1
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Pirani E, Paparoditis P, Pecoraro M, Danelon G, Thelen M, Cecchinato V, Uguccioni M. Tumor cells express and maintain HMGB1 in the reduced isoform to enhance CXCR4-mediated migration. Front Immunol 2024; 15:1358800. [PMID: 38803493 PMCID: PMC11128625 DOI: 10.3389/fimmu.2024.1358800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
During inflammation and tissue regeneration, the alarmin High Mobility Group Box 1 (HMGB1), in its reduced isoform, enhances the activity of the chemokine CXCL12, forming a heterocomplex that acts via the chemokine receptor CXCR4. Despite the established roles of both HMGB1 and CXCL12 in tumor progression and metastatic spread to distal sites, the role of the CXCL12/HMGB1 heterocomplex in cancer has never been investigated. By employing a newly established mass spectrometry protocol that allows an unambiguous distinction between reduced (red-HMGB1) and oxidized (ox-HMGB1) HMGB1 isoforms in cell lysates, we demonstrate that human epithelial cells derived from breast (MCF-7 and MDA-MB-231) and prostate (PC-3) cancer predominantly express red-HMGB1, while primary CD3+ T lymphocytes from peripheral blood express both HMGB1 isoforms. All these cancer cells release HMGB1 in the extracellular microenvironment together with varying concentrations of thioredoxin and thioredoxin reductase. The CXCL12/HMGB1 heterocomplex enhances, via CXCR4, the directional migration and invasiveness of cancer cells characterized by high metastatic potential that possess a fully active thioredoxin system, contributing to maintain red-HMGB1. On the contrary, cancer cells with low metastatic potential, lack thioredoxin reductase, promptly uptake CXCL12 and fail to respond to the heterocomplex. Our study demonstrates that the responsiveness of cancer cells to the CXCL12/HMGB1 heterocomplex, resulting in enhanced cell migration and invasiveness, depends on the maintenance of HMGB1 in its reduced isoform, and suggests disruption of the heterocomplex as a potential therapeutic target to inhibit invasion and metastatic spread in cancer therapies.
Collapse
|
3
|
Nikitjuka A, Ozola M, Krims-Davis K, Žalubovskis R. Design, Synthesis, and Bioactivity Evaluations of 3-Methylenechroman-2-one Derivatives as Thioredoxin Reductase (TrxR) Inhibitors. ChemMedChem 2024; 19:e202300504. [PMID: 38063319 DOI: 10.1002/cmdc.202300504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Indexed: 02/03/2024]
Abstract
We aimed to design and synthesize 3-methylenechroman-2-one derivatives and test their potency as TrxR1 inhibitors. A convenient and easy-to-handle synthetic approach to 3-methylenechroman-2-ones was developed. The in vitro inhibitory activity towards recombinant TrxR1 was determined for the obtained compounds. The most potent representatives exhibited submicromolar TrxR1 inhibition activity (IC50 varied from 0.29 μM to 10.2 μM). Structure-activity relationship analysis indicates the beneficial role of the substituent at the position C-6 of the core of chroman-2-one, where the derivatives containing halogen are the most active among the scope of compounds obtained. The most potent TrxR1 inhibitor of the series was further examined in in vitro cell-based assays to assess cytotoxic effects on various cancer cell lines, and to evaluate their influence on cell apoptosis.
Collapse
Affiliation(s)
- Anna Nikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Melita Ozola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
- Faculty of Pharmacy, Rīga Stradiņš University, Konsula 21, 1007, Riga, Latvia
| | | | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
| |
Collapse
|
4
|
Nikitjuka A, Ozola M, Jackevica L, Bobrovs R, Žalubovskis R. Exploration of 3,4-unsubstituted coumarins as thioredoxin reductase 1 inhibitors for cancer therapy. Org Biomol Chem 2023; 21:9630-9639. [PMID: 38018884 DOI: 10.1039/d3ob01522j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Coumarin and its derivatives have emerged as promising candidates in drug discovery. While the activity of coumarins as anticancer agents with different biological targets has been thoroughly investigated, reports on the potential of coumarins in the inhibition of thioredoxin reductase (TrxR) are still scarce. We focus on the design and synthesis of 3,4-unsubstituted coumarin analogues with systematic incorporation of substituents at the fifth to eighth positions of coumarin, which allowed definitive structure-activity relationship analysis to be conducted. In the obtained library, the substitution at the sixth position of the coumarin core with an aromatic or a cyclopropyl group turned out to be more activity enhancing. A bulky aromatic substituent with a large CF3 group encourages ligand alignment in a manner that enables covalent bond formation with the catalytic TrxR1 residue, according to the docking results. Our observations indicate that the activity of a series of coumarin analogues towards thioredoxin reductase 1 (TrxR1) is dependent on the nature (size and electronic effect) and the position of the substituent and more importantly - the accessibility of the Michael acceptor functionality. Several compounds (with at least 90% inhibition of the rat TrxR1 enzyme at 200 μM concentration) were further examined in in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines. The analogue 6-(4-(trifluoromethyl)phenyl)-2H-chromen-2-one was selected as the lead compound for further optimization. The results presented herein pave the way for the development of the next generation of coumarin-based TrxR1 inhibitors, where modification of the Michael acceptor moiety and incorporation of different aryl substituents at the sixth position of the coumarin core are planned.
Collapse
Affiliation(s)
- A Nikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - M Ozola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - L Jackevica
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - R Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - R Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, LV-1048 Riga, Latvia.
| |
Collapse
|
5
|
Nikitjuka A, Krims-Davis K, Kaņepe-Lapsa I, Ozola M, Žalubovskis R. May 1,2-Dithiolane-4-carboxylic Acid and Its Derivatives Serve as a Specific Thioredoxin Reductase 1 Inhibitor? Molecules 2023; 28:6647. [PMID: 37764424 PMCID: PMC10535816 DOI: 10.3390/molecules28186647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Thioredoxin reductase is an essential enzyme that plays a crucial role in maintaining cellular redox homeostasis by catalyzing the reduction of thioredoxin, which is involved in several vital cellular processes. The overexpression of TrxR is often associated with cancer development. A series of 1,2-dithiolane-4-carboxylic acid analogs were obtained to verify the selectivity of 1,2-dithiolane moiety toward TrxR. Asparagusic acid analogs and their bioisoters remain inactive toward TrxR, which proves the inability of the 1,2-dithiolane moiety to serve as a pharmacophore during the interaction with TrxR. It was found that the Michael acceptor functionality-containing analogs exhibit higher inhibitory effects against TrxR compared to other compounds of the series. The most potent representatives exhibited micromolar TrxR1 inhibition activity (IC50 varied from 5.3 to 186.0 μM) and were further examined with in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines and cell death mechanisms.
Collapse
Affiliation(s)
- Anna Nikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Kristaps Krims-Davis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Iveta Kaņepe-Lapsa
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Melita Ozola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, LV-1048 Riga, Latvia
| |
Collapse
|
6
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
7
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
8
|
Ingold M, de la Sovera V, Dapueto R, Hernández P, Porcal W, López GV. Greener Synthesis of Antiproliferative Furoxans via Multicomponent Reactions. Molecules 2022; 27:1756. [PMID: 35335119 PMCID: PMC8955377 DOI: 10.3390/molecules27061756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate and bladder cancers are commonly diagnosed malignancies in men. Several nitric oxide donor compounds with strong antitumor activity have been reported. Thus, continuing with our efforts to explore the chemical space around bioactive furoxan moiety, multicomponent reactions were employed for the rapid generation of molecular diversity and complexity. We herein report the use of Ugi and Groebke-Blackburn-Bienaymé multicomponent reactions under efficient, safe, and environmentally friendly conditions to synthesize a small collection of nitric-oxide-releasing molecules. The in vitro antiproliferative activity of the synthesized compounds was measured against two different human cancer cell lines, LNCaP (prostate) and T24 (bladder). Almost all compounds displayed antiproliferative activity against both cancer cell lines, providing lead compounds with nanomolar GI50 values against the cancer bladder cell line with selectivity indices higher than 10.
Collapse
Affiliation(s)
- Mariana Ingold
- Laboratorio de Desarrollo de Fármacos y Biología Vascular, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; (M.I.); (V.d.l.S.)
| | - Victoria de la Sovera
- Laboratorio de Desarrollo de Fármacos y Biología Vascular, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; (M.I.); (V.d.l.S.)
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo 11800, Uruguay
| | - Rosina Dapueto
- I + D Biomédico, Centro Uruguayo de Imagenología Molecular, Montevideo 11600, Uruguay;
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Williams Porcal
- Laboratorio de Desarrollo de Fármacos y Biología Vascular, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; (M.I.); (V.d.l.S.)
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo 11800, Uruguay
| | - Gloria V. López
- Laboratorio de Desarrollo de Fármacos y Biología Vascular, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; (M.I.); (V.d.l.S.)
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo 11800, Uruguay
| |
Collapse
|
9
|
Campos-Sandoval JA, Gómez-García MC, Santos-Jiménez JDL, Matés JM, Alonso FJ, Márquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochem Int 2021; 149:105136. [PMID: 34274381 DOI: 10.1016/j.neuint.2021.105136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains one of the most challenging and devastating cancers, with only a very small proportion of patients achieving 5-year survival. The current standard of care consists of surgery, followed by radiation therapy with concurrent and maintenance chemotherapy with the alkylating agent temozolomide. To date, this drug is the only one that provides a significant survival benefit, albeit modest, as patients end up acquiring resistance to this drug. As a result, tumor progression and recurrence inevitably occur, leading to death. Several factors have been proposed to explain this resistance, including an upregulated antioxidant system to keep the elevated intracellular ROS levels, a hallmark of cancer cells, under control. In this review, we discuss the mechanisms of chemoresistance -including the important role of glioblastoma stem cells-with emphasis on antioxidant defenses and how agents that impair redox balance (i.e.: sulfasalazine, erastin, CB-839, withaferin, resveratrol, curcumin, chloroquine, and hydroxychloroquine) might be advantageous in combined therapies against this type of cancer.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - María C Gómez-García
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José M Matés
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco J Alonso
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
10
|
Shi L, Gao LL, Cai SZ, Xiong QW, Ma ZR. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem 2021; 221:113528. [PMID: 34020339 DOI: 10.1016/j.ejmech.2021.113528] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Naturally occurring polyphenol curcumin (4) or demethoxycurcumin (5) and their synthetic derivatives display promising anticancer activities. However, their further development is limited by low bioavailability and poor selectivity. Thus, a mitochondria-targeted compound 14 (DMC-TPP) was prepared in the present study by conjugating a triphenylphosphine moiety to the phenolic hydroxyl group of demethoxycurcumin to enhance its bioavailability and treatment efficacy. The in vitro biological experiments of DMC-TPP showed that it not only displayed higher cytotoxicity as compared with its parent compound 5, but also exhibited superior mitochondria accumulation ability. Glioma cells were more sensitive to DMC-TPP, which inhibited the proliferation of U251 cells with an IC50 of 0.42 μM. The mechanism studies showed that DMC-TPP triggers mitochondria-dependent apoptosis, caused by caspase activation, production of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP). In addition, DMC-TPP efficiently inhibited cellular thioredoxin reductase, which contributed to its cytotoxicity. Significantly, DMC-TPP delayed tumor progression in a mouse xenograft model of human glioma cancer. Taken together, the potent in vitro and in vivo antitumor activity of DMC-TPP warrant further comprehensive evaluation as a novel anti-glioma agent.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, First People's Hospital of Kunshan, Suzhou, 215300, PR China
| | - Li-Li Gao
- Department of Oncology, The People's Hospital of Funing County in Yancheng City, Yancheng, 224400, Jiang Su, PR China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Suzhou, 215021, PR China.
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China.
| |
Collapse
|
11
|
Dar'in D, Kantin G, Chupakhin E, Sharoyko V, Krasavin M. Natural-Like Spirocyclic Δ α,β -Butenolides Obtained from Diazo Homophthalimides. Chemistry 2021; 27:8221-8227. [PMID: 33848018 DOI: 10.1002/chem.202100880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 01/07/2023]
Abstract
α-Diazo homophotalimides were reacted with various propiolic acids on Rh2 (esp)2 catalysis. The resulting propiolate esters were transformed into novel, heterocyclic Δα,β -spirobutenolides in good to excellent product yields. The approach represents a fundamentally novel entry into natural-like Δα,β -spirobutenolides present in many biologically active natural products as well as fully synthetic compounds endowed with diverse biological activities. The Δα,β -spirobutenolides thus obtained were shown to inhibit thioredoxin reductase, a selenocysteine enzyme target for cancer. Moreover, for the best compound in the series (TrxR IC50 1.49±0.08 μM), by using MALDI-TOF mass-spectrometry it was shown that it selectively binds selenocysteine in the presence of a 10-fold excess of cysteine. This validates the new compound as a promising lead for anticancer therapy development.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Chair of Natural Products Chemistry, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Grigory Kantin
- Chair of Natural Products Chemistry, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Evgeny Chupakhin
- Chair of Natural Products Chemistry, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation.,Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russian Federation
| | - Vladimir Sharoyko
- Chair of Natural Products Chemistry, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation.,Laboratory for Cell Biotechnology, Saint Petersburg State Institute of Technology (University), Saint Petersburg, 190013, Russian Federation
| | - Mikhail Krasavin
- Chair of Natural Products Chemistry, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation.,Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russian Federation
| |
Collapse
|
12
|
Chupakhin E, Krasavin M. Thioredoxin reductase inhibitors: updated patent review (2017-present). Expert Opin Ther Pat 2021; 31:745-758. [PMID: 33666133 DOI: 10.1080/13543776.2021.1899160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Thioredoxin reductase (TrxR) is a selenocysteine-containing enzyme which is responsible - as a part of the thioredoxin system - for maintaining redox homeostasis in cells. It is upregulated in cancerous state as a defense against oxidative stress. TrxR has been mostly considered an anticancer drug target although it has applications in other therapeutic areas such as neurodegeneration, inflammation, microbial infections, and neonatal hyperoxic lung injury.Areas covered: The present review covers the patent literature that appeared in the period 2017-2020, i.e. since the publication of the previous expert opinion patent review on TrxR inhibitors. The recent additions to the following traditional classes of inhibitors are discussed: metal complexes, Michael acceptors as well as arsenic and selenium compounds. At the same time, a novel group of nitro (hetero)aromatic compounds have emerged which likely acts via covalent inhibition mechanism. Several miscellaneous chemotypes are grouped under Miscellaneous subsection.Expert opinion: While specificity over glutathione reductase is achieved easily, TrxR is still moving toward the later stages of development at a very slow rate. Michael acceptors, particularly based on TRXR substrate-mimicking scaffolds, are gaining impetus and so are dual and hybrid compounds. The development prospects of the emerging nitro (hetero)aromatic chemotypes remain uncertain.
Collapse
Affiliation(s)
- Evgeny Chupakhin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| |
Collapse
|
13
|
Synthesis of Chromeno[3,4- b]piperazines by an Enol-Ugi/Reduction/Cyclization Sequence. Molecules 2021; 26:molecules26051287. [PMID: 33673443 PMCID: PMC7956738 DOI: 10.3390/molecules26051287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022] Open
Abstract
Keto piperazines and aminocoumarins are privileged building blocks for the construction of geometrically constrained peptides and therefore valuable structures in drug discovery. Combining these two heterocycles provides unique rigid polycyclic peptidomimetics with drug-like properties including many points of diversity that could be modulated to interact with different biological receptors. This work describes an efficient multicomponent approach to condensed chromenopiperazines based on the novel enol-Ugi reaction. Importantly, this strategy involves the first reported post-condensation transformation of an enol-Ugi adduct.
Collapse
|
14
|
Abstract
One of the systems responsible for maintaining cellular redox homeostasis is the thioredoxin-dependent system. An equally important function of this system is the regulation of the expression of many proteins by the transcription factor NF-κB or the apoptosis regulating kinase (ASK-1). Since it has been shown that the Trx-dependent system can contribute to both the enhancement of tumour angiogenesis and growth as well as apoptosis of neoplastic cells, the search for compounds that inhibit the level/activity of Trx and/or TrxR and thus modulate the course of the neoplastic process is ongoing. It has been shown that many naturally occurring polyphenolic compounds inactivate elements of the thioredoxin system. In addition, the effectiveness of Trx is inhibited by imidazole derivatives, while the activity of TrxR is reduced by transition metal ions complexes, dinitrohalobenzene derivatives, Michael acceptors, nitrosourea and ebselen. In addition, research is ongoing to identify new selective Trx/TrxR inhibitors.
Collapse
Affiliation(s)
- Anna Jastrząb
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Dar'in D, Kantin G, Bakulina O, Inyutina A, Chupakhin E, Krasavin M. Spirocyclizations Involving Oxonium Ylides Derived from Cyclic α-Diazocarbonyl Compounds: An Entry into 6-Oxa-2-azaspiro[4.5]decane Scaffold. J Org Chem 2020; 85:15586-15599. [PMID: 33226243 DOI: 10.1021/acs.joc.0c02356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New types of cyclic diazo compounds capable of Rh(II)-catalyzed spirocyclizations with tetrahydrofuran have been discovered. The formation of the spirocyclic framework is thought to proceed via the formation of Rh(II) carbene species followed by interaction with the Lewis basic oxygen atom of tetrahydrofuran to give oxonium ylide species. The latter evolves predominantly via the Stevens type rearrangement leading to an [n + 1] ring expansion of the tetrahydrofuran moiety, which results in the formation of a medicinally relevant 6-oxa-2-azaspiro[4.5]decane scaffold. The spirocyclization process was often observed in competition with mechanistically distinct C-H insertion into a tetrahydrofuran molecule. This competing process gave compounds based on the 3-(tetrahydrofur-2-yl)pyrrolidine scaffold, which are also relevant from the medicinal chemistry standpoint. These findings enrich the available arsenal of metal-catalyzed spirocyclization methods based on the use of cyclic diazo compounds.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034 Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg, 199034 Russian Federation
| | - Olga Bakulina
- Saint Petersburg State University, Saint Petersburg, 199034 Russian Federation
| | - Anna Inyutina
- Saint Petersburg State University, Saint Petersburg, 199034 Russian Federation
| | - Evgeny Chupakhin
- Saint Petersburg State University, Saint Petersburg, 199034 Russian Federation.,Immanuel Kant Baltic Federal University, Kaliningrad 236041 Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034 Russian Federation.,Immanuel Kant Baltic Federal University, Kaliningrad 236041 Russian Federation
| |
Collapse
|
16
|
Krasavin M, Sharonova T, Sharoyko V, Zhukovsky D, Kalinin S, Žalubovskis R, Tennikova T, Supuran CT. Combining carbonic anhydrase and thioredoxin reductase inhibitory motifs within a single molecule dramatically increases its cytotoxicity. J Enzyme Inhib Med Chem 2020; 35:665-671. [PMID: 32131646 PMCID: PMC7067156 DOI: 10.1080/14756366.2020.1734800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hypothesis that simultaneous targeting cancer-related carbonic anhydrase hCA IX and hCA XII isoforms (whose overexpression is a cancer cell’s defence mechanism against hypoxia) along with thioredoxin reductase (overexpressed in cancers as a defence against oxidative stress) may lead to synergistic antiproliferative effects was confirmed by testing combinations of the two inhibitor classes against pancreatic cancer cells (PANC-1). Combining both pharmacophoric motifs within one molecule led to a sharp increase of cytotoxicity. This preliminary observation sets the ground for a fundamentally new approach to anticancer agent design.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Tatiana Sharonova
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Daniil Zhukovsky
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Tatiana Tennikova
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
17
|
Jovanović M, Dragoj M, Zhukovsky D, Dar'in D, Krasavin M, Pešić M, Podolski-Renić A. Novel TrxR1 Inhibitors Show Potential for Glioma Treatment by Suppressing the Invasion and Sensitizing Glioma Cells to Chemotherapy. Front Mol Biosci 2020; 7:586146. [PMID: 33134322 PMCID: PMC7573255 DOI: 10.3389/fmolb.2020.586146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
Currently, available glioblastoma (GBM) treatment remains ineffective, with relapse after initial response and low survival rate of GBM patients. The reasons behind limited capacities for GBM treatment are high tumor heterogeneity, invasiveness, and occurrence of drug resistance. Therefore, developing novel therapeutic strategies is of utmost importance. Thioredoxin reductase (TrxR) is a novel, promising target due to its overexpression in many cancer types and important role in cancer progression. Previous research on Ugi-type Michael acceptors–inhibitors of TrxR showed desirable anticancer properties, with significant selectivity toward cancer cells. Herein, two TrxR inhibitors, 5 and 6, underwent in-depth study on multidrug-resistant (MDR) glioma cell lines. Besides the antioxidative effects, 5 and 6 induced cell death, decreased cell proliferation, and suppressed invasion and migration of glioma cells. Both compounds showed a synergistic effect in combination with temozolomide (TMZ), a first-line chemotherapeutic for GBM treatment. Moreover, 5 and 6 affected activity of P-glycoprotein extrusion pump that could be found in cancer cells and in the blood–brain barrier (BBB), thus showing potential for suppressing MDR phenotype in cancer cells and evading BBB. In conclusion, investigated TrxR inhibitors are effective anticancer compounds, acting through inhibition of the thioredoxin system and perturbation of antioxidative defense systems of glioma cells. They are suitable for combining with other chemotherapeutics, able to surpass the BBB and overcome MDR. Thus, our findings suggest further exploration of Ugi-type Michael acceptors–TrxR inhibitors’ potential as an adjuvant therapy for GBM treatment.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Daniil Zhukovsky
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Krasavin M, Žalubovskis R, Grandāne A, Domračeva I, Zhmurov P, Supuran CT. Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/XII and of human thioredoxin reductase. J Enzyme Inhib Med Chem 2020; 35:506-510. [PMID: 31928252 PMCID: PMC7006680 DOI: 10.1080/14756366.2020.1712596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Aiga Grandāne
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Petr Zhmurov
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
19
|
Jovanović M, Zhukovsky D, Podolski-Renić A, Žalubovskis R, Dar'in D, Sharoyko V, Tennikova T, Pešić M, Krasavin M. Further exploration of DVD-445 as a lead thioredoxin reductase (TrxR) inhibitor for cancer therapy: Optimization of potency and evaluation of anticancer potential. Eur J Med Chem 2020; 191:112119. [PMID: 32087464 DOI: 10.1016/j.ejmech.2020.112119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
A series of analogs of the earlier reported lead compound DVD-445 (thioredoxin reductase inhibitor with anticancer activity) has been synthesized via a modified Ugi reaction and investigated. Seven most potent compounds (with IC50 below 5.00 μM against recombinant rTrxR1 enzyme) were examined for their effect on cell growth and viability, oxidative stress induction and P-glycoprotein (P-gp) inhibition in human glioblastoma cells cell line U87 and its corresponding multidrug resistant (MDR) cell line U87-TxR. Several of these frontrunner compounds were shown to be superior over DVD-445. Besides providing promising candidates for anticancer therapy, our study further validates the small electrophilic Ugi Michael acceptor (UMA) chemotype as efficacious inhibitor of thioredoxin reductase.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Daniil Zhukovsky
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Ana Podolski-Renić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
20
|
Wang Y, Zhang W, Dong J, Gao J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg Chem 2019; 95:103530. [PMID: 31887477 DOI: 10.1016/j.bioorg.2019.103530] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The selenoprotein thioredoxin reductases (TrxRs) have been extensively studied as a potential target for the development of anticancer drugs. Herein, we designed, synthesized, and evaluated a series of coumarin-chalcone hybrids as TrxR inhibitors. Most of them exhibited enhancing anticancer activity than Xanthohumol (Xn). The representative Xn-2 (IC50 = 3.6 μM) was a fluorescence agent, wherein drug uptake can be readily monitored in living cells by red fluorescence imaging. Xn-2 down-regulated the expression of TrxR, remarkedly induced ROS accumulation to activate mitochondrial apoptosis pathway. Furthermore, Xn-2 inhibited cancer cell metastasis and abolished the colony formation ability of cancer cells. Taken together, these results highlight that compound Xn-2 may be a promising theranostic TrxR inhibitor for human cancer therapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Wenda Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Junqiang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|