1
|
Lohrberg M, Heber M, Ries L, Markus K, Ksionsko N, Schmidt N, Nothnick G, Thielking L, O'Neill M, Martínéz-González S, Blanco-Aparicio C, Pastor J, Cunningham D, Koch R. Dual Targeting of Pim and PI3 Kinases in Mature T-Cell Lymphoma. Eur J Haematol 2025. [PMID: 40165380 DOI: 10.1111/ejh.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Provirus Integration site for Moloney leukemia virus (Pim) family members are well-known oncogenes, with an expression that is restricted to few cell types including hematopoietic cells in adult organisms, making it a promising target for lymphoma treatment. Indeed, previous studies in mature T-cell lymphoma (mTCL) cells revealed frequent upregulation of Pim expression. Nevertheless, inhibition of Pim kinases showed only minor effects on the viability of mTCL cells so far. Thus, we here addressed cellular responses to therapeutic inhibition of Pim kinases and identified a PI3K/Akt-driven activation of mTOR as a significant escape mechanism mitigating the anti-lymphoma effects of Pim inhibition. Indeed, dual inhibition of Pim and PI3 kinases showed synergistic anti-lymphoma effects in vitro through downregulation of mTOR-induced protein translation and mitigation of BCL-xL-mediated anti-apoptotic mechanisms. Based on this finding, we next explored the therapeutic potential of the dual Pim/PI3K inhibitor IBL-202 in mTCL cell lines. Strikingly, IBL-202 strongly induced cell-cycle-dependent cell death in cell lines of different mTCL subtypes. Together, our study provides mechanistic evidence supporting a therapeutic strategy of dual Pim- and PI3-kinase inhibition in mature T-cell lymphoma.
Collapse
Affiliation(s)
- M Lohrberg
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - M Heber
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - L Ries
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - K Markus
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - N Ksionsko
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - N Schmidt
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - G Nothnick
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - L Thielking
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - M O'Neill
- Inflection Biosciences Ltd., Dublin, Ireland
| | | | | | - J Pastor
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | - R Koch
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Golestanifar F, Garkani-Nejad Z. In silico design and ADMET evaluation of new inhibitors for PIM1 kinase using QSAR studies, molecular docking, and molecular dynamic simulation. Heliyon 2024; 10:e38309. [PMID: 39397962 PMCID: PMC11467636 DOI: 10.1016/j.heliyon.2024.e38309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
The proviral Integration site of Moloney (PIM) kinase is highly expressed in various diseases, including cancer, making the development of selective inhibitors for this protein important. A series of PIM1 inhibitors, triazolo [4, 3-b] pyridazin-3-yl-quinoline derivatives, have been studied to design new inhibitors. The activity and structural features of these derivatives were investigated to understand their interactions with PIM1 using molecular docking, molecular dynamic simulation, and QSAR techniques. In a study of 30 compounds using the structure-activity technique and the MLR method, a linear model with R2 train = 0.91 and R2 test = 0.96 was obtained. The model utilized descriptors such as RDF080v, RDF105v, RDF135v, Mor03v, and H046 to express the structural characteristics of the inhibitors. To enhance the model, the SVR non-linear method with the RBF function was also used, resulting in an improved model with R2 train = 0.98 and R2 test = 0.98. Furthermore, the molecular docking technique was employed to investigate the interaction of compounds with high (compound 25) and low (compound 13) inhibitory activity. It was observed that the rings with nitrogen atoms interacted with the protein. The molecular binding results indicate that groups such as OMe and rings with Nitrogen can enhance the inhibitory activity of the compounds. Additionally, oxygen and nitrogen atoms contribute to an increased number of hydrogen bonds, thereby increasing the inhibitory activity of the compounds. Additionally, the stability and bonding modes of active and inactive compounds were studied using molecular dynamic simulation. Based on the results, four new inhibitors were designed, demonstrating better inhibition efficiency with the PIM1 kinase compared to the reference compounds. Moreover, the designed compounds underwent evaluation for ADMET, yielding promising results.
Collapse
Affiliation(s)
- Fereshteh Golestanifar
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
- Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Garkani-Nejad
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
3
|
Ghochikyan TV, Zhamharyan AG, Afrikyan SG, Frangyan VR, Galstyan AS. Novel Triazole-Containing "Dipeptides": Synthesis, Molecular Docking and Analgesic Activity Studies. Chembiochem 2024; 25:e202300837. [PMID: 38477021 DOI: 10.1002/cbic.202300837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Dipeptides of a new structure based on β-triazolalanines and (L)-α-amino acids were synthesized and optimal conditions were developed that ensure both chemical and optical purity of the final products. Molecular docking was carried out and possible intermolecular interactions of dipeptides with potential targets were established. Based on these studies, the analgesic property of chosen dipeptides was studied and it was found that some compounds possess revealed antinociceptive activity in the tail-flick test.
Collapse
Affiliation(s)
- Tariel V Ghochikyan
- Faculty of Chemistry, Yerevan State University, 1 A. Manoukyan Str., Yerevan, 0025, Armenia
| | - Arusyak G Zhamharyan
- Department of Pharmacy, Yerevan State Medical University, 2 Koryun Str., 0025, Yerevan, Armenia
| | - Shushanik G Afrikyan
- Department of Pharmacy, Yerevan State Medical University, 2 Koryun Str., 0025, Yerevan, Armenia
| | - Vardges R Frangyan
- Faculty of Chemistry, Yerevan State University, 1 A. Manoukyan Str., Yerevan, 0025, Armenia
| | - Armen S Galstyan
- Faculty of Chemistry, Yerevan State University, 1 A. Manoukyan Str., Yerevan, 0025, Armenia
| |
Collapse
|
4
|
Sharma A, Dubey R, Asati V, Baweja GS, Gupta S, Asati V. Assessment of structural and activity-related contributions of various PIM-1 kinase inhibitors in the treatment of leukemia and prostate cancer. Mol Divers 2024:10.1007/s11030-023-10795-4. [PMID: 38642309 DOI: 10.1007/s11030-023-10795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/07/2023] [Indexed: 04/22/2024]
Abstract
One of the most perilous illnesses in the world is cancer. The cancer may be associated with the mutation of different genes inside the body. The PIM kinase, also known as the serine/threonine kinase, plays a critical role in the biology of different kinds of cancer. They are widely distributed and associated with several biological processes, including cell division, proliferation, and death. Aberration of PIM-1 kinase is found in varieties of cancer. Prostate cancer and leukemia can both be effectively treated with PIM-1 kinase inhibitors. There are several potent compounds that have been explored in this review based on heterocyclic compounds for the treatment of prostate cancer and leukemia that have strong effects on the suppression of PIM-1 kinase. The present review summarizes the PIM-1 kinase pathway, their inhibitors under clinical trial, related patents, and SAR studies of several monocyclic, bicyclic, and polycyclic compounds. The study related to their molecular interactions with receptors is also included in the present manuscript. The study may be beneficial to scientists for the development of novel compounds as PIM-1 inhibitors in the treatment of prostate cancer and leukemia.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikas Asati
- Department of Medical Oncology, Sri Aurobindo Medical College and PG Institute, Indore, MP, India
| | - Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
5
|
Chen S, Yang Y, Yuan Y, Bo Liu. Targeting PIM kinases in cancer therapy: An update on pharmacological small-molecule inhibitors. Eur J Med Chem 2024; 264:116016. [PMID: 38071792 DOI: 10.1016/j.ejmech.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
PIM kinases, a serine/threonine kinase family with three isoforms, has been well-known to participate in multiple physiological processes by phosphorylating various downstream targets. Accumulating evidence has recently unveiled that aberrant upregulation of PIM kinases (PIM1, PIM2, and PIM3) are closely associated with tumor cell proliferation, migration, survival, and even resistance. Inhibiting or silencing of PIM kinases has been reported have remarkable antitumor effects, such as anti-proliferation, pro-apoptosis and resensitivity, indicating the therapeutic potential of PIM kinases as potential druggable targets in many types of human cancers. More recently, several pharmacological small-molecule inhibitors have been preclinically and clinically evaluated and showed their therapeutic potential; however, none of them has been approved for clinical application so far. Thus, in this perspective, we focus on summarizing the oncogenic roles of PIM kinases, key signaling network, and pharmacological small-molecule inhibitors, which will provide a new clue on discovering more candidate antitumor drugs targeting PIM kinases in the future.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushang Yang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Gao Q, Guo Y, Sun Z, He X, Gao Y, Fan G, Cao P, Fang L, Bai S, Jia Y. Deaminative Cyclization of Tertiary Amines for the Synthesis of 2-Arylquinoline Derivatives with a Nonsubstituted Vinylene Fragment. Org Lett 2023; 25:109-114. [PMID: 36484535 DOI: 10.1021/acs.orglett.2c03904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With triethylamine as a vinylene source, a convenient protocol for the regioselective synthesis of β,γ-nonsubstituted 2-arylquinolines from aldehydes and arylamines has been accomplished. The deaminative cyclization is also extended to long-chain tertiary alkylamines, enabling diverse alkyl groups to be concurrently installed into the pyridine rings. This process demonstrates a new conversion pathway for the simultaneous dual C(sp3)-H bond functionalization of tertiary amines, wherein the transient acyclic enamines generated in situ undergo the Povarov reaction.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaodan He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
7
|
Xu L, Meng YC, Guo P, Li M, Shao L, Huang JH. Recent Research Advances in Small-Molecule Pan-PIM Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu-Cheng Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng Guo
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun-Hai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Walhekar V, Bagul C, Kumar D, Muthal A, Achaiah G, Kulkarni R. Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives. Biochim Biophys Acta Rev Cancer 2022; 1877:188725. [DOI: 10.1016/j.bbcan.2022.188725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022]
|
9
|
Santos C, Pimentel L, Canzian H, Oliveira A, Junior F, Dantas R, Hoelz L, Marinho D, Cunha A, Bastos M, Boechat N. Hybrids of Imatinib with Quinoline: Synthesis, Antimyeloproliferative Activity Evaluation, and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:ph15030309. [PMID: 35337107 PMCID: PMC8950477 DOI: 10.3390/ph15030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Imatinib (IMT) is the first-in-class BCR-ABL commercial tyrosine kinase inhibitor (TKI). However, the resistance and toxicity associated with the use of IMT highlight the importance of the search for new TKIs. In this context, heterocyclic systems, such as quinoline, which is present as a pharmacophore in the structure of the TKI inhibitor bosutinib (BST), have been widely applied. Thus, this work aimed to obtain new hybrids of imatinib containing quinoline moieties and evaluate them against K562 cells. The compounds were synthesized with a high purity degree. Among the produced molecules, the inhibitor 4-methyl-N3-(4-(pyridin-3-yl)pyrimidin-2-yl)-N1-(quinolin-4-yl)benzene-1,3-diamine (2g) showed a suitable reduction in cell viability, with a CC50 value of 0.9 µM (IMT, CC50 = 0.08 µM). Molecular docking results suggest that the interaction between the most active inhibitor 2g and the BCR-ABL1 enzyme occurs at the bosutinib binding site through a competitive inhibition mechanism. Despite being less potent and selective than IMT, 2g is a suitable prototype for use in the search for new drugs against chronic myeloid leukemia (CML), especially in patients with acquired resistance to IMT.
Collapse
Affiliation(s)
- Carine Santos
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Luiz Pimentel
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Henayle Canzian
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Andressa Oliveira
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Floriano Junior
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil; (F.J.); (R.D.)
| | - Rafael Dantas
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil; (F.J.); (R.D.)
| | - Lucas Hoelz
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Debora Marinho
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Anna Cunha
- Departamento de Química Orgânica, Campus do Valonguinho, Universidade Federal Fluminense–UFF, Niterói 24020-150, Brazil;
| | - Monica Bastos
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Nubia Boechat
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-(21)-3977-2465
| |
Collapse
|
10
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
11
|
Walunj Y, Shinde A, Borde K, Abhale Y, Bobade V, Mhaske PC. Synthesis, Anticancer and Antimicrobial Screening of New Naphthalenyl-Thiazole and Quinolinyl-Thiazole. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1991963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yogesh Walunj
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
- Department of Chemistry, Hutatma Rajguru College (Affiliated to Savitribai Phule Pune University), Khed, Pune, India
| | - Abhijit Shinde
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Krishna Borde
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Yogita Abhale
- Department of Chemistry, Government College, Daman, UT–DNH & DD (Affiliated to Veer Narmad South Gujarat University), India
| | - Vivek Bobade
- Post-Graduate Department of Chemistry, H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University), Nashik, India
| | - Pravin C. Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| |
Collapse
|
12
|
Thakare P, Shinde A, Dakhane S, Chavan A, Bobade VD, Mhaske PC. Synthesis and biological evaluation of novel 4‐(6‐substituted quinolin‐4‐yl)‐
N
‐aryl thiazol‐2‐amine derivatives as potential antimicrobial agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prashant Thakare
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Abhijit Shinde
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Sagar Dakhane
- Department of Chemistry Abasaheb Garware College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Abhijit Chavan
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Vivek D. Bobade
- Department of Chemistry H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University) Nashik India
| | - Pravin C. Mhaske
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| |
Collapse
|
13
|
Ammar YA, Elhagali GAM, Abusaif MS, Selim MR, Zahran MA, Naser T, Mehany ABM, Fayed EA. Carboxamide appended quinoline moieties as potential anti-proliferative agents, apoptotic inducers and Pim-1 kinase inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02765-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Yi X, Cao Z, Yuan Y, Li W, Cui X, Chen Z, Hu X, Yu A. Design and synthesis of a novel mitochondria-targeted osteosarcoma theranostic agent based on a PIM1 kinase inhibitor. J Control Release 2021; 332:434-447. [PMID: 33662457 DOI: 10.1016/j.jconrel.2021.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is the most common malignancy of the skeletal system, with a poor prognosis and high rate of recurrence. Adequate surgical margin and adjuvant chemotherapy improve the overall survival and limb salvage rate of osteosarcoma patients. Previous studies have showed that OS exhibits an increase in the expression of proviral integration site for Moloney murine leukemia virus 1 (PIM1) kinase, and high levels of PIM1 are also associated with poor OS prognosis and metastasis. We exploited the overexpression of proto-oncogenic PIM1 in OS towards the development of a novel near-infrared imaging and targeted therapeutic agent, namely QCAi-Cy7d by conjugating a PIM1 small molecule inhibitor and heptamethine cyanine dye, for simultaneous guiding surgery and chemotherapy. QCAi-Cy7d showed targeted imaging and anticancer activities against OS in vitro and vivo without any obvious toxicity, and its antitumoral activity was much greater than the parent PIMI inhibitor. These results demonstrated the potential of new conjugate of PIM1 inhibitor and near-infrared imaging, supporting structure-based design and development of theranostic agents for precise tumor imaging and targeted treatment.
Collapse
Affiliation(s)
- Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhi Cao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Ying Yuan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xinyue Cui
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
15
|
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205:112652. [PMID: 32771798 PMCID: PMC7384432 DOI: 10.1016/j.ejmech.2020.112652] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
The present review aims to summarize the pharmacological profile of 1,2,4-triazole, one of the emerging privileged scaffold, as antifungal, antibacterial, anticancer, anticonvulsant, antituberculosis, antiviral, antiparasitic, analgesic and anti-inflammatory agents, etc. along with structure-activity relationship. The comprehensive compilation of work carried out in the last decade on 1,2,4-triazole nucleus will provide inevitable scope for researchers for the advancement of novel potential drug candidates having better efficacy and selectivity.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India; CSIR-National Institute of Science Technology and Development Studies, New Delhi, India.
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India.
| |
Collapse
|
16
|
He ZX, Gong YP, Zhang X, Ma LY, Zhao W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur J Med Chem 2020; 209:112946. [PMID: 33129590 DOI: 10.1016/j.ejmech.2020.112946] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Identification of potent anticancer agents with high selectivity and low toxicity remains on the way to human health. Pyridazine featuring advantageous physicochemical properties and antitumor potential usually is regarded as a central core in numerous anticancer derivatives. There are several approved pyridazine-based drugs in the market and analogues currently going through different clinical phases or registration statuses, suggesting pyridazine as a promising drug-like scaffold. The current review is intended to provide a comprehensive and updated overview of pyridazine derivatives as potential anticancer agents. In particular, we focused on their structure-activity relationship (SAR) studies, design strategies, binding modes and biological activities in the hope of offering novel insights for further rational design of more active and less toxic anticancer drugs.
Collapse
Affiliation(s)
- Zhang-Xu He
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yun-Peng Gong
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Wen Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
17
|
Alnabulsi S, Al-Hurani EA. Pim kinase inhibitors in cancer: medicinal chemistry insights into their activity and selectivity. Drug Discov Today 2020; 25:S1359-6446(20)30374-3. [PMID: 32971234 DOI: 10.1016/j.drudis.2020.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
The oncogenic Pim kinase proteins (Pim-1/2/3) regulate tumorigenesis through phosphorylating essential proteins that control cell cycle and proliferation. Pim kinase is a potential chemotherapeutic target in cancer and its inhibition is currently the focus of intensive drug design and development efforts. The distinctive presence of proline amino acids in the hinge region provides an opportunity to inhibit Pim kinase while conserving the physiological functions of other kinases and reducing the toxicity profiles of the inhibitors. Various Pim kinase inhibitors have been clinically evaluated for the treatment of hematological cancers, yet none has reached the clinic. In this review, we discuss the design and development of selective and potent Pim inhibitors with novel chemotypes focusing on structural features essential for high potency and selectivity.
Collapse
Affiliation(s)
- Soraya Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan.
| | - Enas A Al-Hurani
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| |
Collapse
|
18
|
Obydennov KL, Kalinina TA, Vysokova OA, Slepukhin PA, Pozdina VA, Ulitko MV, Glukhareva TV. The different modes of chiral [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines: crystal packing, conformation investigation and cellular activity. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:795-809. [PMID: 32756043 DOI: 10.1107/s2053229620009328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/08/2020] [Indexed: 11/11/2022]
Abstract
The crystal structures of four new chiral [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines are described, namely, ethyl 5'-benzoyl-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O3S, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C20H24N4O4S, ethyl 6,6-dimethyl-5-(4-methylbenzoyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C17H20N4O3S, and ethyl 5-benzoyl-6-(4-methoxyphenyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C21H20N4O4S. The crystallographic data and cell activities of these four compounds and of the structures of three previously reported similar compounds, namely, ethyl 5'-(4-methylbenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O3S, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O4S, and ethyl 6-methyl-5-(4-methylbenzoyl)-6-phenyl-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C22H22N4O3S, are contrasted and compared. For both crystallization and an MTT assay, racemic mixtures of the corresponding [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines were used. The main manner of molecular packing in these compounds is the organization of either enantiomeric pairs or dimers. In both cases, the formation of two three-centre hydrogen bonds can be detected resulting from intramolecular N-H...O and intermolecular N-H...O or N-H...N interactions. Molecules of different enantiomeric forms can also form chains through N-H...O hydrogen bonds or form layers between which only weak hydrophobic contacts exist. Unlike other [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines, ethyl 5'-benzoyl-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate contains molecules of only the (R)-enantiomer; moreover, the N-H group does not participate in any significant intermolecular interactions. Molecular mechanics methods (force field OPLS3e) and the DFT B3LYP/6-31G+(d,p) method show that the compound forming enantiomeric pairs via weak N-H...N hydrogen bonds is subject to greater distortion of the geometry under the influence of the intermolecular interactions in the crystal. For intramolecular N-H...O and S...O interactions, an analysis of the noncovalent interactions (NCIs) was carried out. The cellular activities of the compounds were tested by evaluating their antiproliferative effect against two normal human cell lines and two cancer cell lines in terms of half-maximum inhibitory concentration (IC50). Some derivatives have been found to be very effective in inhibiting the growth of Hela cells at nanomolar and submicromolar concentrations with minimal cytotoxicity in relation to normal cells.
Collapse
Affiliation(s)
- Konstantin L'vovich Obydennov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Tatiana Andreevna Kalinina
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Olga Alexandrovna Vysokova
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Pavel Alexandrovich Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences (UB RAS), 22 Sofia Kovalevskaya Street, Yekaterinburg 620990, Russian Federation
| | - Varvara Alexandrovna Pozdina
- Institute Natural Sciences and Mathematics, Ural Federal University, Kuibysheva str. 48a, Yekaterinburg 620000, Russian Federation
| | - Maria Valer'evna Ulitko
- Institute Natural Sciences and Mathematics, Ural Federal University, Kuibysheva str. 48a, Yekaterinburg 620000, Russian Federation
| | | |
Collapse
|
19
|
Cash TP, Alcalá S, Rico-Ferreira MDR, Hernández-Encinas E, García J, Albarrán MI, Valle S, Muñoz J, Martínez-González S, Blanco-Aparicio C, Pastor J, Serrano M, Sainz B. Induction of Lysosome Membrane Permeabilization as a Therapeutic Strategy to Target Pancreatic Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12071790. [PMID: 32635473 PMCID: PMC7407272 DOI: 10.3390/cancers12071790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Despite significant efforts to improve pancreatic ductal adenocarcinoma (PDAC) clinical outcomes, overall survival remains dismal. The poor response to current therapies is partly due to the existence of pancreatic cancer stem cells (PaCSCs), which are efficient drivers of PDAC tumorigenesis, metastasis and relapse. To find new therapeutic agents that could efficiently kill PaCSCs, we screened a chemical library of 680 compounds for candidate small molecules with anti-CSC activity, and identified two compounds of a specific chemical series with potent activity in vitro and in vivo against patient-derived xenograft (PDX) cultures. The anti-CSC mechanism of action of this specific chemical series was found to rely on induction of lysosomal membrane permeabilization (LMP), which is likely associated with the increased lysosomal mass observed in PaCSCs. Using the well characterized LMP-inducer siramesine as a tool molecule, we show elimination of the PaCSC population in mice implanted with tumors from two PDX models. Collectively, our approach identified lysosomal disruption as a promising anti-CSC therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Timothy P. Cash
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (T.P.C.); (M.S.)
| | - Sonia Alcalá
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), 28029 Madrid, Spain; (S.A.); (S.V.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - María del Rosario Rico-Ferreira
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (M.d.R.R.-F.); (E.H.-E.); (J.G.); (M.I.A.); (S.M.-G.); (C.B.-A.); (J.P.)
| | - Elena Hernández-Encinas
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (M.d.R.R.-F.); (E.H.-E.); (J.G.); (M.I.A.); (S.M.-G.); (C.B.-A.); (J.P.)
| | - Jennifer García
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (M.d.R.R.-F.); (E.H.-E.); (J.G.); (M.I.A.); (S.M.-G.); (C.B.-A.); (J.P.)
| | - María Isabel Albarrán
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (M.d.R.R.-F.); (E.H.-E.); (J.G.); (M.I.A.); (S.M.-G.); (C.B.-A.); (J.P.)
| | - Sandra Valle
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), 28029 Madrid, Spain; (S.A.); (S.V.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit–ProteoRed-Instituto de Salud Carlos III, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
| | - Sonia Martínez-González
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (M.d.R.R.-F.); (E.H.-E.); (J.G.); (M.I.A.); (S.M.-G.); (C.B.-A.); (J.P.)
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (M.d.R.R.-F.); (E.H.-E.); (J.G.); (M.I.A.); (S.M.-G.); (C.B.-A.); (J.P.)
| | - Joaquín Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (M.d.R.R.-F.); (E.H.-E.); (J.G.); (M.I.A.); (S.M.-G.); (C.B.-A.); (J.P.)
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (T.P.C.); (M.S.)
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08028 Barcelona, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), 28029 Madrid, Spain; (S.A.); (S.V.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|