e17106. [PMID: 38646478 PMCID: PMC11032659 DOI: 10.7717/peerj.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- Xiaoyi Ji
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
- Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| | - Chunhua Nie
- Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| | - Yuan Yao
- Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| | - Yu Ma
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Huafei Huang
- Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
20
|
Zhang X, Xu Y, Li S, Qin Y, Zhu G, Zhang Q, Zhang Y, Guan F, Fan T, Liu H. SIRT2-mediated deacetylation of ACLY promotes the progression of oesophageal squamous cell carcinoma. J Cell Mol Med 2024; 28:e18129. [PMID: 38426936 PMCID: PMC10906381 DOI: 10.1111/jcmm.18129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.
Collapse
Affiliation(s)
- Xueying Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yue Xu
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shenglei Li
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yue Qin
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Guangzhao Zhu
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qing Zhang
- Translational Medicine Research CenterZhengzhou People's HospitalZhengzhouHenanChina
| | - Yanting Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fangxia Guan
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tianli Fan
- Department of Pharmacology, School of Basic MedicineZhengzhou UniversityZhengzhouHenanChina
| | - Hongtao Liu
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
21
|
Huang X, Wang M, Zhang D, Zhang C, Liu P. Advances in Targeted Drug Resistance Associated with Dysregulation of Lipid Metabolism in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:113-129. [PMID: 38250308 PMCID: PMC10799627 DOI: 10.2147/jhc.s447578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Hepatocellular carcinoma is the prevailing malignant neoplasm affecting the liver, often diagnosed at an advanced stage and associated with an unfavorable overall prognosis. Sorafenib and Lenvatinib have emerged as first-line therapeutic drugs for advanced hepatocellular carcinoma, improving the prognosis for these patients. Nevertheless, the issue of tyrosine kinase inhibitor (TKI) resistance poses a substantial obstacle in the management of advanced hepatocellular carcinoma. The pathogenesis and advancement of hepatocellular carcinoma exhibit a close association with metabolic reprogramming, yet the attention given to lipid metabolism dysregulation in hepatocellular carcinoma development remains relatively restricted. This review summarizes the potential significance and research progress of lipid metabolism dysfunction in Sorafenib and Lenvatinib resistance in hepatocellular carcinoma. Targeting hepatocellular carcinoma lipid metabolism holds promising potential as an effective strategy to overcome hepatocellular carcinoma drug resistance in the future.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Chen Zhang
- Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
22
|
Ma W, Arima Y, Umemoto T, Yokomizo T, Xu Y, Miharada K, Tanaka Y, Suda T. Metabolic regulation in erythroid differentiation by systemic ketogenesis in fasted mice. Exp Hematol 2024; 129:104124. [PMID: 37898316 DOI: 10.1016/j.exphem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.
Collapse
Affiliation(s)
- Wenjuan Ma
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuqing Xu
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kenichi Miharada
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Toshio Suda
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Cancer Science Institute of Singapore, Centre for Translation Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Guo T, Zhang X, Chen S, Wang X, Wang X. Targeting lipid biosynthesis on the basis of conventional treatments for clear cell renal cell carcinoma: A promising therapeutic approach. Life Sci 2024; 336:122329. [PMID: 38052321 DOI: 10.1016/j.lfs.2023.122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
A variety of cancer cells exhibit dysregulated lipid metabolism, characterized by excessive intracellular lipid accumulation, and clear cell renal cell carcinoma (ccRCC) is the most typical disease with these characteristics. As the most common malignancy of all renal cell carcinomas (RCCs), ccRCC is typically characterized by a large accumulation of lipids and glycogen in the cytoplasm and a nucleus that is squeezed by the accumulated lipid droplets and localized to the marginal areas within the cytoplasm. This lipid accumulation has been found to be critically involved in the maintenance of malignant features observed in various cancers. Firstly, it maintains the persistent proliferative and metastasis properties of cancer cells. Secondly, it acts as a buffer against lipid peroxidation, preventing lipid peroxidation-induced ferroptosis. Moreover, lipids can diminish the sensitivity of cancer cells to radiotherapy. As ccRCC is a type of cancer with high lipid synthesis, targeting lipid synthesis-related genes in cancer cells may be a promising therapeutic modality for single treatment or in combination with radiotherapy, chemotherapy, and immunotherapy. This may revolutionize the choice of treatment modality for ccRCC patients. In this review, we concentrate on the current status and progress of research on lipid biosynthesis in ccRCC and the potential applications of targeting lipid synthesis to treat ccRCC. At last, we propose perspective and future research directions for targeting inhibition of lipid biosynthesis in combination with conventional therapeutic approaches for the treatment of ccRCC, which will help to evolve the therapeutic model.
Collapse
Affiliation(s)
- Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Liang JJ, Zhou XF, Long H, Li CY, Wei J, Yu XQ, Guo ZY, Zhou YQ, Deng ZS. Recent advance of ATP citrate lyase inhibitors for the treatment of cancer and related diseases. Bioorg Chem 2024; 142:106933. [PMID: 37890210 DOI: 10.1016/j.bioorg.2023.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
ATP citrate lyase (ACLY), a strategic metabolic enzyme that catalyzes the glycolytic to lipidic metabolism, has gained increasing attention as an attractive therapeutic target for hyperlipidemia, cancers and other human diseases. Despite of continual research efforts, targeting ACLY has been very challenging. In this field, most reported ACLY inhibitors are "substrate-like" analogues, which occupied with the same active pockets. Besides, some ACLY inhibitors have been disclosed through biochemical screening or high throughput virtual screening. In this review, we briefly summarized the cancer-related functions and the recent advance of ACLY inhibitors with a particular focus on the SAR studies and their modes of action. We hope to provide a timely and updated overview of ACLY and the discovery of new ACLY inhibitors.
Collapse
Affiliation(s)
- Jian-Jia Liang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiang-Feng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Long
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chun-Yun Li
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jing Wei
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiao-Qin Yu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhi-Yong Guo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yi-Qing Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhang-Shuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
25
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
26
|
Chen G, Bao B, Cheng Y, Tian M, Song J, Zheng L, Tong Q. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168:115741. [PMID: 37864899 DOI: 10.1016/j.biopha.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
27
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
28
|
Zeng X, Gong G, Ganesan K, Wen Y, Liu Q, Zhuo J, Wu J, Chen J. Spatholobus suberectus inhibits lipogenesis and tumorigenesis in triple-negative breast cancer via activation of AMPK-ACC and K-Ras-ERK signaling pathway. J Tradit Complement Med 2023; 13:623-638. [PMID: 38020549 PMCID: PMC10658394 DOI: 10.1016/j.jtcme.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aim Triple-negative breast cancer (TNBC) is a highly invasive type of breast cancer with a poor prognosis. Currently, there are no effective management strategies for TNBC. Earlier, our lab reported the percolation of Spatholobus suberectus for the treatment of breast cancer. Lipid metabolic reprogramming is a hallmark of cancer. However, the anti-TNBC efficiency of S. suberectus extract and its causal mechanism for preventing lipogenesis have not been fully recognized. Hence, the present study aimed to investigate the inhibitory role of S. suberectus extract on lipogenesis and tumorigenesis in TNBC in vitro and in vivo by activating AMPK-ACC and K-Ras-ERK signaling pathways using lipidomic and metabolomic techniques. Experimental procedure Dried stems of S. suberectus extract inhibited lipogenesis and tumorigenesis and promoted fatty acid oxidation as demonstrated by the identification of the metabolites and fatty acid markers using proteomic and metabolomic analysis, qPCR, and Western blot. Results and conclusion The results indicated that S. suberectus extract promotes fatty acid oxidation and suppresses lipogenic metabolites and biomarkers, thereby preventing tumorigenesis via the AMPK-ACC and K-Ras-ERK signaling pathways. On the basis of this preclinical evidence, we suggest that this study represents a milestone and complements Chinese medicine. Further studies remain underway in our laboratory to elucidate the active principles of S. suberectus extract. This study suggests that S. suberectus extract could be a promising therapy for TNBC.
Collapse
Affiliation(s)
- Xiaohui Zeng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Guowei Gong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
| | - Yi Wen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Zhongshan People's Hospital, 106, Zhongshan 2nd Road, Guangdong Province, 510080, China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518000, China
| | - Juncheng Zhuo
- Guangdong Second Traditional Chinese Medicine Hospital, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
29
|
Alberghina L. The Warburg Effect Explained: Integration of Enhanced Glycolysis with Heterogeneous Mitochondria to Promote Cancer Cell Proliferation. Int J Mol Sci 2023; 24:15787. [PMID: 37958775 PMCID: PMC10648413 DOI: 10.3390/ijms242115787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The Warburg effect is the long-standing riddle of cancer biology. How does aerobic glycolysis, inefficient in producing ATP, confer a growth advantage to cancer cells? A new evaluation of a large set of literature findings covering the Warburg effect and its yeast counterpart, the Crabtree effect, led to an innovative working hypothesis presented here. It holds that enhanced glycolysis partially inactivates oxidative phosphorylation to induce functional rewiring of a set of TCA cycle enzymes to generate new non-canonical metabolic pathways that sustain faster growth rates. The hypothesis has been structured by constructing two metabolic maps, one for cancer metabolism and the other for the yeast Crabtree effect. New lines of investigation, suggested by these maps, are discussed as instrumental in leading toward a better understanding of cancer biology in order to allow the development of more efficient metabolism-targeted anticancer drugs.
Collapse
Affiliation(s)
- Lilia Alberghina
- Centre of Systems Biology, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
30
|
Nishimoto K, Okahashi N, Maruyama M, Izumi Y, Nakatani K, Ito Y, Iida J, Bamba T, Matsuda F. Lipidome and metabolome analyses reveal metabolic alterations associated with MCF-7 apoptosis upon 4-hydroxytamoxifen treatment. Sci Rep 2023; 13:18549. [PMID: 37899460 PMCID: PMC10613619 DOI: 10.1038/s41598-023-45764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
4-hydroxytamoxifen (OHT) is an anti-cancer drug that induces apoptosis in breast cancer cells. Although changes in lipid levels and mitochondrial respiration have been observed in OHT-treated cells, the overall mechanisms underlying these metabolic alterations are poorly understood. In this study, time-series metabolomics and lipidomics were used to analyze the changes in metabolic profiles induced by OHT treatment in the MCF-7 human breast cancer cell line. Lipidomic and metabolomic analyses revealed increases in ceramide, diacylglycerol and triacylglycerol, and decreases in citrate, respectively. Gene expression analyses revealed increased expression of ATP-dependent citrate lyase (ACLY) and subsequent fatty acid biosynthetic enzymes, suggesting that OHT-treated MCF-7 cells activate citrate-to-lipid metabolism. The significance of the observed metabolic changes was evaluated by co-treating MCF-7 cells with OHT and ACLY or a diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor. Co-treatment ameliorated cell death and reduced mitochondrial membrane potential compared to that in OHT treatment alone. The inhibition of cell death by co-treatment with an ACLY inhibitor has been observed in other breast cancer cell lines. These results suggest that citrate-to-lipid metabolism is critical for OHT-induced cell death in breast cancer cell lines.
Collapse
Affiliation(s)
- Kazuki Nishimoto
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
| | - Masaharu Maruyama
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohta Nakatani
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Ito
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
- Analytical and Measuring Instruments Division, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Junko Iida
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
- Analytical and Measuring Instruments Division, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
31
|
Liang K, Wang Q, Qiu L, Gong X, Chen Z, Zhang H, Ding K, Liu Y, Wei J, Lin S, Fu S, Du H. Combined Inhibition of UBE2C and PLK1 Reduce Cell Proliferation and Arrest Cell Cycle by Affecting ACLY in Pan-Cancer. Int J Mol Sci 2023; 24:15658. [PMID: 37958642 PMCID: PMC10650476 DOI: 10.3390/ijms242115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (K.L.); (Q.W.); (L.Q.); (X.G.); (Z.C.); (H.Z.); (K.D.); (Y.L.); (J.W.); (S.L.); (S.F.)
| |
Collapse
|
32
|
Song X, Jiang H, Lv P, Cui K, Liu Q, Yin S, Liu H, Li Z. Transcriptome analyses reveal transcriptional profiles of horse oocytes before and after in vitro maturation. Reprod Domest Anim 2023; 58:1468-1479. [PMID: 37650336 DOI: 10.1111/rda.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Oocyte in vitro maturation is necessary for the study and application of animal-assisted reproduction technology in animal reproduction and breeding. The comprehensive transcriptional profile of equine oocyte maturated in vitro has not been fully mined yet, which makes many key transcriptional events still unidentified. Here, Smart-seq2 was performed to analyse the gene expression pattern and the underlying regulatory mechanism of horse germinal vesicle (GV) and in vitro metaphase II (MII) oocytes. The results showed that 6402 genes (2640 up-regulated and 3762 down-regulated in MII samples compared to GV) and 4021 lncRNA transcripts (1210 up-regulated and 2811 down-regulated in MII samples compared to GV) were differentially expressed in GV and MII oocytes. Further, GO and KEGG analysis found that differentially expressed mRNAs and lncRNAs were mainly enriched in the pathways related to energy and lipid metabolism. In addition, LGALS3 was found a key gene in mediating the regulation of oocyte meiosis recovery and fertilization ability. This study provides novel knowledge about gene expression and energy metabolism during equine oocyte maturation and a reference for the further study and application of assisted reproductive technology in horse reproduction and breeding.
Collapse
Affiliation(s)
- Xinhui Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peiru Lv
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shan Yin
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Hongbo Liu
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
33
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Duarte Lau F, Giugliano RP. Adenosine Triphosphate Citrate Lyase and Fatty Acid Synthesis Inhibition: A Narrative Review. JAMA Cardiol 2023; 8:879-887. [PMID: 37585218 DOI: 10.1001/jamacardio.2023.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Importance Adenosine triphosphate citrate lyase (ACLY) is a key regulatory enzyme of glucose metabolism, cholesterol and fatty acid synthesis, and the inflammatory cascade. Bempedoic acid, an ACLY inhibitor, significantly reduces atherogenic lipid markers, including low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol, and apolipoprotein B. Additional effects of ACLY inhibition include antitumor growth; reduction of triglycerides and proinflammatory molecules such as high-sensitivity C-reactive protein; less insulin resistance; reduction of hepatic lipogenesis; and weight loss. Observations While numerous ACLY inhibitors have been identified, most of the clinical data have focused on bempedoic acid. The Cholesterol Lowering via Bempedoic Acid, an ACL-Inhibiting Regimen (CLEAR) program was a series of phase 3 clinical trials that evaluated its effects on lipid parameters and safety, leading to US Food and Drug Administration approval in 2020. CLEAR Outcomes was a phase 3, double-blind, randomized, placebo-controlled trial in individuals with a history of statin intolerance, serum LDL-C level of 100 mg/dL or higher, and a history of, or at high risk for, cardiovascular disease. Bempedoic acid modestly reduced the primary 4-way cardiovascular composite end point as well as the individual components of myocardial infarction and coronary revascularization but did not reduce stroke, cardiovascular death, or all-cause mortality. Rates of gout and cholelithiasis were higher with bempedoic acid, and small increases in serum creatinine, uric acid, and hepatic-enzyme levels were also observed. Conclusions and relevance ACLY inhibition with bempedoic acid has been established as a safe and effective therapy in high-risk patients who require further LDL-C lowering, particularly for those with a history of statin intolerance. The recently published CLEAR Outcomes trial revealed modest reductions in cardiovascular events with bempedoic acid, proportional to its LDL-C lowering, in high-risk individuals with statin intolerance and LDL-C levels of 100 mg/dL or higher. The additional effects of ACLY inhibition have prompted a more thorough search for novel ACLY inhibitors for conditions such as cancer, hypertriglyceridemia, chronic inflammation, type 2 diabetes, fatty liver disease, obesity, and metabolic syndrome. Similarly, therapies that reduce fatty acid synthesis are being explored for their use in cardiometabolic conditions.
Collapse
Affiliation(s)
| | - Robert P Giugliano
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
35
|
Fang D, He Y, Yi Y, Mei J, Liu C. Hub gene associated with prognosis in bladder cancer is a novel therapeutic target. PeerJ 2023; 11:e15670. [PMID: 37601252 PMCID: PMC10439716 DOI: 10.7717/peerj.15670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/09/2023] [Indexed: 08/22/2023] Open
Abstract
Objective Bladder cancer is a clinical and social conundrum due to its high incidence and recurrence rate. It is urgent to find new targets for the diagnosis and treatment of bladder cancer and improve the prognosis and survival rate of bladder cancer patients. We sought a prognosis-related gene, built related models of evaluated bladder cancer and identified the function of the hub gene in bladder cancer. Methods We downloaded the data of bladder cancer patients from the TCGA database, and used differentially expressed genes (DEGs), copy number variation (CNV) and survival analysis to scan the hub genes associated with prognosis in bladder cancer. Then, multi-factor cox regression was used to obtain the bladder cancer prognosis correlation model. Then, we analyzed the relationship between the expression of hub gene and immune microenvironment of bladder cancer. The relationship between the expression of hub gene and prognosis in bladder cancer patients was verified by immunohistochemistry. Cell proliferation assay and drug sensitivity test in vivo were used to verify the inhibition of bladder cancer by targeted inhibitors. Results In bladder cancer, we screened seven hub genes (ACLY, CNP, NKIRAS2, P3H4, PDIA6, VPS25 and XPO1) associated with survival. Moreover, the multifactor regression model constructed with hub gene can well distinguish the prognosis of bladder cancer. Hub gene is mostly associated with immune microenvironment. Immunohistochemical results basically confirmed the importance of XPO1 in bladder cancer. Selinexor (an inhibitor of XPO1) could effectively inhibit the proliferation of bladder cancer in the cell proliferation experiments by CCK-8 assays and it could suppress the growth of bladder cancer in mouse bladder cancer model. Conclusions In this study, a prognostic model with seven hub genes has provided great help for the prognosis prediction of bladder cancer patients. And XPO1 is an important target affecting the prognosis of bladder cancer, and inhibition of XPO1 can effectively inhibit bladder cancer proliferation and growth.
Collapse
Affiliation(s)
- Dengpan Fang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University,, Nanchang, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, China
- Nanchang Royo Biotechnology, Nanchang, China
| | - Yun Yi
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqi Mei
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Zhao S, Li M, Chen J, Tian J, Dai X, Kong Z. Potential Risks of Tebuconazole during Wine Fermentation at the Enantiomer Level Based on Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12129-12139. [PMID: 37493492 DOI: 10.1021/acs.jafc.3c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The enantioselectivity and potential risks of tebuconazole enantiomers (R-tebuconazole and S-tebuconazole) in wine fermentation were investigated in this study using Cabernet Sauvignon grapes. Tebuconazole was mainly degraded during the alcoholic fermentation stage, and no obvious transformation between R-tebuconazole and S-tebuconazole was observed. Selective degradation between these two enantiomers occurred, with R-tebuconazole degrading faster than S-tebuconazole. The residual tebuconazole inhibits glucose metabolism and the unsaturated fatty acid formation in the wine fermentation system and inhibits gene expression in the late phase of Saccharomycetales, affecting its cell wall formation. Overall, the findings highlight that R-tebuconazole exhibited a higher risk than S-tebuconazole in these processes. These insights are potentially exploitable to understand chiral pesticides at the enantiomer level using multiomics technology in food-processing systems.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Minmin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
37
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
38
|
Liu S, Shen YY, Yin LY, Liu J, Zu X. Lipid Metabolic Regulatory Crosstalk Between Cancer Cells and Tumor-Associated Macrophages. DNA Cell Biol 2023; 42:445-455. [PMID: 37535386 DOI: 10.1089/dna.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
In the tumor microenvironment, tumor-associated macrophages (TAMs) are one of the most abundant cell populations, playing key roles in tumorigenesis, chemoresistance, immune evasion, and metastasis. There is an important interaction between TAMs and cancer cells: on the one hand, tumors control the function of infiltrating macrophages, contributing to reprogramming of TAMs, and on the other hand, TAMs affect the growth of cancer cells. This review focuses on lipid metabolism changes in the complex relationship between cancer cells and TAMs. We discuss how lipid metabolism in cancer cells affects macrophage phenotypic and metabolic changes and, subsequently, how altered lipid metabolism of TAMs influences tumor progression. Identifying the metabolic changes that influence the complex interaction between tumor cells and TAMs is also an important step in exploring new therapeutic approaches that target metabolic reprogramming of immune cells to enhance their tumoricidal potential and bypass therapy resistance. Our work may provide new targets for antitumor therapies.
Collapse
Affiliation(s)
- Shu Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Ying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Yang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
39
|
Li R, Meng M, Chen Y, Pan T, Li Y, Deng Y, Zhang R, Tian R, Xu W, Zheng X, Gong F, Liu J, Tang H, Ding X, Tang Y, Annane D, Chen E, Qu H, Li L. ATP-citrate lyase controls endothelial gluco-lipogenic metabolism and vascular inflammation in sepsis-associated organ injury. Cell Death Dis 2023; 14:401. [PMID: 37414769 PMCID: PMC10325983 DOI: 10.1038/s41419-023-05932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Sepsis involves endothelial cell (EC) dysfunction, which contributes to multiple organ failure. To improve therapeutic prospects, elucidating molecular mechanisms of vascular dysfunction is of the essence. ATP-citrate lyase (ACLY) directs glucose metabolic fluxes to de novo lipogenesis by generating acetyl-Co-enzyme A (acetyl-CoA), which facilitates transcriptional priming via protein acetylation. It is well illustrated that ACLY participates in promoting cancer metastasis and fatty liver diseases. Its biological functions in ECs during sepsis remain unclear. We found that plasma levels of ACLY were increased in septic patients and were positively correlated with interleukin (IL)-6, soluble E-selectin (sE-selectin), soluble vascular cell adhesion molecule 1 (sVCAM-1), and lactate levels. ACLY inhibition significantly ameliorated lipopolysaccharide challenge-induced EC proinflammatory response in vitro and organ injury in vivo. The metabolomic analysis revealed that ACLY blockade fostered ECs a quiescent status by reducing the levels of glycolytic and lipogenic metabolites. Mechanistically, ACLY promoted forkhead box O1 (FoxO1) and histone H3 acetylation, thereby increasing the transcription of c-Myc (MYC) to facilitate the expression of proinflammatory and gluco-lipogenic genes. Our findings revealed that ACLY promoted EC gluco-lipogenic metabolism and proinflammatory response through acetylation-mediated MYC transcription, suggesting ACLY as the potential therapeutic target for treating sepsis-associated EC dysfunction and organ injury.
Collapse
Affiliation(s)
- Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Mei Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yunxin Deng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ruyuan Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wen Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jie Liu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, P.R. China
| | - Haiting Tang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaowei Ding
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yaoqing Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Djillali Annane
- General intensive care unit, Raymond Poincaré Hospital (APHP), Laboratory of Inflammation and Infection U1173, University of Versailles SQY/INSERM 104 bd Raymond Poincaré, 92380, Garches, France
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Lei Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|
40
|
Chen HW, Jiang CX, Ma GL, Wu XY, Jiang W, Li J, Zang Y, Li J, Xiong J, Hu JF. Unprecedented spirodioxynaphthalenes from the endophytic fungus Phyllosticta ligustricola HDF-L-2 derived from the endangered conifer Pseudotsuga gaussenii. PHYTOCHEMISTRY 2023; 211:113687. [PMID: 37105348 DOI: 10.1016/j.phytochem.2023.113687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Four undescribed palmarumycin-type spirodioxynaphthalenes (phyligustricins A-D) and a known biogenetic precursor (palmarumycin BG1) were isolated from a solid fermentation of Phyllosticta ligustricola HDF-L-2, an endophyte associated with the endangered Chinese conifer Pseudotsuga gaussenii. The structures were elucidated by spectroscopic methods, single-crystal X-ray diffraction analyses, and electronic circular dichroism calculations. Both phyligustricins A and B have an unprecedented spirodioxynaphthalene-derived skeleton containing an extra 4H-furo [3,2-c]pyran-4-one moiety, while phyligustricins C and D are p-hydroxy-phenethyl substituted spirodioxynaphthalenes. The plausible biosynthetic relationships of the isolates were briefly proposed. Phyligustricins C and D and palmarumycin BG1 showed considerable antibacterial activity against Staphylococcus aureus, each with an MIC value of 16 μg/mL. Palmarumycin BG1 displayed significant inhibitory effects against ACL and ACC1, with IC50 values of 1.60 and 8.00 μM, respectively.
Collapse
Affiliation(s)
- Hao-Wei Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Chun-Xiao Jiang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, PR China
| | - Guang-Lei Ma
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xi-Ying Wu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Wei Jiang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jiyang Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Jin-Feng Hu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, PR China.
| |
Collapse
|
41
|
Chen Y, Akhtar M, Ma Z, Hu T, Liu Q, Pan H, Zhang X, Nafady AA, Ansari AR, Abdel-Kafy ESM, Shi D, Liu H. Chicken cecal microbiota reduces abdominal fat deposition by regulating fat metabolism. NPJ Biofilms Microbiomes 2023; 9:28. [PMID: 37253749 DOI: 10.1038/s41522-023-00390-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/23/2023] [Indexed: 06/01/2023] Open
Abstract
Cecal microbiota plays an essential role in chicken health. However, its contribution to fat metabolism, particularly in abdominal fat deposition, which is a severe problem in the poultry industry, is still unclear. Here, chickens at 1, 4, and 12 months of age with significantly (p < 0.05) higher and lower abdominal fat deposition were selected to elucidate fat metabolism. A significantly (p < 0.05) higher mRNA expression of fat anabolism genes (ACSL1, FADS1, CYP2C45, ACC, and FAS), a significantly (p < 0.05) lower mRNA expression of fat catabolism genes (CPT-1 and PPARα) and fat transport gene APOAI in liver/abdominal fat of high abdominal fat deposition chickens indicated that an unbalanced fat metabolism leads to excessive abdominal fat deposition. Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis were found significantly (p < 0.05) higher in high abdominal fat deposition chickens, while Sphaerochaeta was higher in low abdominal fat deposition chickens. Further, Spearman correlation analysis indicated that the relative abundance of cecal Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis was positively correlated with abdominal fat deposition, yet cecal Sphaerochaeta was negatively correlated with fat deposition. Interestingly, transferring fecal microbiota from adult chickens with low abdominal fat deposition into one-day-old chicks significantly (p < 0.05) decreased Parabacteroides and fat anabolism genes, while markedly increased Sphaerochaeta (p < 0.05) and fat catabolism genes (p < 0.05). Our findings might help to assess the potential mechanism of cecal microbiota regulating fat deposition in chicken production.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Tingwei Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaolong Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Abdallah A Nafady
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
42
|
Zhou PJ, Huang T, Ma GL, Tong YP, Chen WX, Zang Y, Xiong J, Li J, Hu JF. Forrestiacids E-K: Further [4 + 2]-Type Triterpene-Diterpene Hybrids as Potential ACL Inhibitors from the Vulnerable Conifer Pseudotsuga forrestii. JOURNAL OF NATURAL PRODUCTS 2023; 86:1251-1260. [PMID: 37196240 DOI: 10.1021/acs.jnatprod.3c00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seven [4 + 2]-type triterpene-diterpene hybrids derived from a rearranged or a normal lanostane unit (dienophile) and an abietane moiety (diene), forrestiacids E-K (1-7, respectively), were further isolated and characterized from Pseudotsuga forrestii (a vulnerable conifer endemic to China). The intriguing molecules were revealed with the guidance of an LC-MS/MS-based molecular ion networking strategy combined with conventional phytochemical procedures. Their chemical structures with absolute configurations were established by spectroscopic data, chemical transformation, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. They all contain a rare bicyclo[2.2.2]octene motif. Both forrestiacids J (6) and K (7) represent the first examples of this unique class of [4 + 2]-type hybrids that arose from a normal lanostane-type dienophile. Some isolates remarkably inhibited ATP-citrate lyase (ACL), with IC50 values ranging from 1.8 to 11 μM. Docking studies corroborated the findings by highlighting the interactions between the bioactive compounds and the ACL enzyme (binding affinities: -9.9 to -10.7 kcal/mol). The above findings reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.
Collapse
Affiliation(s)
- Peng-Jun Zhou
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Ting Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Guang-Lei Ma
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Ying-Peng Tong
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Wen-Xue Chen
- Department of Chemistry, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, People's Republic of China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, People's Republic of China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
43
|
Liu D, Dong C, Wang F, Liu W, Jin X, Qi SL, Liu L, Jin Q, Wang S, Wu J, Wang C, Yang J, Deng H, Cai Y, Yang L, Qin J, Zhang C, Yang X, Wang MS, Yu G, Xue YW, Wang Z, Ge GB, Xu Z, Chen WL. Active post-transcriptional regulation and ACLY-mediated acetyl-CoA synthesis as a pivotal target of Shuang-Huang-Sheng-Bai formula for lung adenocarcinoma treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154732. [PMID: 36933457 DOI: 10.1016/j.phymed.2023.154732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.
Collapse
Affiliation(s)
- Dan Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Fengying Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai 200032, China; Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Sheng-Lan Qi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai 200032, China; Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lei Liu
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong 226300, China
| | - Qiang Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Congcong Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Jing Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Haibin Deng
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuejiao Cai
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Yang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jingru Qin
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Ming-Song Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guanzhen Yu
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Laboratory of Digital Health and Artificial Intelligence, Zhejiang Digital Content Research Institute, Shaoxing 312000, China
| | - Yu-Wen Xue
- Pathology department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenye Xu
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China.
| |
Collapse
|
44
|
Lu Y, Tian L, Peng C, Kong J, Xiao P, Li N. ACLY-induced reprogramming of glycolytic metabolism plays an important role in the progression of breast cancer. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37140234 DOI: 10.3724/abbs.2023084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Affiliation(s)
- Yu Lu
- Institute of Virology, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou 325000, China
| | - Liping Tian
- Institute of Virology, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou 325000, China
| | - Chengcheng Peng
- Institute of Virology, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou 325000, China
| | - Jienan Kong
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Pengpeng Xiao
- Institute of Virology, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou 325000, China
| | - Nan Li
- Institute of Virology, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
45
|
Sola-García A, Cáliz-Molina MÁ, Espadas I, Petr M, Panadero-Morón C, González-Morán D, Martín-Vázquez ME, Narbona-Pérez ÁJ, López-Noriega L, Martínez-Corrales G, López-Fernández-Sobrino R, Carmona-Marin LM, Martínez-Force E, Yanes O, Vinaixa M, López-López D, Reyes JC, Dopazo J, Martín F, Gauthier BR, Scheibye-Knudsen M, Capilla-González V, Martín-Montalvo A. Metabolic reprogramming by Acly inhibition using SB-204990 alters glucoregulation and modulates molecular mechanisms associated with aging. Commun Biol 2023; 6:250. [PMID: 36890357 PMCID: PMC9995519 DOI: 10.1038/s42003-023-04625-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
ATP-citrate lyase is a central integrator of cellular metabolism in the interface of protein, carbohydrate, and lipid metabolism. The physiological consequences as well as the molecular mechanisms orchestrating the response to long-term pharmacologically induced Acly inhibition are unknown. We report here that the Acly inhibitor SB-204990 improves metabolic health and physical strength in wild-type mice when fed with a high-fat diet, while in mice fed with healthy diet results in metabolic imbalance and moderated insulin resistance. By applying a multiomic approach using untargeted metabolomics, transcriptomics, and proteomics, we determined that, in vivo, SB-204990 plays a role in the regulation of molecular mechanisms associated with aging, such as energy metabolism, mitochondrial function, mTOR signaling, and folate cycle, while global alterations on histone acetylation are absent. Our findings indicate a mechanism for regulating molecular pathways of aging that prevents the development of metabolic abnormalities associated with unhealthy dieting. This strategy might be explored for devising therapeutic approaches to prevent metabolic diseases.
Collapse
Affiliation(s)
- Alejandro Sola-García
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - María Ángeles Cáliz-Molina
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Isabel Espadas
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Michael Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Tracked.bio, Copenhagen, Denmark
| | - Concepción Panadero-Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Daniel González-Morán
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - María Eugenia Martín-Vázquez
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Álvaro Jesús Narbona-Pérez
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Livia López-Noriega
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Guillermo Martínez-Corrales
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Raúl López-Fernández-Sobrino
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Lina M Carmona-Marin
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Oscar Yanes
- Universitat Rovira i Virgili, Department of electronic Engineering & IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Vinaixa
- Universitat Rovira i Virgili, Department of electronic Engineering & IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel López-López
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, c/Manuel Siurot s/n, 41013, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Sevilla, 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, 41013, Spain
| | - José Carlos Reyes
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, c/Manuel Siurot s/n, 41013, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Sevilla, 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, 41013, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain
| | - Franz Martín
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Benoit R Gauthier
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Tracked.bio, Copenhagen, Denmark
| | - Vivian Capilla-González
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Alejandro Martín-Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
46
|
Zhang Z, Kim BS, Han W, Chen X, Yan Y, Lin L, Chai G. Identifying Oxidized Lipid Metabolism-Related LncRNAs as Prognostic Biomarkers of Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:jpm13030488. [PMID: 36983670 PMCID: PMC10054813 DOI: 10.3390/jpm13030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
The relationship between oxidized lipid metabolism and the immunological function of cancer is well known. However, the functions and regulatory mechanisms of lncRNAs associated with oxidized lipid metabolism in head and neck squamous cell carcinoma (HNSCC) remain to be fully elucidated. In this study, we established an oxidized lipid metabolism-related lncRNA prognostic signature to assess the prognosis and immune infiltration of HNSCC patients. The HNSCC transcriptome was obtained from The Cancer Genome Atlas. The choice of the target genes with a relevance score greater than 10 was performed via a correlation analysis by GeneCards. Patients were categorized by risk score and generated with multivariate Cox regression, which was then validated and evaluated using the Kaplan–Meier analysis and time-dependent receiver operating characteristics (ROC). A nomogram was constructed by combining the risk score with the clinical data. We constructed a risk score with 24 oxidized lipid metabolism-related lncRNAs. The areas’ 1-, 2-, and 3-year OS under the ROC curve (AUC) were 0.765, 0.724, and 0.724, respectively. Furthermore, the nomogram clearly distinguished the survival probabilities of patients in high- and low-risk groups, between which substantial variations were revealed by immune infiltration analysis. The results supported the fact that oxidized lipid metabolism-related lncRNAs might predict prognoses and assist with differentiating amid differences in immune infiltration in HNSCC.
Collapse
|
47
|
Guo C, Zhang L, Zhao M, Ai Y, Liao W, Wan L, Liu Q, Li S, Zeng J, Ma X, Tang J. Targeting lipid metabolism with natural products: A novel strategy for gastrointestinal cancer therapy. Phytother Res 2023; 37:2036-2050. [PMID: 36748953 DOI: 10.1002/ptr.7735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer (GIC), including gastric cancer and colorectal cancer, is a common malignant tumor originating from gastrointestinal epithelial cells. Although the pathogenesis of GIC remains unclear, aberrant lipid metabolism has emerged as a hallmark of cancer. Several enzymes, proteins, and transcription factors are involved in lipid metabolism reprogramming in GIC, and their abnormal expression can promote lipid synthesis and accumulation of lipid droplets through numerous mechanisms, thereby affecting the growth, proliferation, and metastasis of GIC cells. Studies show that some natural compounds, including flavonoids, alkaloids, and saponins, can inhibit the de novo synthesis of lipids in GIC, reduce the level of lipid accumulation, and subsequently, inhibit the occurrence and development of GIC by regulating Sterol regulatory element-binding protein 1 (SREBP-1), adenosine monophosphate-activated protein kinase (AMPK), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin PI3K/Akt/mTOR, amongst other targets and pathways. Therefore, targeting tumor lipid metabolism is the focus of anti-gastrointestinal tumor therapy. Although most natural products require further high-quality studies to firmly establish their clinical efficacy, we review the potential of natural products in the treatment of GIC and summarize the application prospect of lipid metabolism as a new target for the treatment of GIC, hoping to provide a reference for drug development for gastrointestinal tumors.
Collapse
Affiliation(s)
- Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Ai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Velez BC, Petrella CP, DiSalvo KH, Cheng K, Kravtsov R, Krasniqi D, Krucher NA. Combined inhibition of ACLY and CDK4/6 reduces cancer cell growth and invasion. Oncol Rep 2023; 49:32. [PMID: 36562384 PMCID: PMC9827262 DOI: 10.3892/or.2022.8469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The use of small molecule kinase inhibitors, which target specific enzymes that are overactive in cancer cells, has revolutionized cancer patient treatment. To treat some types of breast cancer, CDK4/6 inhibitors, such as palbociclib, have been developed that target the phosphorylation of the retinoblastoma tumor suppressor gene. Acquired resistance to CDK4/6 inhibitors may be due to activation of the AKT pro‑survival signaling pathway that stimulates several processes, such as growth, metastasis and changes in metabolism that support rapid cell proliferation. The aim of the present study was to investigate whether targeting ATP citrate lyase (ACLY), a downstream target of AKT, may combine with CDK4/6 inhibition to inhibit tumorigenesis. The present study determined that ACLY is activated in breast and pancreatic cancer cells in response to palbociclib treatment and AKT mediates this effect. Inhibition of ACLY using bempedoic acid used in combination with palbociclib reduced cell viability in a panel of breast and pancreatic cancer cell lines. This effect was also observed using breast cancer cells grown in 3D cell culture. Mechanistically, palbociclib inhibited cell proliferation, whereas bempedoic acid stimulated apoptosis. Finally, using Transwell invasion assays and immunoblotting, the present study demonstrated that ACLY inhibition blocked cell invasion, when used alone or in combination with palbociclib. These data may yield useful information that could guide the development of future therapies aimed at the reduction of acquired resistance observed clinically.
Collapse
Affiliation(s)
| | | | | | - Keyi Cheng
- Department of Biology, Pace University, Pleasantville, NY 10570, USA
| | - Rebecca Kravtsov
- Department of Biology, Pace University, Pleasantville, NY 10570, USA
| | - Dorina Krasniqi
- Department of Biology, Pace University, Pleasantville, NY 10570, USA
| | - Nancy Ann Krucher
- Department of Biology, Pace University, Pleasantville, NY 10570, USA
| |
Collapse
|
49
|
Abstract
It has been 10 years since the concept of ferroptosis was put forward and research focusing on ferroptosis has been increasing continuously. Ferroptosis is driven by iron-dependent lipid peroxidation, which can be antagonized by glutathione peroxidase 4 (GPX4), ferroptosis inhibitory protein 1 (FSP1), dihydroorotate dehydrogenase (DHODH) and Fas-associated factor 1 (FAF1). Various cellular metabolic events, including lipid metabolism, can modulate ferroptosis sensitivity. It is worth noting that the reprogramming of lipid metabolism in cancer cells can promote the occurrence and development of tumors. The metabolic flexibility of cancer cells opens the possibility for the coordinated targeting of multiple lipid metabolic pathways to trigger cancer cells ferroptosis. In addition, cancer cells must obtain immortality, escape from programmed cell death including ferroptosis, to promote cancer progression, which provides new perspectives for improving cancer therapy. Targeting the vulnerability of ferroptosis has received attention as one of the significant possible strategies to treat cancer given its role in regulating tumor cell survival. We review the impact of iron and lipid metabolism on ferroptosis and the potential role of the crosstalk of lipid metabolism reprogramming and ferroptosis in antitumor immunity and sum up agents targeting lipid metabolism and ferroptosis for cancer therapy.
Collapse
|
50
|
Xie Z, Zhang M, Song Q, Cheng L, Zhang X, Song G, Sun X, Gu M, Zhou C, Zhang Y, Zhu K, Yin J, Chen X, Li J, Nan F. Development of the novel ACLY inhibitor 326E as a promising treatment for hypercholesterolemia. Acta Pharm Sin B 2023; 13:739-753. [PMID: 36873173 PMCID: PMC9979192 DOI: 10.1016/j.apsb.2022.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatic cholesterol accumulation is an important contributor to hypercholesterolemia, which results in atherosclerosis and cardiovascular disease (CVD). ATP-citrate lyase (ACLY) is a key lipogenic enzyme that converts cytosolic citrate derived from tricarboxylic acid cycle (TCA cycle) to acetyl-CoA in the cytoplasm. Therefore, ACLY represents a link between mitochondria oxidative phosphorylation and cytosolic de novo lipogenesis. In this study, we developed the small molecule 326E with an enedioic acid structural moiety as a novel ACLY inhibitor, and its CoA-conjugated form 326E-CoA inhibited ACLY activity with an IC50 = 5.31 ± 1.2 μmol/L in vitro. 326E treatment reduced de novo lipogenesis, and increased cholesterol efflux in vitro and in vivo. 326E was rapidly absorbed after oral administration, exhibited a higher blood exposure than that of the approved ACLY inhibitor bempedoic acid (BA) used for hypercholesterolemia. Chronic 326E treatment in hamsters and rhesus monkeys resulted in remarkable improvement of hyperlipidemia. Once daily oral administration of 326E for 24 weeks prevented the occurrence of atherosclerosis in ApoE-/- mice to a greater extent than that of BA treatment. Taken together, our data suggest that inhibition of ACLY by 326E represents a promising strategy for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qian Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gaolei Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chendong Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangming Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Burgeon Therapeutics Co., Ltd., Shanghai 201203, China
| | - Kexin Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaoyan Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|