1
|
Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupický D. Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404608. [PMID: 38842816 PMCID: PMC11384239 DOI: 10.1002/adma.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The recent success of gene therapy during the COVID-19 pandemic has underscored the importance of effective and safe delivery systems. Complementing lipid-based delivery systems, polymers present a promising alternative for gene delivery. Significant advances have been made in the recent past, with multiple clinical trials progressing beyond phase I and several companies actively working on polymeric delivery systems which provides assurance that polymeric carriers can soon achieve clinical translation. The massive advantage of structural tunability and vast chemical space of polymers is being actively leveraged to mitigate shortcomings of traditional polycationic polymers and improve the translatability of delivery systems. Tailored polymeric approaches for diverse nucleic acids and for specific subcellular targets are now being designed to improve therapeutic efficacy. This review describes the recent advances in polymer design for improved gene delivery by polyplexes and covalent polymer-nucleic acid conjugates. The review also offers a brief note on novel computational techniques for improved polymer design. The review concludes with an overview of the current state of polymeric gene therapies in the clinic as well as future directions on their translation to the clinic.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ashish Das
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
2
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Zhang Y, Zhang M, Song H, Dai Q, Liu C. Tumor Microenvironment-Responsive Polymer-Based RNA Delivery Systems for Cancer Treatment. SMALL METHODS 2024:e2400278. [PMID: 38803312 DOI: 10.1002/smtd.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleic acid (RNA) therapeutics offer a broad prospect in cancer treatment. However, their successful application requires overcoming various physiological barriers to effectively deliver RNAs to the target sites. Currently, a number of RNA delivery systems based on polymeric nanoparticles are developed to overcome these barriers in RNA delivery. This work provides an overview of the existing RNA therapeutics for cancer gene therapy, and particularly summarizes those that are entering the clinical phase. This work then discusses the core features and latest research developments of tumor microenvironment-responsive polymer-based RNA delivery carriers which are designed based on the pathological characteristics of the tumor microenvironment. Finally, this work also proposes opportunities for the transformation of RNA therapies into cancer immunotherapy methods in clinical applications.
Collapse
Affiliation(s)
- Yahan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Abstract
INTRODUCTION Gene delivery vectors are a crucial determinant for gene therapeutic efficacy. Usually, it is necessary to use an excess of cationic vectors to achieve better transfection efficiency. However, it will cause severe cytotoxicity. In addition, cationic vectors are not resistant to serum, suffering from reduced transfection efficiency by forming large aggregates. Therefore, there is an urgent need to develop optimized gene delivery vectors. Recently, fluorination of vectors has been extensively applied to increase the gene delivery performance because of the unique properties of both hydrophobicity and lipophobicity, and chemical and biological inertness. AREAS COVERED This review will discuss the fluorophilic effects that impact gene delivery efficiency, and chemical modification approaches for fluorination. Next, recent advances and applications of fluorinated polymeric and lipidic vectors in gene therapy and gene editing are summarized. EXPERT OPINION Fluorinated vectors are a promising candidate for gene delivery. However, it still needs further studies to obtain pure and well-defined fluorinated polymers, guarantee the biosafety, and clarify the detailed mechanism. Apart from the improvements in gene delivery, exploiting other versatility of fluorinated vectors, such as oxygen-carrying ability, high affinity with fluorine-containing drugs, and imaging property upon introducing 19F, will further facilitate their applications in gene therapy.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhan Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
5
|
Walsh AP, Gordon HN, Peter K, Wang X. Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 2021; 179:113998. [PMID: 34662671 PMCID: PMC8518240 DOI: 10.1016/j.addr.2021.113998] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Gene therapy has been widely investigated for the treatment of genetic, acquired, and infectious diseases. Pioneering work utilized viral vectors; however, these are suspected of causing serious adverse events, resulting in the termination of several clinical trials. Non-viral vectors, such as lipid nanoparticles, have attracted significant interest, mainly due to their successful use in vaccines in the current COVID-19 pandemic. Although they allow safe delivery, they come with the disadvantage of off-target delivery. The application of ultrasound to ultrasound-sensitive particles allows for a direct, site-specific transfer of genetic materials into the organ/site of interest. This process, termed ultrasound-targeted gene delivery (UTGD), also increases cell membrane permeability and enhances gene uptake. This review focuses on the advances in ultrasound and the development of ultrasonic particles for UTGD across a range of diseases. Furthermore, we discuss the limitations and future perspectives of UTGD.
Collapse
Affiliation(s)
- Aidan P.G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Henry N. Gordon
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Corresponding author at: Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
6
|
Wang D, Chen L, Gao Y, Song C, Ouyang Z, Li C, Mignani S, Majoral JP, Shi X, Shen M. Impact of molecular rigidity on the gene delivery efficiency of core-shell tecto dendrimers. J Mater Chem B 2021; 9:6149-6154. [PMID: 34328166 DOI: 10.1039/d1tb01328a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the construction of two types of core-shell tecto dendrimers (CSTDs) with different core rigidities to illustrate the impact of molecular rigidity on their gene delivery efficiency. Our study reveals that CSTDs designed with rigid cores enable promoted gene delivery, providing many possibilities for a wide range of gene delivery-associated biomedical applications.
Collapse
Affiliation(s)
- Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen Z, Wang X, Liu S, Li Y, Zhou H, Guo T. Zn(ii)-Dipicolylamine analogues with amphiphilic side chains endow low molecular weight PEI with high transfection performance. Biomater Sci 2021; 9:3090-3099. [PMID: 33751016 DOI: 10.1039/d0bm02181d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To investigate the effect of amphiphilic balance of Zn(ii)-dipicolylamine analogues on the transfection process, we fabricated a series of Zn(ii)-dipicolylamine functional modules (DDAC-Rs) with different hydrophilic-phobic side chains to modify low molecular weight PEI (Zn-DP-Rs) by the Michael addition reaction. Zn-DP-Rs with hydrophilic terminal hydroxy group side chains demonstrate superior overall performance compared to those of hydrophobic alkyl side chains. In terms of the influence of the chain lengths in DDAC-Rs, from Zn-DP-A/OH-3 to Zn-DP-A/OH-5, the corresponding transfection efficiency shows an upward trend as the lengths increase. However, decreasing efficacy is observed with further increase in the length of side chains. In addition, the Zn-DP-Rs with amphiphilic side chains show prominent performance in every respect, highlighting the significance of balance in the amphipathy of side chains in DDAC-Rs. This work is of great significance for the development of polycationic gene carrier materials with excellent performance.
Collapse
Affiliation(s)
- Zhaoming Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road, No. 94, Tianjin, 300071, China.
| | - Xindong Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road, No. 94, Tianjin, 300071, China.
| | - Shuai Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road, No. 94, Tianjin, 300071, China.
| | - Yumeng Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road, No. 94, Tianjin, 300071, China.
| | - Hao Zhou
- Department of Biochemistry and Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road, No. 94, Tianjin, 300071, China.
| |
Collapse
|
8
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
9
|
Xiao F, Liu J, Zheng Y, Quan Z, Sun W, Fan Y, Luo C, Li H, Wu X. The targeted inhibition of prostate cancer by iron-based nanoparticles based on bioinformatics. J Biomater Appl 2020; 36:3-14. [PMID: 33283584 PMCID: PMC8217887 DOI: 10.1177/0885328220975249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is an epithelial malignant tumor of the prostate, and it is one of the malignant tumors with a high incidence of urogenital system in men. The local treatment of prostate cancer is mainly radical resection and radical radiotherapy, but they are not applicable to advanced prostate cancer. Systemic therapy mainly includes targeted therapy and immunotherapy which could cause many complications, and will affect the prognosis and quality of life of patients. It is urgent to find new treatments for prostate cancer. Bioinformatics offers hope for us to find reliable therapeutic targets. Bioinformatics can use the tumor informations in database and analyze them to screen out the best differentially expressed genes. Using the selected differentially expressed genes as targets, a gene interference plasmid was designed, and the constructed plasmid was used for targeted gene therapy. There are some problems about gene therapy that need to be solved, such as how to transfer genes to target cells is also an important challenge. Due to their large molecular weight and hydrophilic nature, they cannot enter cells through passive diffusion mechanisms. Here we synthesized a DNA carrier used surface modified iron based nanoparticles, and used it to load plasmid including ShRNA which can inhibit the expression of oncogene SLC4A4 selected by bioinformatics’ method. After that we use this iron based nanoparticles/plasmid DNA nanocomposite to treat prostate cancer cells in vitro and in vivo. The target gene SLC4A4 we had selected using bioinformatics had a strong effect on the proliferation of prostate cells; Our nanocomposite could inhibit the expression of SLC4A4 effectively, it had strong inhibitory effects on prostate cancer cells both in vivo and in vitro, and can be used as a potential method for prostate cancer treatment.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Jiayu Liu
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Yongbo Zheng
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Zhen Quan
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Wei Sun
- Fuling Center Hospital of Chongqing City, Chongqing, China
| | - Yao Fan
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Chunli Luo
- Chongqing Medical University, Chongqing, China
| | - Hailiang Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaohou Wu
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| |
Collapse
|
10
|
Xiao YP, Zhang J, Liu YH, Huang Z, Yu XQ. Fluorinated polymer emulsion systems: Construction and application in delivering genes and proteins. Eur J Med Chem 2020; 207:112799. [PMID: 32980740 DOI: 10.1016/j.ejmech.2020.112799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/22/2023]
Abstract
Emulsions have shown great potential in the delivery of various types of cargoes such as nucleic acids and proteins. In this study, fluorinated polymer emulsions (PFx@PFD-n) were prepared using fluorinated polymers with different structures as surfactant in PFD emulsions under ultrasound. These polymer emulsions gave comparable DNA binding ability compared with corresponding polymers. Heparin competition experiment showed that polymer emulsions could compact DNA or protein to form more stable complexes. In vitro gene transfection results showed that the polymer emulsions could induce higher gene expression than corresponding polymers and polyethyleneimine (PEI), and the transfection efficiency was enhanced with the increase of PFD amount in polymer emulsions. Flow cytometry studies revealed that the emulsions could mediate more efficient cellular uptake with stronger serum tolerance. Moreover, the polymer emulsion could deliver considerable amount of OVA into Raw 264.7 cells at low mass ratio, showing its potential in immunotherapy. The activities of β-galactosidase delivered by the emulsions could also be well maintained after entering cells. This study provides a strategy to construct cationic gene and cytosolic protein vectors with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
11
|
Chen G, Wang Y, Ullah A, Huai Y, Xu Y. The effects of fluoroalkyl chain length and density on siRNA delivery of bioreducible poly(amido amine)s. Eur J Pharm Sci 2020; 152:105433. [PMID: 32590121 DOI: 10.1016/j.ejps.2020.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
Fluorination is an attractive strategy for the improvement of transfection efficiency of nucleic acid delivery vectors. Bioreducible poly(amido amine)s (bPAAs) are an important class of biomaterials exhibited to effectively deliver multiple nucleic acids. However, still, the effects of fluoroalkyl chain length and density of bPAA on siRNA delivery are unveiled. Here, we synthesized bPAAs and grafted with different chain lengths and densities of fluorocarbon compounds. Furthermore, we prepared a library of complexes of fluorinated bPAA and siRNA, and investigated the effects of fluorination on the siRNA delivery in vitro and in vivo. We found that all the synthesized bPAAs readily formed complexes with siRNA and the fluorinated complexes considerably achieved improved gene silencing efficacies both in vitro and in vivo. Dramatically, the gene silencing efficacy was increased with increasing fluorine contents. Heptafluorobutyric anhydride (HF) modified bPAAs achieved better gene silencing efficacy when compared with bPAAs fluorinated by trifluoroacetic anhydride (TF) and pentafluoropropionic anhydride (PF) providing the evidence for choosing of best one among fluorocarbon compounds. In addition, a combination of fluorination with bioreducibility enables efficient and safe siRNA delivery.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Yixin Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Yuying Huai
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuehua Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Guo X, Fang Z, Zhang M, Yang D, Wang S, Liu K. A Co-Delivery System of Curcumin and p53 for Enhancing the Sensitivity of Drug-Resistant Ovarian Cancer Cells to Cisplatin. Molecules 2020; 25:molecules25112621. [PMID: 32512936 PMCID: PMC7321199 DOI: 10.3390/molecules25112621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
In order to enhance the sensitivity of drug-resistant ovarian cancer cells to cisplatin (DDP), a co-delivery system was designed for simultaneous delivery of curcumin (CUR) and p53 DNA. Firstly, the bifunctional peptide K14 composed of tumor targeting peptide (tLyP-1) and nuclear localization signal (NLS) was synthesized. A nonviral carrier (PEI-K14) was synthesized by cross-linking low molecular weight polyethyleneimine (PEI) with K14. Then, CUR was coupled to PEI-K14 by matrix metalloproteinase 9 (MMP9)-cleavable peptide to prepare CUR-PEI-K14. A co-delivery system, named CUR-PEI-K14/p53, was obtained by CUR-PEI-K14 and p53 self-assembly. Furthermore, the physicochemical properties and gene transfection efficiency were evaluated. Finally, ovarian cancer cisplatin-resistant (SKOV3-DDP) cells were selected to evaluate the effect of CUR-PEI-K14/p53 on enhancing the sensitivity of drug-resistant cells to DDP. The CUR-PEI-K14/DNA complexes appeared uniformly dispersed and spherical. The particle size was around 20-150 nm and the zeta potential was around 18-37 mV. It had good stability, high transfection efficiency, and low cytotoxicity. CUR-PEI-K14/p53 could significantly increase the sensitivity of SKOV3-DDP cells to DDP, and this effect was better as combined with DDP. The sensitizing effect might be related to the upregulation of p53 messenger RNA (mRNA), the downregulation of P-glycoprotein (P-gp) mRNA, and the upregulation of BCL2-Associated X (bax) mRNA. CUR-PEI-K14/p53 can be used as an effective strategy to enhance the sensitivity of drug-resistant ovarian cancer cells to DDP.
Collapse
Affiliation(s)
| | | | | | | | | | - Kehai Liu
- Correspondence: ; Tel.: +86-216-190-0388
| |
Collapse
|
13
|
Xiao YP, Zhang J, Liu YH, Huang Z, Guo Y, Yu XQ. Bioinspired pyrimidine-containing cationic polymers as effective nanocarriers for DNA and protein delivery. J Mater Chem B 2020; 8:2275-2285. [PMID: 32100787 DOI: 10.1039/c9tb02528f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers have shown great potential in the delivery of nucleic acids and proteins. In this study, a series of pyrimidine-based cationic polymers were synthesized via the Michael addition reaction from pyrimidine-based linkages and low molecular weight polyethyleneimine (PEI). The structure-activity relationship (SAR) of these materials in DNA and protein delivery was investigated. These materials could condense both DNA and protein into nanoparticles with proper sizes and zeta-potentials. In vitro experiments indicated that such polymers were efficient in transporting DNA and proteins into cells. Furthermore, the bioactivity of the genes and proteins encapsulated in these polymers were maintained during the delivery processes. Among the polymers, U-PEI600 synthesized from a uracil-containing linker and PEI 600 Da mediated comparable gene expression to PEI 25 kDa. Moreover, the activities of β-galactosidase delivered by U-PEI600 were well maintained after entering the cells. Evaluation using an immune response assay showed that the U-PEI600/OVA polyplex could stimulate greater production of immune factors with low cytotoxicity. Our study provides a strategy for the construction of cationic polymeric gene and cytosolic protein vectors with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
14
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
15
|
TAT-functionalized PEI-grafting rice bran polysaccharides for safe and efficient gene delivery. Int J Biol Macromol 2019; 146:1076-1086. [PMID: 31726176 DOI: 10.1016/j.ijbiomac.2019.09.234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 01/17/2023]
Abstract
Polysaccharides are considered to be promising candidates for non-viral gene delivery because of their molecular diversity, which can be modified to fine-tune their physicochemical properties. In this work, transcriptional activator protein (TAT) functionalized PEI grafted polysaccharide polymer (PRBP) was prepared by using rice bran polysaccharide as the starting material, and characterized by various methods. The potential of TAT functionalized PRBP (PRBP-TAT) as gene vector was studied in vitro, including DNA loading capacity, DNA protection ability and biocompatibility. The cell uptake and transfection efficiency of the PRBP-TAT/pDNA polyplexes were studied. The results showed that PRBP-TAT could completely condense DNA at N/P 2. The PRBP-TAT/pDNA polyplexes could protect DNA from degrading by DNase and were efficiently internalized by cells. Biocompatibility result showed that PRBP-TAT had no significant cytotoxicity and effect on cell proliferation. At low N/P ratios of 1-3.5, PRBP-TAT showed higher transfection efficiency than PEI30k and PEI30k-grafted rice bran polysaccharide. PRBP-TAT and PEI showed the highest transfection efficiency of 42.8% and 28.1% when pDNA is 2 µg and N/P ratio is 1.5, respectively, while PRBP showed the highest transfection efficiency of 37.3% at N/P 2.5. These results indicate that PTA is a promising candidate vector for safe and efficient gene delivery.
Collapse
|
16
|
Safe and efficient gene delivery based on rice bran polysaccharide. Int J Biol Macromol 2019; 137:1041-1049. [DOI: 10.1016/j.ijbiomac.2019.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
|