1
|
Giorgioni G, Bonifazi A, Botticelli L, Cifani C, Matteucci F, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Giannella M, Piergentili A, Piergentili A, Quaglia W, Del Bello F. Advances in drug design and therapeutic potential of selective or multitarget 5-HT1A receptor ligands. Med Res Rev 2024; 44:2640-2706. [PMID: 38808959 DOI: 10.1002/med.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Matteucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | - Mario Giannella
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Alessia Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
2
|
Giorgioni G, Bonifazi A, Matucci R, Matteucci F, Piergentili A, Piergentili A, Quaglia W, Gervasoni S, Vistoli G, Vittorio S, Del Bello F. New potent muscarinic receptor ligands bearing the 1,4-dioxane nucleus: Investigation on the nature of the substituent in position 2. Arch Pharm (Weinheim) 2024; 357:e2400337. [PMID: 39054609 DOI: 10.1002/ardp.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
A new series of muscarinic acetylcholine receptor (mAChR) ligands obtained by inserting different substituents in position 2 of the potent 6,6-diphenyl-1,4-dioxane antagonists 4 and 5 was designed and synthesized to investigate the influence of steric bulk on the mAChR affinity. Specifically, the insertion of a 2-methyl group, affording compounds 6 and 9, resulted as the most favorable modification in terms of affinity for all muscarinic subtypes. As supported by computational studies performed on the hM1 receptor, this substituent may contribute to stabilize the ligand within the binding site by favoring the formation of stable interactions between the cationic head of the ligand and the residue D105. The increase of steric bulk, obtained by replacing the methyl group with an ethyl (7 and 10) and especially a phenyl substituent (8 and 11), caused a marked decrease of mAChR affinity, demonstrating the crucial role played by the steric bulk of the 2-substituent in the mAChR interaction. The most intriguing result was obtained with the tertiary amine 9, which, surprisingly, showed two different pKi values for all mAChRs, with preferential subpicomolar affinities for the M1, M3, and M4 subtypes. Interestingly, biphasic curves were also observed with both the eutomer (S)-(-)-9 and the distomer (R)-( + )-9.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, USA
| | - Rosanna Matucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Firenze, Italy
| | - Federica Matteucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Alessandro Piergentili
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Alessia Piergentili
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Wilma Quaglia
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Fabio Del Bello
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| |
Collapse
|
3
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Nicoli A, Weber V, Bon C, Steuer A, Gustincich S, Gainetdinov RR, Lang R, Espinoza S, Di Pizio A. Structure-Based Discovery of Mouse Trace Amine-Associated Receptor 5 Antagonists. J Chem Inf Model 2023; 63:6667-6680. [PMID: 37847527 PMCID: PMC10647090 DOI: 10.1021/acs.jcim.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 10/18/2023]
Abstract
Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Verena Weber
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Institute
for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine
(INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany
- Faculty
of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062 Germany
| | - Carlotta Bon
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
| | - Alexandra Steuer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | | | - Raul R. Gainetdinov
- Institute
of Translational Biomedicine and Saint Petersburg University Hospital,
Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Roman Lang
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| | - Stefano Espinoza
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
- Dipartimento
di Scienze della Salute, Università
del Piemonte Orientale, 28100 Novara, Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| |
Collapse
|
5
|
Andreozzi G, Ambrosio MR, Magli E, Maneli G, Severino B, Corvino A, Sparaco R, Perissutti E, Frecentese F, Santagada V, Leśniak A, Bujalska-Zadrożny M, Caliendo G, Formisano P, Fiorino F. Design, Synthesis and Biological Evaluation of Novel N-Arylpiperazines Containing a 4,5-Dihydrothiazole Ring. Pharmaceuticals (Basel) 2023; 16:1483. [PMID: 37895954 PMCID: PMC10609883 DOI: 10.3390/ph16101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Arylpiperazines represent one of the most important classes of 5-HT1AR ligands and have attracted considerable interests for their versatile properties in chemistry and pharmacology, leading to the research of new derivatives that has been focused on the modification of one or more portions of such pharmacophore. An efficient protocol for the synthesis of novel thiazolinylphenyl-piperazines (2a-c) and the corresponding acetylated derivatives was used (3a-c). The new compounds were tested for their functional activity and affinity at 5-HT1A receptors, showing an interesting affinity profile with a Ki value of 412 nM for compound 2b. The cytotoxic activity of novel thiazolinylphenyl-piperazines (2a-c) and corresponding N-acetyl derivatives (3a-c) against human prostate and breast cancer cell lines (LNCAP, DU-145 and PC-3, MCF-7, SKBR-3 and MDA-MB231) was investigated according to the procedure described in the literature. The reported data showed a cytotoxic effect for 2a-c and 3a-c compounds (IC50 values ranging from 15 µM to 73 µM) on the investigated cancer cell lines, with no effect on noncancer cells. Future studies will be aimed to investigate the mechanism of action and therapeutic prospects of these new scaffolds.
Collapse
Affiliation(s)
- Giorgia Andreozzi
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Maria Rosaria Ambrosio
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy; (M.R.A.); (P.F.)
| | - Elisa Magli
- Dipartimento di Sanità Pubblica, Università di Napoli Federico II, Via Pansini, 5, 80131, Naples, Italy;
| | - Giovanni Maneli
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Beatrice Severino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Angela Corvino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Rosa Sparaco
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Elisa Perissutti
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Pietro Formisano
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy; (M.R.A.); (P.F.)
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Ferdinando Fiorino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| |
Collapse
|
6
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
7
|
Bonifazi A, Newman AH, Keck TM, Gervasoni S, Vistoli G, Del Bello F, Giorgioni G, Pavletić P, Quaglia W, Piergentili A. Scaffold Hybridization Strategy Leads to the Discovery of Dopamine D 3 Receptor-Selective or Multitarget Bitopic Ligands Potentially Useful for Central Nervous System Disorders. ACS Chem Neurosci 2021; 12:3638-3649. [PMID: 34529404 PMCID: PMC8498988 DOI: 10.1021/acschemneuro.1c00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
In the search for
novel bitopic compounds targeting the dopamine
D3 receptor (D3R), the N-(2,3-dichlorophenyl)piperazine
nucleus (primary pharmacophore) has been linked to the 6,6- or 5,5-diphenyl-1,4-dioxane-2-carboxamide
or the 1,4-benzodioxane-2-carboxamide scaffold (secondary pharmacophore)
by an unsubstituted or 3-F-/3-OH-substituted butyl chain. This scaffold
hybridization strategy led to the discovery of potent D3R-selective or multitarget ligands potentially useful for central
nervous system disorders. In particular, the 6,6-diphenyl-1,4-dioxane
derivative 3 showed a D3R-preferential profile,
while an interesting multitarget behavior has been highlighted for
the 5,5-diphenyl-1,4-dioxane and 1,4-benzodioxane derivatives 6 and 9, respectively, which displayed potent
D2R antagonism, 5-HT1AR and D4R agonism,
as well as potent D3R partial agonism. They also behaved
as low-potency 5-HT2AR antagonists and 5-HT2CR partial agonists. Such a profile might be a promising starting
point for the discovery of novel antipsychotic agents.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Amy H. Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Thomas M. Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milano 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milano 20133, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| |
Collapse
|
8
|
Domingo LR, Mazarei E, Seif A, Ríos-Gutiérez M, Zahedi E, Ahmadi TS. Closer Investigation of the Kinetics and Mechanism of Spirovinylcyclopropyl Oxindole Reaction with 3Σ -g-O 2 by Topological Approaches and Unraveling the Role of the I 2 Catalyst. J Phys Chem A 2021; 125:6913-6926. [PMID: 34369789 DOI: 10.1021/acs.jpca.1c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this investigation at the MN15L/Def2-TZVP level of theory, we present computational evidence indicating that the reaction of 3Σ-g-O2 with spirovinylcyclopropyl oxindole (2) leads to a product called spiro-1,2-dioxolane (2) in its singlet state; this reaction occurs via a stepwise mechanism and its rate-determining step is catalyzed by iodine radicals, which promotes opening of the three-membered ring under dark conditions. The conversion of 2 to 1-benzylindoline-2,3-dione (3) and 2-vinyloxirane (4) takes place via a concerted and slightly asynchronous reaction. Both electron localization function and AIM topological analysis reveal that the step associated with the attack of the 3Σ-g-O2 molecule on the intermediate 3MC characterizes the formation of the only new O2-C3 single bond, which occurs in a stepwise mechanism, in contrast to the Δg-O2 reaction with 15 species.
Collapse
Affiliation(s)
- Luis R Domingo
- Department of Organic Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Elham Mazarei
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Ahmad Seif
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran 14696-69191
| | - Mar Ríos-Gutiérez
- Department of Organic Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Ehsan Zahedi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran 36199-43189
| | - Temer S Ahmadi
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
9
|
Karmakar S, Lal G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Am J Cancer Res 2021; 11:5296-5312. [PMID: 33859748 PMCID: PMC8039959 DOI: 10.7150/thno.55986] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter known to affect emotion, behavior, and cognition, and its effects are mostly studied in neurological diseases. The crosstalk between the immune cells and the nervous system through serotonin and its receptors (5-HTRs) in the tumor microenvironment and the secondary lymphoid organs are known to affect cancer pathogenesis. However, the molecular mechanism of - alteration in the phenotype and function of - innate and adaptive immune cells by serotonin is not well explored. In this review, we discuss how serotonin and serotonin receptors modulate the phenotype and function of various immune cells, and how the 5-HT-5-HTR axis modulates antitumor immunity. Understanding how 5-HT and immune signaling are involved in tumor immunity could help improve therapeutic strategies to control cancer progression and metastasis.
Collapse
|
10
|
De A, Santra S, Khalymbadzha IA, Zyryanov GV, Majee A. A practicable synthesis of 2,3-disubstituted 1,4-dioxanes bearing a carbonyl functionality from α,β-unsaturated ketones using the Williamson strategy. Org Biomol Chem 2021; 19:1278-1286. [PMID: 33506239 DOI: 10.1039/d0ob01448f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have observed that a reagent combination of NaIO4 and NH2OH·HCl reacts with α,β-unsaturated ketones followed by the nucleophile ethylene glycol allowing the synthesis of 2,3-disubstituted 1,4-dioxanes using cesium carbonate as a base under Williamson ether synthesis. This reaction is useful for the synthesis of functionalized 1,4-dioxane having a carbonyl functionality. A variety of 2,3-disubstituted 1,4-dioxanes have been synthesized using these reaction conditions. A probable reaction mechanism has also been proposed.
Collapse
Affiliation(s)
- Aramita De
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | | | | | | | | |
Collapse
|
11
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
12
|
Itsumi M, Shiota M, Sekino Y, Ushijima M, Kashiwagi E, Takeuchi A, Inokuchi J, Kajioka S, Uchiumi T, Eto M. High-throughput screen identifies 5-HT receptor as a modulator of AR and a therapeutic target for prostate cancer. Prostate 2020; 80:885-894. [PMID: 32483877 DOI: 10.1002/pros.24022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Eradication of persistent androgen receptor (AR) activity in castration-resistant prostate cancer may be a promising strategy to overcome castration resistance. We aimed to identify novel compounds that inhibit AR activity and could be potential therapeutic agents for prostate cancer. METHODS A high-throughput screening system involving cell lines stably expressing AR protein and AR-responsive luciferase was employed for the 1260 compound library. Molecular and antitumor effects on candidate pathways that interacted with AR signaling were examined in prostate cancer cells expressing AR. RESULTS The high-throughput screening identified various potential compounds that interfered with AR signaling through known and novel pathways. Among them, a 5-hydroxytryptamine 5A (5-HT5A) receptor antagonist suppressed AR activity through protein kinase A signaling, which was confirmed by 5-HT5A receptor knockdown. Consistently, 5-HT5A receptor inhibitors showed cytotoxic effects toward prostate cancer cells. CONCLUSIONS Taken together, this study identifies 5-HT5A receptor as a promising therapeutic target for prostate cancer via its interaction with AR signaling.
Collapse
Affiliation(s)
- Momoe Itsumi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Del Bello F, Bonifazi A, Giorgioni G, Piergentili A, Sabbieti MG, Agas D, Dell'Aera M, Matucci R, Górecki M, Pescitelli G, Vistoli G, Quaglia W. Novel Potent Muscarinic Receptor Antagonists: Investigation on the Nature of Lipophilic Substituents in the 5- and/or 6-Positions of the 1,4-Dioxane Nucleus. J Med Chem 2020; 63:5763-5782. [PMID: 32374602 PMCID: PMC8007111 DOI: 10.1021/acs.jmedchem.9b02100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
A series
of novel 1,4-dioxane analogues of the muscarinic acetylcholine
receptor (mAChR) antagonist 2 was synthesized and studied
for their affinity at M1–M5 mAChRs. The
6-cyclohexyl-6-phenyl derivative 3b, with a cis configuration between the CH2N+(CH3)3 chain in the 2-position and the cyclohexyl moiety in
the 6-position, showed pKi values for
mAChRs higher than those of 2 and a selectivity profile
analogous to that of the clinically approved drug oxybutynin. The
study of the enantiomers of 3b and the corresponding
tertiary amine 33b revealed that the eutomers are (2S,6S)-(−)-3b and (2S,6S)-(−)-33b, respectively.
Docking simulations on the M3 mAChR-resolved structure
rationalized the experimental observations. The quaternary ammonium
function, which should prevent the crossing of the blood–brain
barrier, and the high M3/M2 selectivity, which
might limit cardiovascular side effects, make 3b a valuable
starting point for the design of novel antagonists potentially useful
in peripheral diseases in which M3 receptors are involved.
Collapse
Affiliation(s)
- Fabio Del Bello
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Bonifazi
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Maria Giovanna Sabbieti
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Dimitrios Agas
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Marzia Dell'Aera
- Istituto di Cristallografia IC-CNR, Via Amendola 122/o, 70126 Bari, Italy.,Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "A. Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Rosanna Matucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy.,Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 Street, 01-224 Warsaw, Poland
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Wilma Quaglia
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
14
|
Jiang SH, Hu LP, Wang X, Li J, Zhang ZG. Neurotransmitters: emerging targets in cancer. Oncogene 2019; 39:503-515. [PMID: 31527667 DOI: 10.1038/s41388-019-1006-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are conventionally viewed as nerve-secreted substances that mediate the stimulatory or inhibitory neuronal functions through binding to their respective receptors. In the past decades, many novel discoveries come to light elucidating the regulatory roles of neurotransmitters in the physiological and pathological functions of tissues and organs. Notably, emerging data suggest that cancer cells take advantage of the neurotransmitters-initiated signaling pathway to activate uncontrolled proliferation and dissemination. In addition, neurotransmitters can affect immune cells and endothelial cells in the tumor microenvironment to promote tumor progression. Therefore, a better understanding of the mechanisms underlying neurotransmitter function in tumorigenesis, angiogenesis, and inflammation is expected to enable the development of the next generation of antitumor therapies. Here, we summarize the recent important studies on the different neurotransmitters, their respective receptors, target cells, as well as pro/antitumor activity of specific neurotransmitter/receptor axis in cancers and provide perspectives and insights regarding the rationales and strategies of targeting neurotransmitter system to cancer treatment.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| |
Collapse
|