1
|
Wang J, Cheng Y, Fang L, Yang A, Luo F, Lu J, Ren J. Physicochemical properties, profile of volatiles, fatty acids, lipids and concomitants from four Kadsura coccinea seed oils. Food Chem X 2024; 23:101765. [PMID: 39280213 PMCID: PMC11402108 DOI: 10.1016/j.fochx.2024.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
The Kadsura coccinea fruit is a wild fruit that may be eaten and used medicinally. Its seeds are rich in nutrients but are typically thrown away without processing.The physicochemical characterization, volatiles, fatty acids, lipids and concomitants of cold-processed seed oils from four kinds of K. coccinea were evaluated. The average kernel yield and oil yield of K. coccinea seeds were 68.21 % and 30.44 %, respectively. The seed oil contains a moderate level of total phenolics (368.99-503.99 mgGAE/100 g), total flavonoids (95.01-126.18 mg RE/100 g), and β-sitosterol (1498.8-1712.7 mg/kg) with higher iodine value, lower acid value, saponification value and shorter induction time. GC analysis reveals appreciable amounts of linoleic acid (64.91-68.05 %) and squalene in seed oil. GC-MS analysis showed that the major volatile compounds were γ-muurolene (27.25-31.7 %), β-himachalene (19.51-20.37 %) and β-curcumene (15.78-16.78 %). Moreover, 16 terpenoids, 14 phenolics were identified by UPLC-QTOF-MS/MS. These results suggest that K. coccinea seed seems an promising alternative oilseed with biological ingredients for food, cosmetics and pharmaceutical industries.
Collapse
Affiliation(s)
- Jing Wang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingying Cheng
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Liying Fang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ao Yang
- Tongdao Nanchu Agricultural Development Co. LTD, Tongdao County, China
| | - Feijun Luo
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jun Lu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Choo MY, Khaw LWT, Chai CLL. Syntheses of Minutuminolate and Related Coumarin Natural Products and Evaluation of Their TNF-α Inhibitory Activities. ACS OMEGA 2023; 8:41785-41791. [PMID: 37970054 PMCID: PMC10633832 DOI: 10.1021/acsomega.3c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
The concise syntheses of the coumarin natural product, minutuminolate (1), and its related natural products, 7-methoxy-8-(2-acetoxy-3-methyl-1-oxobut-2-enyl) coumarin (2) and muralatin I (3), were accomplished for the first time in 4-5 steps from the commercially available umbelliferone. The key step involves a palladium-catalyzed oxidative rearrangement reaction to assemble the α-acyloxyenone moiety in 1 and 2. The incorporation of this functionality enables the successful synthesis of coumarin 3 through an acidic hydrolysis reaction. The anti-inflammatory activities of the compounds were also evaluated against tumor necrosis factor-alpha production in lipopolysaccharides-stimulated RAW264.7 cells. Our developed synthetic route will facilitate the development of analogues and derivatives of 1-3 with potent anti-inflammatory activities.
Collapse
Affiliation(s)
- Malcolm
Zheng Yuan Choo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Lachelle Wei Ting Khaw
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Liao W, Foo HYC, Tran TNQ, Chai CLL, Wong WSF. Calcaratarin D, a labdane diterpenoid, attenuates mouse asthma via modulating alveolar macrophage function. Br J Pharmacol 2023; 180:1056-1071. [PMID: 36440573 DOI: 10.1111/bph.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/04/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Alveolar macrophages (AMs) contribute to airway inflammation and remodelling in allergic asthma. Calcaratarin D (CalD), a labdane diterpenoid from rhizomes of the medicinal plant Alpinia calcarata, has recently been shown to possess anti-inflammatory properties. The present study evaluated protective effects of CalD in a house dust mite (HDM)-induced asthma mouse model. EXPERIMENTAL APPROACH The effects of CalD on AMs in contributing to anti-inflammatory effects in asthma were investigated through in vivo, ex vivo, and in vitro experiments. KEY RESULTS CalD reduced total bronchoalveolar lavage fluid and differential cell count, serum IgE levels, mucus hypersecretion, and airway hyperresponsiveness in HDM-challenged mice. Additionally, CalD affected a wide array of pro-inflammatory cytokines and chemokines and oxidative damage markers in isolated lung tissues. CalD suppressed the HDM-induced increase in Arg1 (M2 macrophage marker) in AMs from lung tissue and reduced lung polyamine levels. CalD weakened antigen presentation capability of AMs by reducing CD80 expression, reduced AM-derived CCL17 and CCL22 levels, and lessened Th2 cytokines from CD4+ T-cells from asthma lung digest. CalD blocked the HDM-induced FoxO1/IRF4 pathway and restored impaired the Nrf2/HO-1 antioxidant pathway in lung tissues. CalD inhibited IL-4/IL-13-stimulated JAK1/STAT6 pathway, FoxO1 protein expression, and chemokine production in primary AMs. Structure-activity relationship study revealed the α,β-unsaturated γ-butyrolactone in CalD is capable of forming covalent bonds with cellular protein targets essential for its action. CONCLUSION AND IMPLICATIONS Our results demonstrate for the first time that CalD is a novel anti-inflammatory natural compound for allergic asthma that modulates AM function.
Collapse
Affiliation(s)
- Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Hazel Yu Ci Foo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Thi Ngoc Quy Tran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore.,Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Christina Li Lin Chai
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Wai Shiu Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore.,Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore
| |
Collapse
|
4
|
Microwave‐Assisted Multicomponent Synthesis of New 6‐Arylated 5‐Hydroxy‐benzo[
a
]phenazine Derivatives and Their Potential Anti‐inflammatory Activity. ChemistrySelect 2023. [DOI: 10.1002/slct.202204376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Synthesis of novel γ-butyrolactone-based phenazine compounds via microwave-assisted multicomponent domino reactions. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Xia GY, Fang DJ, Wang LY, Xia H, Wang YN, Shang HC, Lin S. 13,13a-seco-protoberberines from the tubers of Corydalis yanhusuo and their anti-inflammatory activity. PHYTOCHEMISTRY 2022; 194:113023. [PMID: 34839130 DOI: 10.1016/j.phytochem.2021.113023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Six undescribed protoberberine derivatives including two pairs of enantiomers, named yanhusanines G-L, along with fifteen reported protoberberine alkaloids, were isolated from the tubers of Corydalis yanhusuo. Among them, yanhusanines H-L feature a unique 13,13a-seco skeleton which is rare in nature. Their structural elucidations were achieved by extensive spectroscopic analysis and quantum chemistry calculations. A biogenetic route for yanhusanines H-L was proposed. Bioassay results showed that yanhusanine J exhibited potent inhibitory effect against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells (IC50 = 2.25 ± 1.32 μM). Western blot analysis demonstrated that yanhusanine J exerted its anti-inflammatory effect via suppressing the nuclear factor kappa B (NF-κB) pathway, together with the decrease of the inflammatory factors TNF-α, IL-6 and IL-1β. Furthermore, molecular simulation docking indicated that yanhusanine J had strong interaction with the active site of the inducible nitric oxide synthase (iNOS) protein.
Collapse
Affiliation(s)
- Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Dong-Jie Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
7
|
Tran QTN, Lee RCH, Liu HJ, Ran D, Low VZL, To DQ, Chu JJH, Chai CLL. Discovery and development of labdane-oxindole hybrids as small-molecule inhibitors against chikungunya virus infection. Eur J Med Chem 2022; 230:114110. [DOI: 10.1016/j.ejmech.2022.114110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/17/2022]
|
8
|
Yamamoto Y, Tabuchi A, Hosono K, Ochi T, Yamazaki K, Kodama S, Nomoto A, Ogawa A. A two-phase bromination process using tetraalkylammonium hydroxide for the practical synthesis of α-bromolactones from lactones. Beilstein J Org Chem 2021; 17:2906-2914. [PMID: 34956409 PMCID: PMC8685563 DOI: 10.3762/bjoc.17.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
A simple and efficient method for α-brominating lactones that affords α-bromolactones under mild conditions using tetraalkylammonium hydroxide (R4N+OH-) as a base was developed. Lactones are ring-opened with Br2 and a substoichiometric amount of PBr3, leading to good yields of the corresponding α-bromocarboxylic acids. Subsequent intramolecular cyclization over 1 h using a two-phase system (H2O/CHCl3) containing R4N+OH- afforded α-bromo lactones in good yields. This method can be applied at the 10 mmol scale using simple operations. α-Bromo-δ-valerolactone, which is extremely reactive and difficult to isolate, could be isolated and stored in a freezer for about one week using the developed method. Optimizing the solvent for environmentally friendly large-scale syntheses revealed that methyl ethyl ketone (MEK) was as effective. In addition, in situ-generated α-bromo-δ-valerolactone was directly converted into a sulfur-substituted functional lactone without difficulty by reacting it with a sulfur nucleophile in one pot without isolation. This new bromination system is expected to facilitate the industrial use of α-bromolactones as important intermediates.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Tabuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kazumi Hosono
- Nippoh Chemicals Co., Ltd. Neo Kawai Building, 8-15,4-Chome, Nihonbashi-Honchou, Chuo-Ku, Tokyo 103-0023, Japan
| | - Takanori Ochi
- Nippoh Chemicals Co., Ltd. Neo Kawai Building, 8-15,4-Chome, Nihonbashi-Honchou, Chuo-Ku, Tokyo 103-0023, Japan
| | - Kento Yamazaki
- Nippoh Chemicals Co., Ltd. Neo Kawai Building, 8-15,4-Chome, Nihonbashi-Honchou, Chuo-Ku, Tokyo 103-0023, Japan
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
10
|
Xia H, Liu Y, Xia G, Liu Y, Lin S, Guo L. Novel Isoquinoline Alkaloid Litcubanine A - A Potential Anti-Inflammatory Candidate. Front Immunol 2021; 12:685556. [PMID: 34163484 PMCID: PMC8215673 DOI: 10.3389/fimmu.2021.685556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a critical role in innate and adaptive immunity, and the regulation of macrophage function in inflammatory disease treatment has been widely studied. Litsea cubeba is an important Chinese medicinal plant used for the treatment of inflammatory diseases. However, the inflammatory bioactive ingredients in L. cubeba and underlying molecular mechanisms are poorly understood. Herein, we first obtained and elucidated a novel isoquinoline alkaloid, Litcubanine A (LA), from L. cubeba. An in vitro study indicated that LA could significantly inhibit LPS-induced activation of inflammatory macrophages via the NF-κB pathway, leading to the decrease of inflammatory factors including iNOS, TNF-α, and IL-1β. Moreover, LA showed an inhibiting effect on the expression of NO in macrophages by directly binding to iNOS protein. Molecular simulation docking also demonstrated that active LA created an interaction with GLU 371 residue of iNOS via attractive charge derived from the N→O group, revealing its highly selective inhibition toward iNOS. By using the IκK inhibitor and iNOS inhibitor, these two regulatory targets of LA on inflammatory macrophages were verified in vitro. Finally, by using a caudal fin resection model in zebrafish larvae, and the skin wound healing model in mice, we proved in vivo that LA down-regulated the secretion of local inflammatory factors by inhibiting macrophage recruitment and activation at the early stage of the injury. Collectively, our study demonstrated that the novel isoquinoline alkaloid LA suppresses LPS-induced activation of inflammatory macrophages by modulating the NF-κB pathway, suggesting that inflammatory macrophage activation pathway is an effective target for inflammation treatment, and LA is a new pharmacophore for the development of novel and effective anti-inflammatory agents to regulate local macrophages.
Collapse
Affiliation(s)
- Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Andrographolide attenuates synovial inflammation of osteoarthritis by interacting with tumor necrosis factor receptor 2 trafficking in a rat model. J Orthop Translat 2021; 29:89-99. [PMID: 34094861 PMCID: PMC8144533 DOI: 10.1016/j.jot.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Synovial inflammation plays a major role in the pathogenesis of osteoarthritis (OA). This study investigated the effect of andrographolide (Andro) on synovial inflammation mediated by tumor necrosis factor-alpha receptor 2 (TNFR2) trafficking and its utility in attenuating OA progression. Methods Knee joints were harvested from rats subjected to radial transection of the medial collateral ligament (MCLT) and medial meniscus (MMT) to examine the effect of Andro on synovial inflammation and OA progression. Quantitative real-time polymerase chain reaction was used to evaluate the expression of inflammatory factors in primary fibroblast-like synoviocytes (FLSs) after Andro treatment in vitro. The mechanism underlying Andro-mediated regulation of TNFR2 distribution and nuclear factor-κB (NF-κB) expression was verified using endosome maturation inhibitor hydroxychloroquine (HCQ) through flow cytometry, immunofluorescence, and western blot analysis. Results Andro treatment was found to reduce synovial inflammation and OA progression in vivo. Furthermore, a decrease in pain hypersensitivity and dorsal horn neuron activation was observed after treatment. Andro also downregulated the expression of inflammatory mediators and TNFR2 in FLSs. TNFR2 is crucial for the activation of the NF-κB signaling pathway, and Andro-induced degradation of TNFR2 was associated with lysosomal function, which in turn, reduced the downstream phosphorylation of p65 in the NF-κB signaling pathway. Conclusions Andro could suppress synovial inflammation via regulation of TNFR2 trafficking and degradation. This also suggests it could be a potential treatment for the prevention of synovial inflammation and OA progression. The translational potential of this article This study provides strong evidence that Andro reduces NF-κB activation and inflammatory responses in OA FLSs via regulation of TNFR2 trafficking. The inhibition of TNFR2 and Andro could be a novel therapeutic approach for OA and pain management.
Collapse
|
12
|
Assani I, Du Y, Wang CG, Chen L, Hou PL, Zhao SF, Feng Y, Liu LF, Sun B, Li Y, Liao ZX, Huang RZ. Anti-proliferative effects of diterpenoids from Sagittaria trifolia L. tubers on colon cancer cells by targeting the NF-κB pathway. Food Funct 2021; 11:7717-7726. [PMID: 32789317 DOI: 10.1039/d0fo00228c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new labdane-type diterpenoid, ent-19-ol-13-epi-manoyl oxide,19-undecane ester, together with ten known diterpenes, were isolated from the ethanolic crude extract of the fresh tubers of Sagittaria trifolia L. The chemical structures of these compounds were determined by extensive 2-D NMR experiments and by comparison with the data reported in the literature. These compounds showed different inhibitory effects on various human cancer cells. Among these, compound 11 exhibited potential inhibition effects against human colon cancer cells. Moreover, flow cytometry demonstrated that compound 11 arrested the cell cycle at the G1 phase and induced cellular apoptosis, accompanied by mitochondrial membrane potential reduction. Mechanistic studies revealed that treatment with compound 11 inhibited IKKα/β phosphorylation and IκBα phosphorylation, which subsequently caused the blockage of NF-κB p65 phosphorylation and nuclear translocation. Compound 11 also inhibited the expression of c-Myc, Cyclin D1, and Bcl-2, the downstream targets of NF-κB. Therefore, our findings provided insight into the anticancer components of Sagittaria trifolia L. tubers, which could facilitate their utilization as functional food ingredients.
Collapse
Affiliation(s)
- Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Ying Du
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Chun-Gu Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Lei Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Pei-Lei Hou
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shi-Feng Zhao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Yan Feng
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Ling-Fei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Bo Sun
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Yan Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Ri-Zhen Huang
- College of Biotechnology, Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
13
|
Hur J, Jang J, Sim J. A Review of the Pharmacological Activities and Recent Synthetic Advances of γ-Butyrolactones. Int J Mol Sci 2021; 22:2769. [PMID: 33803380 PMCID: PMC7967234 DOI: 10.3390/ijms22052769] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
γ-Butyrolactone, a five-membered lactone moiety, is one of the privileged structures of diverse natural products and biologically active small molecules. Because of their broad spectrum of biological and pharmacological activities, synthetic methods for γ-butyrolactones have received significant attention from synthetic and medicinal chemists for decades. Recently, new developments and improvements in traditional methods have been reported by considering synthetic efficiency, feasibility, and green chemistry. In this review, the pharmacological activities of natural and synthetic γ-butyrolactones are described, including their structures and bioassay methods. Mainly, we summarize recent advances, occurring during the past decade, in the construction of γ-butyrolactone classified based on the bond formation in γ-butyrolactone between (i) C5-O1 bond, (ii) C4-C5 and C2-O1 bonds, (iii) C3-C4 and C2-O1 bonds, (iv) C3-C4 and C5-O1 bonds, (v) C2-C3 and C2-O1 bonds, (vi) C3-C4 bond, and (vii) C2-O1 bond. In addition, the application to the total synthesis of natural products bearing γ-butyrolactone scaffolds is described.
Collapse
Affiliation(s)
- Joonseong Hur
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung 25451, Korea;
| | - Jaebong Jang
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Nicolella HD, Fernandes G, Ozelin SD, Rinaldi-Neto F, Ribeiro AB, Furtado RA, Senedese JM, Esperandim TR, Veneziani RCS, Tavares DC. Manool, a diterpene from Salvia officinalis, exerts preventive effects on chromosomal damage and preneoplastic lesions. Mutagenesis 2021; 36:177-185. [PMID: 33512444 DOI: 10.1093/mutage/geab001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/12/2021] [Indexed: 11/14/2022] Open
Abstract
The present study aimed to evaluate the effect of the manool diterpene on genomic integrity. For this purpose, we evaluated the influence of manool on genotoxicity induced by mutagens with different mechanisms of action, as well as on colon carcinogenesis. The results showed that manool (0.5 and 1.0 µg/ml) significantly reduced the frequency of micronuclei induced by doxorubicin (DXR) and hydrogen peroxide in V79 cells but did not influence genotoxicity induced by etoposide. Mice receiving manool (1.25 mg/kg) exhibited a significant reduction (79.5%) in DXR-induced chromosomal damage. The higher doses of manool (5.0 and 20 mg/kg) did not influence the genotoxicity induced by DXR. The anticarcinogenic effect of manool (0.3125, 1.25 and 5.0 mg/kg) was also observed against preneoplastic lesions chemically induced in rat colon. A gradual increase in manool doses did not cause a proportional reduction of preneoplastic lesions, thus demonstrating the absence of a dose-response relationship. The analysis of serum biochemical indicators revealed the absence of hepatotoxicity and nephrotoxicity of treatments. To explore the chemopreventive mechanisms of manool via anti-inflammatory pathways, we evaluated its effect on nitric oxide (NO) production and on the expression of the NF-kB gene. At the highest concentration tested (4 μg/ml), manool significantly increased NO production when compared to the negative control. On the other hand, in the prophylactic treatment model, manool (0.5 and 1.0 μg/ml) was able to significantly reduce NO levels produced by macrophages stimulated with lipopolysaccharide. Analysis of NF-kB in hepatic and renal tissues of mice treated with manool and DXR revealed that the mutagen was unable to stimulate expression of the gene. In conclusion, manool possesses antigenotoxic and anticarcinogenic effects and its anti-inflammatory potential might be related, at least in part, to its chemopreventive activity.
Collapse
Affiliation(s)
- Heloiza Diniz Nicolella
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Gabriela Fernandes
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Saulo Duarte Ozelin
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Francisco Rinaldi-Neto
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Arthur Barcelos Ribeiro
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Ricardo Andrade Furtado
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Juliana Marques Senedese
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Tábata Rodrigues Esperandim
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Rodrigo Cassio Sola Veneziani
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| | - Denise Crispim Tavares
- Mutagenesis Laboratory, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201 - Parque Universitário, 14404-600 Franca, São Paulo, Brazil
| |
Collapse
|
15
|
Bailly C. Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol Res Pract 2020; 216:152946. [DOI: 10.1016/j.prp.2020.152946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|
16
|
Adamkiewicz A, Węglarz I, Butkiewicz A, Woyciechowska M, Mlynarski J. Lewis Acid‐Catalyzed Stereoselective α‐Addition of Chiral Aldehydes to Cyclic Dienol Silanes: Aqueous Synthesis of Chiral Butenolides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Adamkiewicz
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Izabela Węglarz
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 Warsaw Poland
| | - Aleksandra Butkiewicz
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 Warsaw Poland
| | - Marta Woyciechowska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 Warsaw Poland
| |
Collapse
|