1
|
Alam K, Hossain MS, Zhao Y, Zhang Z, Xu S, Hao J, Yang Q, Li A. Tryptanthrins as multi-bioactive agents: discovery, diversity distribution and synthesis. Bioorg Chem 2025; 154:108071. [PMID: 39721143 DOI: 10.1016/j.bioorg.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Tryptanthrin and its derivatives, representing a type of alkaloids with indoloquinazoline structures, were first obtained from blue plants and indigo, and then extracted from fungi, marine bacteria and a number of many other natural sources. Various strategies for their chemical synthesis have been reported while tryptanthrin biosynthesis has been less investigated. Tryptanthrin and its derivative products have a broad range of pharmacological and biological functions. In this review, we cover the sources, chemical synthesis and biosynthesis, modes of action and biological activities of tryptanthrin and its derivatives.
Collapse
Affiliation(s)
- Khorshed Alam
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Bangladesh Standards and Testing Institution (BSTI), Dhaka 1208, Bangladesh.
| | - Md Sawkat Hossain
- Chittagong Medical College Hospital, K B Fazlul Kader Road, Panchlaish, Chattogram 4203, Bangladesh.
| | - Yiming Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhiheng Zhang
- Haide College, Ocean University of China, Qingdao 266100, China.
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jinfang Hao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Lin Z, Ning X, Lai R, Hai L, Nie R, Guo L, Li G, Yang Z, Wu Y. Discovery, synthesis and biological evaluation of novel isoquinoline derivatives as potent indoleamine 2, 3-dioxygenase 1 and tryptophan 2, 3-dioxygenase dual inhibitors. Eur J Med Chem 2024; 279:116852. [PMID: 39276584 DOI: 10.1016/j.ejmech.2024.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) play a pivotal role in regulating kynurenine catabolism pathway and immunosuppressive environment, which are promising drug targets for cancer immunotherapy. In this work, a variety of isoquinoline derivatives were designed, synthesized and evaluated for the inhibitory activity against IDO1 and TDO. The enzymatic assay and structure-activity relationship studies led to the most potent compound 43b with IC50 values of 0.31 μM for IDO1 and 0.08 μM for TDO, respectively. Surface plasmon resonance (SPR) revealed direct binding affinity of compound 43b to IDO1 and TDO and molecular docking studies were performed to predict the possible binding mode. Further pharmacokinetic study and biological evaluation in vivo showed that 43b displayed acceptable pharmacokinetic profiles and potent antitumor efficacy with low toxicity in B16-F10 tumor model, which might provide some insights into the discovery of novel IDO1/TDO inhibitors for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhiqian Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiangli Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646100, China
| | - Ruifang Nie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guobo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhongzhen Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
4
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Wujieti B, Feng X, Liu E, Li D, Hao M, Zhou L, Cui W. A theoretical study on the activity and selectivity of IDO/TDO inhibitors. Phys Chem Chem Phys 2024; 26:16747-16764. [PMID: 38818624 DOI: 10.1039/d3cp06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO) is a tryptophan (Trp) metabolic enzyme along the kynurenine (NFK) pathway. Under pathological conditions, IDO overexpressed by tumor cells causes depletion of tryptophan and the accumulation of metabolic products, which inhibit the local immune response and form immune escape. Therefore, the suppression of IDO activity is one of the strategies for tumor immunotherapy, and drug design for this target has been the focus of research for more than two decades. Apart from IDO, tryptophan dioxygenase (TDO) of the same family can also catalyze the same biochemical reaction in the human body, but it has different tissue distribution and substrate selectivity from IDO. Based on the principle of drug design with high potency and low cross-reactivity to specific targets, in this subject, the activity and selectivity of IDO and TDO toward small molecular inhibitors were studied from the perspective of thermodynamics and kinetics. The aim was to elucidate the structural requirements for achieving favorable biological activity and selectivity of IDO and TDO inhibitors. Specifically, the interactions of inhibitors from eight families with IDO and TDO were initially investigated through molecular docking and molecular dynamics simulations, and the thermodynamic data for binding of inhibitors were predicted by the molecular mechanics/generalized Born surface area (MM/GBSA) method. Secondly, we explored the free energy landscape of JKloops, the kinetic control element of IDO/TDO, using temperature replica exchange molecular dynamics (T-REMD) simulations and elucidated the connection between the rules of IDO/TDO conformational changes and the inhibitor selectivity mechanism. Furthermore, the binding and dissociation processes of the C1 inhibitor (NLG919) were simulated by the adaptive steering molecular dynamics (ASMD) method, which not only addressed the possible stable, metastable, and transition states for C1 inhibitor-IDO/TDO interactions, but also accurately predicted kinetic data for C1 inhibitor binding and dissociation. In conclusion, we have constructed a complete process from enzyme (IDO/TDO) conformational activation to inhibitor binding/dissociation and used the thermodynamic and kinetic data of each link as clues to verify the control mechanism of IDO/TDO on inhibitor selectivity. This is of great significance for us to understand the design principles of tumor immunotherapy drugs and to avoid drug resistance of immunotherapy drugs.
Collapse
Affiliation(s)
- Baerlike Wujieti
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Xinping Feng
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Erxia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Deqing Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Luqi Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| |
Collapse
|
6
|
Xu M, Yang X, Zhang J, Liu D, Zhang C, Wu M, Musazade E, Maser E, Xiong G, Guo L. The mechanism of anthracene degradation by tryptophan -2,3-dioxygenase (T23D) in Comamonas testosteroni. Chem Biol Interact 2024; 393:110950. [PMID: 38479715 DOI: 10.1016/j.cbi.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
It is well known that anthracene is a persistent organic pollutant. Among the four natural polycyclic aromatic hydrocarbons (PAHs) degrading strains, Comamonas testosterone (CT1) was selected as the strain with the highest degradation efficiency. In the present study, prokaryotic transcriptome analysis of CT1 revealed an increase in a gene that encodes tryptophane-2,3-dioxygenase (T23D) in the anthracene and erythromycin groups compared to CK. Compared to the wild-type CT1 strain, anthracene degradation by the CtT23D knockout mutant (CT-M1) was significantly reduced. Compared to Escherichia coli (DH5α), CtT23D transformed DH5α (EC-M1) had a higher degradation efficiency for anthracene. The recombinant protein rT23D oxidized tryptophan at pH 7.0 and 37 °C with an enzyme activity of 2.42 ± 0.06 μmol min-1·mg-1 protein. In addition, gas chromatography-mass (GC-MS) analysis of anthracene degradation by EC-M1 and the purified rT23D revealed that 2-methyl-1-benzofuran-3-carbaldehyde is an anthracene metabolite, suggesting that it is a new pathway.
Collapse
Affiliation(s)
- Miao Xu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Jinyuan Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Dong Liu
- School of Grain Science and Technology, Jilin Busyness and Technology College, Changchun, 130118, PR China
| | - Chuanzhi Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China; School of Grain Science and Technology, Jilin Busyness and Technology College, Changchun, 130118, PR China
| | - Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Edmund Maser
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, 24105, Germany
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, 24105, Germany
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
7
|
Zhou X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Med Chem 2024; 15:1127-1147. [PMID: 38665827 PMCID: PMC11042161 DOI: 10.1039/d3md00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
Tryptanthrin is one of the well-known natural alkaloids with a broad spectrum of biological activities and can act as anti-inflammatory, anticancer, antibacterial, antifungal, antiviral, antitubercular, and other agents. Owing to its potent anticancer activity, tryptanthrin has been widely explored for the therapy of various cancers besides being effective against other diseases. Tryptanthrin with a pharmacological indoloquinazoline moiety can not only be modified by different functional groups to achieve various tryptanthrin derivatives, which may realize the improvement of anticancer activity, but also bind with different metal ions to obtain varied tryptanthrin metal complexes as potential anticancer agents, due to their higher anticancer activities in comparison with tryptanthrin (or its derivatives) and cisplatin. This review outlines the recent advances in the syntheses, structures, and anticancer activities of tryptanthrin derivatives and their metal complexes, trying to reveal their structure-activity relationships and to provide a helpful way for medicinal chemists in the development of new and effective tryptanthrin-based anticancer agents.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Second Clinical Medicine College of Lanzhou University Lanzhou China
| |
Collapse
|
8
|
Hou BL, Wu K, Liu R, Liu J, Wang J, Wang C, Liang Y, Wang Z. Natural products fragment-based design and synthesis of a novel pentacyclic ring system as potential MAPK inhibitor. Bioorg Med Chem Lett 2024; 99:129598. [PMID: 38169246 DOI: 10.1016/j.bmcl.2023.129598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The synthesis of compounds based on fragments derived from natural products (NPs) serves as a source of inspiration for the design of pseudo-natural products (PNPs), to identify bioactive molecules that exhibit similar characteristics to NPs. These novel molecular scaffolds exhibit previously unexplored biological activities as well. This study reports the development and synthesis of a novel pentacyclic ring system, the indole-pyrimidine-quinoline (IPQ) scaffold. The design of this scaffold was based on the structural characteristics of four natural products, namely tryptanthrin, luotonin A, rutaecarpine, and camptothecin. Several successive steps accomplished the effective synthesis of the IPQ scaffold. The constituent components of the pentacycle, containing the indole, quinazolinone, pyrimidone, and quinoline units, possess significant biological significance. Compound 1a demonstrated noteworthy anti-tumor activity efficacy against A549 cell lines among the tested compounds. The compound 1a was observed to elicit cell cycle arrest in both the G2/M and S phases, as well as trigger apoptosis in A549 cells. These effects were attributed to its ability to modulate the activation of mitochondrial-related mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Bao-Long Hou
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Kenan Wu
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Rongrong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China
| | - Jianli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China; Xi'an Peihua University, Xi'an 710125, China
| | - Jinrui Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China
| | - Cuiling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.
| | - Yanni Liang
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Zheng Wang
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| |
Collapse
|
9
|
Villani S, Fallarini S, Rezzi SJ, Di Martino RMC, Aprile S, Del Grosso E. Selective inhibition of indoleamine and tryptophan 2,3-dioxygenases: Comparative study on kynurenine pathway in cell lines via LC-MS/MS-based targeted metabolomics. J Pharm Biomed Anal 2024; 237:115750. [PMID: 37804639 DOI: 10.1016/j.jpba.2023.115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
In the last decade, the kynurenine pathway, which is the primary metabolic route for tryptophan (TRP) catabolism, has sparked great interest in the pharmaceutical sciences due to its role in immune regulation and cancer immunoediting. In this context, the development of cell-based assays might represent a tool to: i) characterize the cell secretome according to cell types; ii) gain more insight into the role of kynurenines in different disease scenarios; iii) screen hIDO1 (human indoleamine 2,3-dioxygenase) inhibitors and evaluate their effect on downstream TRP-catabolizing enzymes. This paper reports a validated Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method to simultaneously quantify TRP, L-kynurenine (KYN), xanthurenic acid (XA), 3-hydroxykynurenine (3OHKYN), kynurenic acid (KA), 3-hydroxyanthranilic acid (3OHAA), anthranilic acid (AA), 5-hydroxytryptamine (serotonin, 5HT) and tryptamine (TRYP) in Dulbecco's Modified Eagle and Eagle's Minimum Essential Media (DMEM and EMEM, respectively). The quantitative method was validated according to FDA, ICH and EMA guidelines, later applied: i) to assess the impact of selective inhibition of hIDO1 or hTDO (human tryptophan 2,3-dioxygenase) on the kynurenine pathway in A375 (melanoma), MDA-MB-231 (breast cancer), and U87 (glioblastoma) cell lines using multivariate analysis (MVA); ii) to determine the IC50 values of both well-known (i.e., epacadostat, linrodostat) and the novel hIDO1 inhibitor (i.e., BL5) in the aforementioned cell lines. The proposed LC-MS/MS method is reliable and robust. Furthermore, it is highly versatile and suitable for applications in the preclinical drug research and in vitro assays.
Collapse
Affiliation(s)
- Salvatore Villani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Sarah Jane Rezzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | | | - Silvio Aprile
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| |
Collapse
|
10
|
Long H, Zhang G, Zhou Y, Qin L, Zhu D, Chen J, Liu B, Tan H, Chen D, Li Z, Li C, Wang Z. A Novel Tryptanthrin Derivative D6 Induces Apoptosis and DNA Damage in Non-small-cell Lung Cancer Cells Through Regulating the EGFR Pathway. Anticancer Agents Med Chem 2024; 24:1275-1287. [PMID: 39034729 DOI: 10.2174/0118715206303721240715042526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Non-small-cell lung cancer is a prevalent malignancy associated with significant morbidity and mortality rates. Tryptanthrin and its derivatives have exhibited potent antitumor activity. OBJECTIVE This study aims to investigate the inhibitory effect of a novel synthesized tryptanthrin derivative D6 on proliferation and the possible mechanism of human non-small cell lung cancer cell lines (A549) in vitro. METHODS In this study, MTT assay, cell migration, colony formation assay, cell cycle analysis, cell apoptosis, JC- 1 staining assay, reactive oxygen species analysis, proteomics, western blotting, high content screening and absorption titrations analysis were performed. RESULTS We found that D6 inhibited both the proliferation and migration, induced cell cycle arrest in the G2/M phase, increased levels of ROS, decreased mitochondrial membrane potential, and promoted apoptosis in A549 cells. Further mechanistic studies found that D6 reduced EGFR expression in A549 cells and inhibited the EGFR pathway by decreasing phosphorylation levels of EGFR, Stat3, AKT and Erk1/2. Moreover, DNA damage induced by D6 involved an increase in p53/MDM2 ratio and concentration-dependent accumulation of micronuclei. CONCLUSION D6 demonstrated significant antitumor activity against A549 cells by inhibiting the EGFR signaling pathway, inducing DNA damage, and subsequently leading to oxidative stress, apoptosis, and cell cycle arrest. Our findings suggest that D6 exhibits potential as an NSCLC drug, owing to its attributes such as antiproliferative activity and ability to induce apoptosis by attenuating the EGFR-mediated signaling pathway.
Collapse
Affiliation(s)
- Haitao Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Guanglong Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Liqing Qin
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Danxue Zhu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiayi Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Bo Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Huayuan Tan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Zhurui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
11
|
Wang G, Du J, Ma J, Liu P, Xing S, Xia J, Dong S, Li Z. Discovery of Novel Tryptanthrin Derivatives with Benzenesulfonamide Substituents as Multi-Target-Directed Ligands for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1468. [PMID: 37895939 PMCID: PMC10610214 DOI: 10.3390/ph16101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective properties. Among them, the target compound 4h was considered as a mixed reversible dual inhibitor of acetylcholinesterase (AChE, IC50 = 0.13 ± 0.04 μM) and butyrylcholinesterase (BuChE, IC50 = 6.11 ± 0.15 μM). And it could also potentially prevent the generation of amyloid plaques by inhibiting self-induced Aβ aggregation (63.16 ± 2.33%). Molecular docking studies were used to explore the interactions of AChE, BuChE, and Aβ. Furthermore, possessing significant anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50 = 0.62 ± 0.07 μM, 1.78 ± 0.21 μM, 1.31 ± 0.28 μM, respectively) reduced ROS production, and chelated biometals were also found in compound 4h. Further studies showed that 4h had proper blood-brain barrier (BBB) permeability and suitable in vitro metabolic stability. In in vivo study, 4h effectively ameliorated the learning and memory impairment of the scopolamine-induced AD mice model. These findings suggested that 4h may be a promising compound for further development as a multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jie Ma
- Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| |
Collapse
|
12
|
Natural quinazolinones: From a treasure house to promising anticancer leads. Eur J Med Chem 2022; 245:114915. [DOI: 10.1016/j.ejmech.2022.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
13
|
Discovery and biological evaluation of tanshinone derivatives as potent dual inhibitors of indoleamine 2, 3-dioxygenase 1 and tryptophan 2, 3-dioxygenase. Eur J Med Chem 2022; 235:114294. [DOI: 10.1016/j.ejmech.2022.114294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023]
|
14
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
15
|
Shoket H, Pandita M, Sharma M, Kumar R, Rakwal A, Wazir S, Verma V, Salunke DB, Bairwa NK. Genetic interaction between F-box motif encoding YDR131C and retrograde signaling-related RTG1 regulates the stress response and apoptosis in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2021; 35:e22864. [PMID: 34309121 DOI: 10.1002/jbt.22864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
The retrograde signaling pathway is well conserved from yeast to humans, which regulates cell adaptation during stress conditions and prevents cell death. One of its components, RTG1 encoded Rtg1p in association with Rtg3p communicates between mitochondria, nucleus, and peroxisome during stress for adaptation, by regulation of transcription. The F-box motif protein encoded by YDR131C constitutes a part of SCF Ydr131c -E3 ligase complex, with unknown function; however, it is known that retrograde signaling is modulated by the E3 ligase complex. This study reports epistasis interaction between YDR131C and RTG1, which regulates cell growth, response to genotoxic stress, decreased apoptosis, resistance to petite mutation, and cell wall integrity. The cells of ydr131cΔrtg1Δ genetic background exhibits growth rate improvement however, sensitivity to hydroxyurea, itraconazole antifungal agent and synthetic indoloquinazoline-based alkaloid (8-fluorotryptanthrin, RK64), which disrupts the cell wall integrity in Saccharomyces cerevisiae. The epistatic interaction between YDR131C and RTG1 indicates a link between protein degradation and retrograde signaling pathways.
Collapse
Affiliation(s)
- Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Ravinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Ayushi Rakwal
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shreya Wazir
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Vijeshwar Verma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutic and Antimicrobials, Panjab University, Chandigarh, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
16
|
Design, synthesis and biological evaluation of exiguamine A analogues as IDO1 inhibitors. Eur J Med Chem 2021; 223:113631. [PMID: 34147748 DOI: 10.1016/j.ejmech.2021.113631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/04/2023]
Abstract
A series of exiguamine A analogues were designed and synthesized via 15 steps. Their inhibitory activities against IDO1 were tested and the structure-activity relationships were studied. Most compounds exhibited potent IDO1 inhibitory activities with IC50 values at the level of 10-7-10-8 M. Compound 21f was the most potent IDO1 inhibitor with an IC50 value of 65.3 nM, which was comparable with the positive control drug epacadostat (IC50 = 46 nM). Moreover, compound 21f showed higher selectivity for IDO1 over tryptophan 2,3-dioxygenase (TDO) and no cytotoxicity at its effective concentration, rending it justifiable for further optimization and evaluation.
Collapse
|
17
|
Sun Q, Leng J, Tang L, Wang L, Fu C. A Comprehensive Review of the Chemistry, Pharmacokinetics, Pharmacology, Clinical Applications, Adverse Events, and Quality Control of Indigo Naturalis. Front Pharmacol 2021; 12:664022. [PMID: 34135755 PMCID: PMC8200773 DOI: 10.3389/fphar.2021.664022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Indigo naturalis (IN), which is derived from indigo plants such as Strobilanthes cusia (Nees) Kuntze, Persicaria tinctoria (Aiton) Spach, and Isatis tinctoria L., has been traditionally used in the treatment of hemoptysis, epistaxis, chest pain, aphtha, and infantile convulsion in China for thousands of years. Clinical trials have shown that the curative effect of IN for psoriasis and ulcerative colitis (UC) is remarkable. A total of sixty-three compounds, including indole alkaloids, terpenoids, organic acids, steroids, and nucleosides, have been isolated from IN, of which indole alkaloids are the most important. Indirubin, isolated from IN, was used as a new agent to treat leukemia in China in the 1970s. Indirubin is also an active ingredient in the treatment of psoriasis. Pharmacological studies have confirmed that IN has inhibitory effects on inflammation, tumors, bacteria, and psoriasis. Indigo, indirubin, tryptanthrin, isorhamnetin, indigodole A, and indigodole C are responsible for these activities. This review provides up-to-date and comprehensive information on IN with regard to its chemistry, pharmacokinetics, pharmacology, clinical applications, adverse events, and quality control. This review may also serve a reference for further research on IN.
Collapse
Affiliation(s)
- Quan Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jing Leng
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ling Tang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lijuan Wang
- Department of Pathology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Chen S, Tan J, Zhang A. The ups, downs and new trends of IDO1 inhibitors. Bioorg Chem 2021; 110:104815. [PMID: 33773223 DOI: 10.1016/j.bioorg.2021.104815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/14/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022]
Abstract
Cancer immunotherapy has become an emerging driving force in the development of innovative strategies to fight against cancer. Despite the significant clinical benefits that many cancer patients have gained, the generally average response rate of ~ 20% is far behind the expectation for immune checkpoint inhibitors (ICIs). Combination of ICIs with indoleamine 2,3-dioxygenase-1 (IDO1) inhibitors is considered as an alternative solution and has proved effective in tremendous preclinical studies. However, the failure of phase III ECHO-301/KEYNOTE-252 trial seriously dampened the enthusiasm on the rationality of IDO1-targeting strategy. Fortunately, in spite of the ups and downs in the developmental journey of IDO1 inhibitors, multiple new approaches have been proposed to bridge the gap between lab to the clinic. Here, we review the recent advances in the development of small molecule inhibitors targeting IDO1 especially the new trend of IDO1 inhibitors after ECHO-301 clinical trials, including dual or pan-inhibitors targeting IDO1 and TDO or IDO2, apo-IDO1 inhibitors, IDO1 PROTACs, as well as other IDO1 inhibitors.
Collapse
Affiliation(s)
- Shulun Chen
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Tan
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Shen J, Zhang L, Meng X. Recent advances in cyclization reactions of isatins or thioisatins via C–N or C–S bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes recent developments on cyclization reactions induced by the C–N or C–S bond cleavage of isatins or thioisatins in the last 5 years, which produce fused products instead of spiro compounds.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
20
|
Brandão P, Marques C, Pinto E, Pineiro M, Burke AJ. Petasis adducts of tryptanthrin – synthesis, biological activity evaluation and druglikeness assessment. NEW J CHEM 2021. [DOI: 10.1039/d1nj02079j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of a tryptanthrin-based Petasis multicomponent reaction is reported, with one of the new derivatives showing moderate fungicidal activity.
Collapse
Affiliation(s)
- Pedro Brandão
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | | | - Eugénia Pinto
- Laboratório de Microbiologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313 Porto
| | - Marta Pineiro
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE
- University of Évora
- Évora
- Portugal
- Department of Chemistry
| |
Collapse
|
21
|
Pan S, Zhou Y, Wang Q, Wang Y, Tian C, Wang T, Huang L, Nan J, Li L, Yang S. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem 2020; 207:112703. [DOI: 10.1016/j.ejmech.2020.112703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
22
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
23
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Zhang S, Guo L, Yang D, Xing Z, Li W, Kuang C, Yang Q. Evaluation and comparison of the commonly used bioassays of human indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). Bioorg Chem 2020; 104:104348. [PMID: 33142415 DOI: 10.1016/j.bioorg.2020.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/19/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022]
Abstract
Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are potential drugs for the treatment of tumor and neurological diseases. A variety of bioassays have been developed to evaluate IDO1/TDO (IDO1 and/or TDO) inhibitors, with uncertainty regarding how the differences in the assay methods or protocols may influence the assay outcomes. The enzymatic assays of IDO1/TDO are usually performed with NFK assay and Kyn adduct assay while the cellular assays of IDO1 are carried out with Hela assay and HEK293 assay. The present study focused on the comparison of the most common bioassays of IDO1/TDO. In addition, the effects of major factors of bioassays such as reaction time and culture medium on the assay outcomes were evaluated. The study will provide reference for the researchers to select IDO1/TDO inhibitors with bioassays, and promote the development of IDO1/TDO inhibitors.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Leilei Guo
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Dan Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Weirui Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092 Shanghai, China.
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| |
Collapse
|
25
|
Tang X, Zhang N, He G, Li CH, Huang W, Wang XY, Zhan G, Han B. Unconventional [2 + 3] Cyclization Involving [1,4]-Sulfonyl Transfer to Construct Polysubstituted Fluorazones as Inhibitors of Indoleamine 2,3-Dioxygenase 1. Org Lett 2020; 22:7909-7914. [PMID: 32991179 DOI: 10.1021/acs.orglett.0c02836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Cheng-Hao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Xiao-Yun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| |
Collapse
|
26
|
Li Y, Zhang S, Wang R, Cui M, Liu W, Yang Q, Kuang C. Synthesis of novel tryptanthrin derivatives as dual inhibitors of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase. Bioorg Med Chem Lett 2020; 30:127159. [DOI: 10.1016/j.bmcl.2020.127159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
|
27
|
Cui G, Lai F, Wang X, Chen X, Xu B. Design, synthesis and biological evaluation of indole-2-carboxylic acid derivatives as IDO1/TDO dual inhibitors. Eur J Med Chem 2019; 188:111985. [PMID: 31881488 DOI: 10.1016/j.ejmech.2019.111985] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are involved in the key steps of tryptophan metabolism and are potential new targets for tumor immunotherapy. In this work, a variety of indole-2-carboxylic acid derivatives were synthesized, and their inhibitory activities against both enzymes along with structure-activity relationships were investigated. As a result, a number of 6-acetamido-indole-2-carboxylic acid derivatives were found to be potent dual inhibitors with IC50 values at low micromolar levels. Among them, compound 9o-1 was the most potent inhibitor with an IC50 value of 1.17 μM for IDO1, and 1.55 μM for TDO, respectively. In addition, a para-benzoquinone derivative 9p-O, resulted from the oxidation of compound 9p, was also identified and it showed strong inhibition against the two enzymes with IC50 values at the double digit nanomolar level. Using molecular docking and molecular dynamic simulations, we predicted the binding modes of this class of compounds within IDO1 and TDO binding pocket. The results provide insights for further structural optimization of this series of IDO1/TDO dual inhibitors.
Collapse
Affiliation(s)
- Guonan Cui
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Yang D, Zhang S, Fang X, Guo L, Hu N, Guo Z, Li X, Yang S, He JC, Kuang C, Yang Q. N-Benzyl/Aryl Substituted Tryptanthrin as Dual Inhibitors of Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase. J Med Chem 2019; 62:9161-9174. [PMID: 31580660 DOI: 10.1021/acs.jmedchem.9b01079] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the initial and rate-limiting step of the kynurenine pathway of tryptophan catabolism, has emerged as a key target in cancer immunotherapy because of its role in enabling cancers to evade the immune system. Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the same reaction and play a potential role in cancer immunotherapy. Starting from our previously discovered tryptanthrin IDO1 inhibitor scaffold, we synthesized novel N-benzyl/aryl substituted tryptanthrin derivatives and evaluated their inhibitory efficacy on IDO1, TDO, and IDO2. Most compounds showed similar high inhibitory activities on both IDO1 and TDO, which were significantly superior over that of IDO2 with magnitude difference. We showed that N-benzyl/aryl substituted tryptanthrin directly interacted with IDO1, TDO, and IDO2, significantly augmented the proliferation of T cells in vitro, blocked the kynurenine pathway, and suppressed tumor growth when administered to LLC and H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Leilei Guo
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Nan Hu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Zhanling Guo
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Xishuai Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Shuangshuang Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Jin Chao He
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Chunxiang Kuang
- Department of Chemistry , Tongji University , Siping Road 1239 , Shanghai 200092 , China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| |
Collapse
|
29
|
Amara R, Awad H, Chaker D, Bentabed‐Ababsa G, Lassagne F, Erb W, Chevallier F, Roisnel T, Dorcet V, Fajloun Z, Vidal J, Mongin F. Conversion of Isatins to Tryptanthrins, Heterocycles Endowed with a Myriad of Bioactivities. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rim Amara
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
- Laboratoire de Synthèse Organique Appliquée Faculté des Sciences Exactes et Appliquées Université Oran1 Ahmed Ben Bella BP 1524 El M'Naouer 31000 Oran Algeria
| | - Haçan Awad
- Faculty of Sciences 3 Lebanese University Campus El‐Kobbeh Tripoli Lebanon
| | - Diana Chaker
- Laboratory of Applied Biotechnology Azm Center for Research in Biotechnology and its Applications, EDST Lebanese University 1300 Tripoli Lebanon
| | - Ghenia Bentabed‐Ababsa
- Laboratoire de Synthèse Organique Appliquée Faculté des Sciences Exactes et Appliquées Université Oran1 Ahmed Ben Bella BP 1524 El M'Naouer 31000 Oran Algeria
| | - Frédéric Lassagne
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - William Erb
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Floris Chevallier
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Thierry Roisnel
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Ziad Fajloun
- Faculty of Sciences 3 Lebanese University Campus El‐Kobbeh Tripoli Lebanon
- Laboratory of Applied Biotechnology Azm Center for Research in Biotechnology and its Applications, EDST Lebanese University 1300 Tripoli Lebanon
| | - Joëlle Vidal
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Florence Mongin
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| |
Collapse
|