1
|
Mazzone F, Klischan MKT, Greb J, Smits SHJ, Pietruszka J, Pfeffer K. Synthesis and In vitro evaluation of bichalcones as novel anti-toxoplasma agents. Front Chem 2024; 12:1406307. [PMID: 39104777 PMCID: PMC11298430 DOI: 10.3389/fchem.2024.1406307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, an apicomplexan parasite that infects approximately a third of the world's human population. This disease can cause serious complications during pregnancy and can be fatal in immunocompromised hosts. The current treatment options for toxoplasmosis face several limitations. Thus, to address the urgent medical need for the discovery of novel anti-toxoplasma potential drug candidates, our research focused on exploring a series of monomeric and dimeric chalcones, polyphenolic molecules belonging to the class of flavonoids. Chalcones 1aa-1bg and axially chiral A-A'-connected bichalcones 2aa-2bg were evaluated in vitro against the proliferation of the parasite in a cell-based assay. A comparison of the efficacy demonstrated that, in several cases, bichalcones exhibited increased bioactivity compared to their corresponding monomeric counterparts. Among these compounds, a bichalcone with a phenyl substituent and a methyl moiety 2ab showed the most potent and selective inhibitory activity in the nanomolar range. Both enantiomers of this bichalcone were synthesized using an axially chiral biphenol building block. The biaryl bond was forged using Suzuki cross-coupling in water under micellar catalysis conditions. Separation of the atropisomers of this biphenol building block was conducted by chiral HPLC on a preparative scale. The biological evaluation of the enantiomers revealed that the (R a)-enantiomer (R a)-2ab is the eutomer. These studies suggest that bichalcones may be important drug candidates for further in vivo evaluations for the discovery of anti-toxoplasma drugs.
Collapse
Affiliation(s)
- Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Moritz K. T. Klischan
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Julian Greb
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Jiang T, Godinez-Macias KP, Collins JE, Lee JW, Wendt KL, Carolino K, Chakrabarti D, Cichewicz RH, Winzeler EA. Identification of fungal natural products with potent inhibition in Toxoplasma gondii. Microbiol Spectr 2024; 12:e0414223. [PMID: 38421191 PMCID: PMC10986609 DOI: 10.1128/spectrum.04142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested. IMPORTANCE Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.
Collapse
Affiliation(s)
- Tiantian Jiang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Karla P. Godinez-Macias
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jennifer E. Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Karen L. Wendt
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Krypton Carolino
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Liu Z, Mo J, Li Y, Liu S, Zeng Q, Zhang J. Effect of the mitochondrial uncoupling agent BAM15 against the Toxoplasma gondii RH strain and Prugniaud strain. Parasit Vectors 2024; 17:96. [PMID: 38424591 PMCID: PMC10905885 DOI: 10.1186/s13071-024-06187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Toxoplasmosis is a zoonotic disease caused by the infection of the protozoa Toxoplasma gondii (T. gondii), and safe and effective therapeutic drugs are lacking. Mitochondria, is an important organelle that maintains T. gondii survival, however, drugs targeting mitochondria are lacking. METHODS The cytotoxicity of BAM15 was detected by CCK-8 and the in vitro effects of BAM15 was detected by qPCR, plaque assay and flow cytometry. Furthermore, the ultrastructural changes of T. gondii after BAM15 treatment were observed by transmission electron microscopy, and further the mitochondrial membrane potential (ΔΨm), ATP level and reactive oxygen species (ROS) of T. gondii after BAM15 treatment were detected. The pharmacokinetic experiments and in vivo infection assays were performed in mice to determine the in vivo effect of BAM15. RESULTS BAM15 had excellent anti-T. gondii activity in vitro and in vivo with an EC50 value of 1.25 μM, while the IC50 of BAM15 in Vero cells was 27.07 μM. Notably, BAM15 significantly inhibited proliferation activity of T. gondii RH strain and Prugniaud strain (PRU), caused T. gondii death. Furthermore, BAM15 treatment induced T. gondii mitochondrial vacuolation and autolysis by TEM. Moreover, the decrease in ΔΨm and ATP level, as well as the increase in ROS production further confirmed the changes CONCLUSIONS: Our study identifies a useful T. gondii mitochondrial inhibitor, which may also serve as a leading molecule to develop therapeutic mitochondrial inhibitors in toxoplasmosis.'
Collapse
Affiliation(s)
- Zhendi Liu
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Jiao Mo
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Yetian Li
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Siyang Liu
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Qingyuan Zeng
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Jili Zhang
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China.
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Lanzhou, Gansu Province, 730050, People's Republic of China.
| |
Collapse
|
4
|
Cardona-Trujillo MC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. In Vitro Anti- Toxoplasma Activity of Extracts Obtained from Tabebuia rosea and Tabebuia chrysantha: The Role of β-Amyrin. Molecules 2024; 29:920. [PMID: 38474432 DOI: 10.3390/molecules29050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii that is highly prevalent worldwide. Although the infection is asymptomatic in immunocompetent individuals, it severely affects immunocompromised individuals, causing conditions such as encephalitis, myocarditis, or pneumonitis. The limited therapeutic efficacy of drugs currently used to treat toxoplasmosis has prompted the search for new therapeutic alternatives. The aim of this study was to determine the anti-Toxoplasma activity of extracts obtained from two species of the genus Tabebuia. Twenty-six extracts, 12 obtained from Tabebuia chrysantha and 14 from Tabebuia rosea, were evaluated by a colorimetric technique using the RH strain of T. gondii that expresses β-galactosidase. Additionally, the activity of the promising extracts and their active compounds was evaluated by flow cytometry. β-amyrin was isolated from the chloroform extract obtained from the leaves of T. rosea and displayed important anti-Toxoplasma activity. The results show that natural products are an important source of new molecules with considerable biological and/or pharmacological activity.
Collapse
Affiliation(s)
- Maria Camila Cardona-Trujillo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
5
|
Diethelm LTH, Ramos ABDSB, de Lorena GB, Trajano BI, do Espírito Santo RD, de Menezes RPB, Scotti MT, Colombo FA, Marques MJ, Correia CRD, Reimão JQ. First Description of Marinoquinoline Derivatives' Activity against Toxoplasma gondii. Pharmaceutics 2024; 16:262. [PMID: 38399316 PMCID: PMC10891983 DOI: 10.3390/pharmaceutics16020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Toxoplasmosis is a globally prevalent zoonotic disease with significant clinical implications, including neurotoxoplasmosis, a leading cause of cerebral lesions in AIDS patients. The current pharmacological treatments for toxoplasmosis face clinical limitations, necessitating the urgent development of new therapeutics. Natural sources have yielded diverse bioactive compounds, serving as the foundation for clinically used derivatives. The exploration of marine bacteria-derived natural products has led to marinoquinolines, which feature a pyrroloquinoline core and demonstrate in vitro and in vivo anti-Plasmodium activity. This study investigates the in vitro anti-Toxoplasma gondii potential of six marinoquinoline derivatives. Additionally, it conducts absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions, and evaluates the in vivo efficacy of one selected compound. The compounds displayed half-maximal effective concentration (EC50) values between 1.31 and 3.78 µM and half-maximal cytotoxic concentration (CC50) values ranging from 4.16 to 30.51 µM, resulting in selectivity indices (SI) from 3.18 to 20.85. MQ-1 exhibiting the highest in vitro SI, significantly reduced tachyzoite numbers in the peritoneum of RH-infected Swiss mice when it was orally administered at 12.5 mg/kg/day for eight consecutive days. Also, MQ-1 significantly reduced the cerebral parasite burden in chronically ME49 infected C57BL/6 mice when it was orally administered at 25 mg/kg/day for 10 consecutive days. These findings underscore the promising anti-T. gondii activity of marinoquinolines and their potential as novel therapeutic agents against this disease.
Collapse
Affiliation(s)
- Luiza Tamie Hirata Diethelm
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Amanda Bruno da Silva Bellini Ramos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | - Giovanna Braga de Lorena
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Bruna Inácio Trajano
- Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil (R.D.d.E.S.); (C.R.D.C.)
| | | | - Renata Priscila Barros de Menezes
- Programa de Pós-Graduacão em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil (M.T.S.)
| | - Marcus Tullius Scotti
- Programa de Pós-Graduacão em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil (M.T.S.)
| | - Fabio Antonio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | - Marcos José Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | | | - Juliana Quero Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| |
Collapse
|
6
|
Goudarzi F, Jajarmi V, Shojaee S, Mohebali M, Keshavarz H. Formulation and evaluation of atovaquone-loaded macrophage-derived exosomes against Toxoplasma gondii: in vitro and in vivo assessment. Microbiol Spectr 2024; 12:e0308023. [PMID: 38014940 PMCID: PMC10782982 DOI: 10.1128/spectrum.03080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study is the first of its kind that suggests exosomes as a nano-carrier loaded with atovaquone (ATQ), which could be considered as a new strategy for improving the effectiveness of ATQ against acute and chronic phases of Toxoplasma gondii.
Collapse
Affiliation(s)
- Fatemeh Goudarzi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Anacleto-Santos J, Calzada F, López-Camacho PY, López-Pérez TDJ, Carrasco-Ramírez E, Casarrubias-Tabarez B, Fortoul TI, Rojas-Lemus M, López-Valdés N, Rivera-Fernández N. Evaluation of the Anti- Toxoplasma gondii Efficacy, Cytotoxicity, and GC/MS Profile of Pleopeltis crassinervata Active Subfractions. Antibiotics (Basel) 2023; 12:antibiotics12050889. [PMID: 37237792 DOI: 10.3390/antibiotics12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pleopeltis crassinervata (Pc) is a fern that, according to ethnobotanical records, is used in Mexican traditional medicine to treat gastrointestinal ailments. Recent reports indicate that the hexane fraction (Hf) obtained from Pc methanolic frond extract affects Toxoplasma gondii tachyzoite viability in vitro; therefore, in the present study, the activity of different Pc hexane subfractions (Hsf) obtained by chromatographic methods was evaluated in the same biological model. Gas chromatography/mass spectrometry (GC/MS) analysis was carried out for hexane subfraction number one (Hsf1), as it showed the highest anti-Toxoplasma activity with a half-maximal inhibitory concentration (IC50) of 23.6 µg/mL, a 50% cytotoxic concentration (CC50) of 398.7 µg/mL in Vero cells, and a selective index (SI) of 16.89. Eighteen compounds were identified by Hsf1 GC/MS analysis, with the majority being fatty acids and terpenes. Hexadecanoic acid, methyl ester was the most commonly found compound (18.05%) followed by olean-13(18)-ene, 2,2,4a,8a,9,12b,14a-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-eicosahydropicene, and 8-octadecenoid acid, methyl ester, which were detected at 16.19%, 12.53%, and 12.99%, respectively. Based on the mechanisms of action reported for these molecules, Hsf1 could exert its anti-Toxoplasma activity mainly on T. gondii lipidomes and membranes.
Collapse
Affiliation(s)
- Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Col. Doctores, Cuauhtémoc 06725, Mexico
| | - Perla Yolanda López-Camacho
- Unidad Cuajimalpa, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Cuajimalpa 05348, Mexico
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Elba Carrasco-Ramírez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Nelly López-Valdés
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
9
|
Gharibi Z, Shahbazi B, Gouklani H, Nassira H, Rezaei Z, Ahmadi K. Computational screening of FDA-approved drugs to identify potential TgDHFR, TgPRS, and TgCDPK1 proteins inhibitors against Toxoplasma gondii. Sci Rep 2023; 13:5396. [PMID: 37012275 PMCID: PMC10070243 DOI: 10.1038/s41598-023-32388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most successful parasites in the world, because about a third of the world's population is seropositive for toxoplasmosis. Treatment regimens for toxoplasmosis have remained unchanged for the past 20 years, and no new drugs have been introduced to the market recently. This study, performed molecular docking to identify interactions of FDA-approved drugs with essential residues in the active site of proteins of T. gondii Dihydrofolate Reductase (TgDHFR), Prolyl-tRNA Synthetase (TgPRS), and Calcium-Dependent Protein Kinase 1 (TgCDPK1). Each protein was docked with 2100 FDA-approved drugs using AutoDock Vina. Also, the Pharmit software was used to generate pharmacophore models based on the TgDHFR complexed with TRC-2533, TgPRS in complex with halofuginone, and TgCDPK1 in complex with a bumped kinase inhibitor, RM-1-132. Molecular dynamics (MD) simulation was also performed for 100 ns to verify the stability of interaction in drug-protein complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis evaluated the binding energy of selected complexes. Ezetimibe, Raloxifene, Sulfasalazine, Triamterene, and Zafirlukast drugs against the TgDHFR protein, Cromolyn, Cefexim, and Lactulose drugs against the TgPRS protein, and Pentaprazole, Betamethasone, and Bromocriptine drugs against TgCDPK1 protein showed the best results. These drugs had the lowest energy-based docking scores and also stable interactions based on MD analyses with TgDHFR, TgPRS, and TgCDPK1 drug targets that can be introduced as possible drugs for laboratory investigations to treat T. gondii parasite infection.
Collapse
Affiliation(s)
- Zahra Gharibi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hoda Nassira
- Polymer Division, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
10
|
Coixol ameliorates Toxoplasma gondii infection-induced lung injury by interfering with T. gondii HSP70/TLR4/NF-κB signaling pathway. Int Immunopharmacol 2023; 118:110031. [PMID: 36933491 DOI: 10.1016/j.intimp.2023.110031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that causes pulmonary toxoplasmosis, although its pathogenesis is incompletely understood. There is no cure for toxoplasmosis. Coixol, a plant polyphenol extracted from coix seeds, has a variety of biological activities. However, the effects of coixol on T. gondii infection have not been clarified. In this study, we infected a mouse macrophage cell line (RAW 264.7) and BALB/c mice with the T. gondii RH strain to establish infection models in vitro and in vivo, respectively, to explore protective effects and potential mechanisms of coixol on lung injury caused by T. gondii infection. Anti-T. gondii effects and underlying anti-inflammatory mechanisms of coixol were investigated by real-time quantitative PCR, molecular docking, localized surface plasmon resonance, co-immunoprecipitation, enzyme-linked immunosorbent assay, western blotting, and immunofluorescence microscopy. The results show that coixol inhibits T. gondii loads and T. gondii-derived heat shock protein 70 (T.g.HSP70) expression. Moreover, coixol reduced inflammatory cell recruitment and infiltration, and ameliorated pathological lung injury induced by T. gondii infection. Coixol can directly bind T.g.HSP70 or Toll-like receptor 4 (TLR4) to disrupt their interaction. Coixol prevented overexpression of inducible nitric oxide synthase, tumor necrosis factor-α, and high mobility group box 1 by inhibiting activation of the TLR4/nuclear factor (NF)-κB signaling pathway, consistent with effects of the TLR4 inhibitor CLI-095. These results indicate that coixol improves T. gondii infection-induced lung injury by interfering with T.g.HSP70-mediated TLR4/NF-κB signaling. Altogether, these findings suggest that coixol is a promising effective lead compound for the treatment of toxoplasmosis.
Collapse
|
11
|
A Metabolomic and Transcriptomic Study Revealed the Mechanisms of Lumefantrine Inhibition of Toxoplasma gondii. Int J Mol Sci 2023; 24:ijms24054902. [PMID: 36902335 PMCID: PMC10003460 DOI: 10.3390/ijms24054902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Toxoplasma gondii is an obligate protozoon that can infect all warm-blooded animals including humans. T. gondii afflicts one-third of the human population and is a detriment to the health of livestock and wildlife. Thus far, traditional drugs such as pyrimethamine and sulfadiazine used to treat T. gondii infection are inadequate as therapeutics due to relapse, long treatment period, and low efficacy in parasite clearance. Novel, efficacious drugs have not been available. Lumefantrine, as an antimalarial, is effective in killing T. gondii but has no known mechanism of action. We combined metabolomics with transcriptomics to investigate how lumefantrine inhibits T. gondii growth. We identified significant alternations in transcripts and metabolites and their associated functional pathways that are attributed to lumefantrine treatment. RH tachyzoites were used to infect Vero cells for three hours and subsequently treated with 900 ng/mL lumefantrine. Twenty-four hours post-drug treatment, we observed significant changes in transcripts associated with five DNA replication and repair pathways. Metabolomic data acquired through liquid chromatography-tandem mass spectrometry (LC-MS) showed that lumefantrine mainly affected sugar and amino acid metabolism, especially galactose and arginine. To investigate whether lumefantrine damages T. gondii DNA, we conducted a terminal transferase assay (TUNEL). TUNEL results showed that lumefantrine significantly induced apoptosis in a dose-dependent manner. Taken together, lumefantrine effectively inhibited T. gondii growth by damaging DNA, interfering with DNA replication and repair, and altering energy and amino acid metabolisms.
Collapse
|
12
|
Effect of the pseudomonas metabolites HQNO on the Toxoplasma gondii RH strain in vitro and in vivo. Int J Parasitol Drugs Drug Resist 2023; 21:74-80. [PMID: 36758272 PMCID: PMC9929485 DOI: 10.1016/j.ijpddr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Toxoplasmosis is a widespread disease in humans and animals. Currently, toxoplasmosis chemotherapy options are limited due to severe side effects. There is an urgent need to develop new drugs with better efficacy and few side effects. HQNO, a cytochrome bc1 and type II NADH inhibitor in eukaryotes and bacteria, possesses extensive bioactivity. In this study, the cytotoxicity of HQNO was evaluated in Vero cells. The in vitro effects of HQNO were determined by plaque assay and qPCR assay. To determine the in vivo effect of HQNO, pharmacokinetic experiments and in vivo infection assays were performed in mice. The changes in tachyzoites after HQNO exposure were examined by transmission electron microscopy (TEM), MitoTracker Red CMXRos staining, ROS detection and ATP detection. HQNO inhibited T. gondii invasion and proliferation with an EC50 of 0.995 μM. Pharmacokinetic experiments showed that the Cmax of HQNO (20 mg/kg·bw) was 3560 ± 1601 ng/mL (13.73 μM) in healthy BALB/c mouse plasma with no toxicity in vivo. Moreover, HQNO induced a significant decrease in the parasite burden load of T. gondii in mouse peritoneum. TEM revealed alterations in the mitochondria of T. gondii. Further assays verified that HQNO also decreased the mitochondrial membrane potential (ΔΨm) and ATP levels and enhanced the level of reactive oxygen species (ROS) in T. gondii. Hence, HQNO exerted anti-T. gondii activity, which may be related to the damage to the mitochondrial electron transport chain (ETC).
Collapse
|
13
|
Dzitko K, Kaproń B, Paneth A, Bekier A, Plech T, Paneth P, Trotsko N. TZD-Based Hybrid Molecules Act as Dual Anti- Mycobacterium tuberculosis and Anti- Toxoplasma gondii Agents. Int J Mol Sci 2023; 24:2069. [PMID: 36768392 PMCID: PMC9916616 DOI: 10.3390/ijms24032069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Two distinct intracellular pathogens, namely Mycobacterium tuberculosis (Mtb) and Toxoplasma gondii (Tg), cause major public health problems worldwide. In addition, serious and challenging health problems of co-infections of Tg with Mtb have been recorded, especially in developing countries. Due to this fact, as well as the frequent cases of resistance to the current drugs, novel anti-infectious therapeutics, especially those with dual (anti-Tg and anti-Mtb) modes of action, are needed. To address this issue, we explored the anti-Tg potential of thiazolidinedione-based (TZD-based) hybrid molecules with proven anti-Mtb potency. Several TZD hybrids with pyridine-4-carbohydrazone (PCH) or thiosemicarbazone (TSC) structural scaffolds were more effective and more selective than sulfadiazine (SDZ) and trimethoprim (TRI). Furthermore, all of these molecules were more selective than pyrimethamine (PYR). Further studies for the most potent TZD-TSC hybrids 7, 8 and 10 and TZD-PCH hybrid molecule 2 proved that these compounds are non-cytotoxic, non-genotoxic and non-hemolytic. Moreover, they could cross the blood-brain barrier (BBB), which is a critical factor linked with ideal anti-Tg drug development. Finally, since a possible link between Tg infection and the risk of glioblastoma has recently been reported, the cytotoxic potential of TZD hybrids against human glioblastoma cells was also evaluated. TZD-PCH hybrid molecule 2 was found to be the most effective, with an IC50 of 19.36 ± 1.13 µg/mL against T98G cells.
Collapse
Affiliation(s)
- Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Adrian Bekier
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, 20-080 Lublin, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Nazar Trotsko
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Holzer I, Desiatkina O, Anghel N, Johns SK, Boubaker G, Hemphill A, Furrer J, Păunescu E. Synthesis and Antiparasitic Activity of New Trithiolato-Bridged Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates. Molecules 2023; 28:902. [PMID: 36677958 PMCID: PMC9865825 DOI: 10.3390/molecules28020902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.
Collapse
Affiliation(s)
- Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Serena K. Johns
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, UK
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
15
|
Evaluation of the inhibitory effects and the mechanism of terpenoids on Toxoplasma gondii tachyzoites. Acta Trop 2023; 237:106741. [DOI: 10.1016/j.actatropica.2022.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
16
|
Yilmaz-Ozturk R, Calik H, Yaman S, Ustun-Karatop E, Cakir-Koc R. Immunogenic evaluation of multi-epitope peptide-loaded PCPP microparticles as a vaccine candidate against Toxoplasma Gondii. Comp Immunol Microbiol Infect Dis 2023; 92:101927. [PMID: 36528908 DOI: 10.1016/j.cimid.2022.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is a major health problem and socioeconomic burden, affecting around 30-50% of the global population. Poly(dicarboxylatophenoxy)phosphazene (PCPP) polymer was chosen as adjuvant for the immunogenic peptide antigen. Peptide-loaded PCPP microparticles were synthesized via the coacervation method and the characterization studies of microparticles were conducted to determine their size, charge, morphology, encapsulation efficacy, and loading capacity. To evaluate in vivo efficacy of the vaccine candidate, Balb/c mice were immunized with the formulations. Brain and spleen tissues were isolated from animals to investigate cytokine levels, lymphocyte proliferation, and brain cyst formation. As a result, antibody and cytokine responses in groups immunized with peptide-loaded PCPP microparticles were found to be significantly higher when compared to the control group. In conclusion, our novel multi-epitope peptide-loaded PCPP microparticle-based vaccine formulation demonstrated considerable humoral and cellular immune responses against T. gondii and protected mice against T. gondii infection during Toxoplasmosis.
Collapse
Affiliation(s)
- Rabia Yilmaz-Ozturk
- Yildiz Technical University, Department of Bioengineering, Istanbul 34220, Turkey; Health Institutes of Turkey (TUSEB), Turkey Biotechnology Institute, Istanbul, Turkey
| | - Hilal Calik
- Yildiz Technical University, Department of Bioengineering, Istanbul 34220, Turkey
| | - Serkan Yaman
- Gumushane University, Department of Genetics and Bioengineering, Gumushane 29100, Turkey; Health Institutes of Turkey (TUSEB), Turkey Biotechnology Institute, Istanbul, Turkey
| | - Eslin Ustun-Karatop
- University of Ottawa, Department of Electrical and Computer Engineering, Ottawa, ON K1N6N5, Canada
| | - Rabia Cakir-Koc
- Yildiz Technical University, Department of Bioengineering, Istanbul 34220, Turkey; Health Institutes of Turkey (TUSEB), Turkey Biotechnology Institute, Istanbul, Turkey.
| |
Collapse
|
17
|
Desiatkina O, Mösching M, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J, Păunescu E. New Nucleic Base-Tethered Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Compounds: Synthesis and Antiparasitic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238173. [PMID: 36500266 PMCID: PMC9738179 DOI: 10.3390/molecules27238173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Aiming toward compounds with improved anti-Toxoplasma activity by exploiting the parasite auxotrophies, a library of nucleobase-tethered trithiolato-bridged dinuclear ruthenium(II)-arene conjugates was synthesized and evaluated. Structural features such as the type of nucleobase and linking unit were progressively modified. For comparison, diruthenium hybrids with other type of molecules were also synthesized and assessed. A total of 37 compounds (diruthenium conjugates and intermediates) were evaluated in a primary screening for in vitro activity against transgenic Toxoplasma gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in non-infected host cells (human foreskin fibroblasts, HFF) was determined by alamarBlue assay. Twenty compounds strongly impairing parasite proliferation with little effect on HFF viability were subjected to T. gondii β-gal half maximal inhibitory concentration determination (IC50) and their toxicity for HFF was assessed at 2.5 µM. Two promising compounds were identified: 14, ester conjugate with 9-(2-oxyethyl)adenine, and 36, a click conjugate bearing a 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl substituent, with IC50 values of 0.059 and 0.111 µM respectively, significantly lower compared to pyrimethamine standard (IC50 = 0.326 µM). Both 14 and 36 exhibited low toxicity against HFF when applied at 2.5 µM and are candidates for potential treatment options in a suitable in vivo model.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Mösching
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Laboratoire de Parasitologie, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
18
|
Anti-Toxoplasma gondii agent isolated from Orostachys malacophylla (Pallas) Fischer. Exp Parasitol 2022; 242:108397. [DOI: 10.1016/j.exppara.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
|
19
|
Development, structural, spectroscopic and in silico investigation of new complexes relevant as anti-toxoplasma metallopharmacs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zhou CX, Li LY, Huang CQ, Guo XD, An XD, Luo FF, Cong W. Investigation of urine metabolome of BALB/c mouse infected with an avirulent strain of Toxoplasma gondii. Parasit Vectors 2022; 15:271. [PMID: 35906695 PMCID: PMC9338554 DOI: 10.1186/s13071-022-05408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background The protozoan parasite Toxoplasma gondii is a major concern for human and animal health. Although the metabolic understanding of toxoplasmosis has increased in recent years, the analysis of metabolic alterations through noninvasive methodologies in biofluids remains limited. Methods Here, we applied liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics and multivariate statistical analysis to analyze BALB/c mouse urine collected from acutely infected, chronically infected and control subjects. Results In total, we identified 2065 and 1409 metabolites in the positive electrospray ionization (ESI +) mode and ESI − mode, respectively. Metabolomic patterns generated from principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) score plots clearly separated T. gondii-infected from uninfected urine samples. Metabolites with altered levels in urine from T. gondii-infected mice revealed changes in pathways related to amino acid metabolism, fatty acid metabolism, and nicotinate and nicotinamide metabolism. Conclusions This is the first study to our knowledge on urine metabolic profiling of BALB/c mouse with T. gondii infection. The urine metabolome of infected mouse is distinctive and has value in the understanding of Toxoplasmosis pathogenesis and improvement of treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05408-2.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ling-Yu Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Cui-Qin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University & College of Life Science, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xu-Dong Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xu-Dian An
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Fang-Fang Luo
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Wei Cong
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
21
|
Toxoplasma TgAtg8-TgAtg3 Interaction Primarily Contributes to Apicoplast Inheritance and Parasite Growth in Tachyzoite. Microbiol Spectr 2022; 10:e0149521. [PMID: 35196797 PMCID: PMC8865545 DOI: 10.1128/spectrum.01495-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apicoplast, which harbors key pathways involved in biosynthesis of vital metabolites, is a unique and essential nonphotosynthetic plastid organelle in apicomplexan parasites. Intriguingly, autophagy-related protein 8 (Atg8), a highly conserved eukaryotic protein, can localize to the outermost membrane of the apicoplast and modulate its inheritance in both Toxoplasma and Plasmodium parasites. The Atg8-Atg3 interaction plays a key role in Atg8 lipidation and localization, and our previously work in Toxoplasma has suggested that the core Atg8-family interacting motif (AIM) in TgAtg3, 239FADI242, and the R27 residue of TgAtg8 contribute to TgAtg8-TgAtg3 interaction in vitro. However, little is known about the function of this interaction or its importance in tachyzoite growth in Toxoplasma gondii. Here, we generated two complemented cell lines, TgAtg3F239A/I242A and TgAtg8R27E, based on the TgAtg3 and TgAtg8 conditional knockdown cell lines, respectively. We found that both mutant complemented cell lines were severely affected in terms of tachyzoite growth and displayed delayed death upon conditional knockdown of endogenous TgAtg3 or TgAtg8. Intriguingly, both complemented lines appeared to be defective in TgAtg8 lipidation and apicoplast inheritance. Moreover, we showed that the interaction of TgAtg8 and TgAtg3 is critical for TgAtg8 apicoplast localization. In addition, we found that the TgAtg3F239A/I242A complemented line exhibits an integral mitochondrial network upon ablation of endogenous TgAtg3, which is distinct from TgAtg3-depleted parasites with a fragmented mitochondrial network. Taken together, this work solidifies the contribution of the TgAtg8-TgAtg3 interaction to apicoplast inheritance and the growth of T. gondii tachyzoites. IMPORTANCEToxoplasma gondiiis a widespread intracellular parasite infecting a variety of warm-blooded animals, including humans. Current frontline treatment of toxoplasmosis suffers many drawbacks, including toxicity, drug resistance, and failure to eradicate tissue cysts, underscoring the need to identify novel drug targets for suppression or treatment of toxoplasmosis. TgAtg8 is thought to serve multiple functions in lipidation and is considered essential to the growth and development of both tachyzoites and bradyzoites. Here, we show that Toxoplasma gondii has adapted a conserved Atg8-Atg3 interaction, required for canonical autophagy in other eukaryotes, to function specifically in apicoplast inheritance. Our finding not only highlights the importance of TgAtg8-TgAtg3 interaction in tachyzoite growth but also suggests that this interaction is a promising drug target for the therapy of toxoplasmosis.
Collapse
|
22
|
Lu JM, Jin GN, Lu YN, Zhao XD, Lan HW, Mu SR, Shen XY, Xu GH, Jin CH, Ma J, Jin X, Xu X, Piao LX. Resveratrol modulates Toxoplasma gondii infection induced liver injury by intervening in the HMGB1/TLR4/NF-κB signaling pathway. Eur J Pharmacol 2021; 910:174497. [PMID: 34508751 DOI: 10.1016/j.ejphar.2021.174497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023]
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that can cause liver diseases in the host, including hepatitis and hepatomegaly. High mobility group box 1 (HMGB1) is the main inflammatory mediator causing cell injury or necrosis. HMGB1 binds to toll like receptor 4 (TLR4), then activates the nuclear factor-κB (NF-κB) signaling pathway, which promotes the release of inflammatory factors. Our previous studies showed that HMGB1 mediated TLR4/NF-κB signaling pathway plays an important role in liver injury induced by T. gondii infection. Resveratrol (RSV) is a small polyphenol, which has anti-inflammatory, anti-cancer, anti-T. gondii effect. However, the effect of RSV on liver injury caused by T. gondii infection is unclear. This study used the RH strain tachyzoites of T. gondii to infect murine liver line, NCTC-1469 cells to establish an in vitro model and acute infection of mice for the in vivo model to explore the protective effect of RSV on liver injury induced by T. gondii infection. The results showed that RSV inhibited the proliferation of T. gondii in the liver, reduced the alanine aminotransferase/aspartate aminotransferase levels and pathological liver damage. Additionally, RSV inhibited the production of tumor necrosis factor-α, inducible nitric oxide synthase and HMGB1 by interfering with the TLR4/NF-κB signaling pathway. These results indicate that RSV can protect liver injury caused by T. gondii infection by intervening in the HMGB1/TLR4/NF-κB signaling pathway. This study will provide a theoretical basis for RSV treatment of T. gondii infection induced liver injury.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Hui-Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Shuai-Ru Mu
- College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China; College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
23
|
Deng Y, Mu H, Li HB, Fu LZ, Tang D, Wu T, Huang SH, Li CH. In Vitro Anti-Toxoplasma gondii Activity Evaluation of a New Series of Quinazolin-4(3H)-one Derivatives. Chem Biodivers 2021; 18:e2100687. [PMID: 34726832 DOI: 10.1002/cbdv.202100687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022]
Abstract
Toxoplasmosis post serious threaten to human health, leading to severely eye and brain disease, especially for immunocompromised patients and pregnant women. The multiple side effects and long dosing period of current main treatment regiments calls for high effective and low toxicity anti-toxoplasmosis drugs. Herein, we report our efforts to synthesize a series of 2-(piperazin-1-yl)quinazolin-4(3H)-one derivatives and investigate their activity against Toxoplasma gondii tachyzoites in vitro based on cell phenotype screening. Among the 26 compounds, 8w and 8x with diaryl ether moiety at the side chain of piperazine exhibited good efficacy to inhibit T. gondii, with IC50 values of 4 μM and 3 μM, respectively. Structure-activity relationship (SAR) studies implies that hydrophobic aryl at the side chain would be preferred for improvement of activity. Molecular docking study reveals these two compounds appeared high affinity to TgCDPK1 by interaction with the hydrophobic pocket of ATP-binding cleft.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Hao Mu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Hong-Bo Li
- Chengdu Hyperway Pharmaceuticals Co., Ltd., Chengdu, China
| | - Li-Zhi Fu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Da Tang
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Tao Wu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Shu-Heng Huang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| |
Collapse
|
24
|
Molina DA, Ramos GA, Zamora-Vélez A, Gallego-López GM, Rocha-Roa C, Gómez-Marin JE, Cortes E. In vitro evaluation of new 4-thiazolidinones on invasion and growth of Toxoplasma gondii. Int J Parasitol Drugs Drug Resist 2021; 16:129-139. [PMID: 34102589 PMCID: PMC8187164 DOI: 10.1016/j.ijpddr.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/18/2022]
Abstract
Treatments for toxoplasmosis such as pyrimethamine have shown numerous side effects. It has been reported that the likelihood of relapse associated with pyrimethamine-based therapy in patients with HIV and toxoplasmic encephalitis (TE) can have significant implications, even for patients who often develop new lesions in areas of the brain previously free of infection. This led us to research for new agents against Toxoplasma gondii. Recent findings have shown the potent biological activity of 4-thiazolidinones. We proposed to design and synthesize a new series of 2-hydrazono-4-thiazolidinones derivatives to evaluate the in vitro growth inhibition effect on T. gondii. The growth rates of T. gondii tachyzoites in Human Foreskin Fibroblast (HFF) cell culture were identified by two in vitro methodologies. The first one was by fluorescence in which green fluorescent RH parasites and cherry-red fluorescent ME49 parasites were used. The second one was a colorimetric methodology using β-Gal parasites of the RH strain constitutively expressing the enzyme beta-galactosidase. The 4-thiazolidinone derivatives 1B, 2B and 3B showed growth inhibition at the same level of Pyrimethamine. These compounds showed IC50 values of 1B (0.468-0.952 μM), 2B (0.204-0.349 μM) and 3B (0.661-1.015 μM) against T. gondii. As a measure of cytotoxicity the compounds showed a TD50 values of: 1B (60 μM), 2B (206 μM) and 3B (125 μM). The in vitro assays and molecular modeling results suggest that these compounds could act as possible inhibitors of the Calcium-Dependent Protein Kinase 1 of T. gondii. Further, our results support the fact that of combining appropriate detection technologies, combinatorial chemistry and computational biology is a good strategy for efficient drug discovery. These compounds merit in vivo analysis for anti-parasitic drug detection.
Collapse
Affiliation(s)
- Diego A Molina
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, 630004, Colombia.
| | | | - Alejandro Zamora-Vélez
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, 630004, Colombia
| | - Gina M Gallego-López
- Morgridge Institute for Research, Madison, WI, 53715, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cristian Rocha-Roa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, 050010, Colombia
| | - Jorge Enrique Gómez-Marin
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, 630004, Colombia
| | | |
Collapse
|
25
|
Anti- Toxoplasma gondii Effects of a Novel Spider Peptide XYP1 In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9080934. [PMID: 34440138 PMCID: PMC8392294 DOI: 10.3390/biomedicines9080934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Toxoplasmosis, caused by an obligate intracellular parasite Toxoplasma gondii, is one of the most prevalent zoonoses worldwide. Treatments for this disease by traditional drugs have shown numerous side effects, thus effective alternative anti-Toxoplasma strategies or drugs are urgently needed. In this study, a novel spider peptide, XYP1, was identified from the cDNA library of the venom gland of the spider Lycosa coelestis. Our results showed that XYP1 has potent anti-Toxoplasma activity in vitro and in vivo. Specifically, treatment with XYP1 significantly inhibited the viability, invasion and proliferation of tachyzoites with low cytotoxicity (IC50 = 38.79 μΜ) on human host cells, and increased the survival rate of mice acutely infected with T. gondii. Next, scanning electron microscopy, transmission electron microscopy and RNA sequencing were employed to further explore the functional mechanism of XYP1, and the results indicated that XYP1 causes membrane perforation, swelling and disruption of tachyzoites, which could be closely associated with differential expression of several membrane-associated proteins including HSP29. In conclusion, XYP1 may be a promising new drug candidate for the treatment of toxoplasmosis.
Collapse
|
26
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
27
|
Węglińska L, Bekier A, Dzitko K, Pacholczyk-Sienicka B, Albrecht Ł, Plech T, Paneth P, Paneth A. 1,3,4-Thiadiazoles Effectively Inhibit Proliferation of Toxoplasma gondii. Cells 2021; 10:1053. [PMID: 33946881 PMCID: PMC8145641 DOI: 10.3390/cells10051053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Congenital and acquired toxoplasmosis caused by the food- and water-born parasite Toxoplasma gondii (T. gondii) is one of the most prevalent zoonotic infection of global importance. T. gondii is an obligate intracellular parasite with limited capacity for extracellular survival, thus a successful, efficient and robust host cell invasion process is crucial for its survival, proliferation and transmission. In this study, we screened a series of novel 1,3,4-thiadiazole-2-halophenylamines functionalized at the C5 position with the imidazole ring (1b-12b) for their effects on T. gondii host cell invasion and proliferation. To achieve this goal, these compounds were initially subjected to in vitro assays to assess their cytotoxicity on human fibroblasts and then antiparasitic efficacy. Results showed that all of them compare favorably to control drugs sulfadiazine and trimethoprim in terms of T. gondii growth inhibition (IC50) and selectivity toward the parasite, expressed as selectivity index (SI). Subsequently, the most potent of them with meta-fluoro 2b, meta-chloro 5b, meta-bromo 8b, meta-iodo 11b and para-iodo 12b substitution were tested for their efficacy in inhibition of tachyzoites invasion and subsequent proliferation by direct action on established intracellular infection. All the compounds significantly inhibited the parasite invasion and intracellular proliferation via direct action on both tachyzoites and parasitophorous vacuoles formation. The most effective was para-iodo derivative 12b that caused reduction in the percentage of infected host cells by 44% and number of tachyzoites per vacuole by 93% compared to non-treated host cells. Collectively, these studies indicate that 1,3,4-thiadiazoles 1b-12b, especially 12b with IC50 of 4.70 µg/mL and SI of 20.89, could be considered as early hit compounds for future design and synthesis of anti-Toxoplasma agents that effectively and selectively block the invasion and subsequent proliferation of T. gondii into host cells.
Collapse
Affiliation(s)
- Lidia Węglińska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Adrian Bekier
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (B.P.-S.); (Ł.A.)
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (B.P.-S.); (Ł.A.)
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
28
|
Zhuo X, Du K, Ding H, Lou D, Zheng B, Lu S. A Carbamoyl Phosphate Synthetase II (CPSII) Deletion Mutant of Toxoplasma gondii Induces Partial Protective Immunity in Mice. Front Microbiol 2021; 11:616688. [PMID: 33519775 PMCID: PMC7840960 DOI: 10.3389/fmicb.2020.616688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite. T. gondii primarily infection in pregnant women may result in fetal abortion, and infection in immunosuppressed population may result in toxoplasmosis. Carbamoyl phosphate synthetase II (CPSII) is a key enzyme in the de novo pyrimidine-biosynthesis pathway, and has a crucial role in parasite replication. We generated a mutant with complete deletion of CPSII via clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 in type-1 RH strain of T. gondii. We tested the intracellular proliferation of this mutant and found that it showed significantly reduced replication in vitro, though CPSII deletion did not completely stop the parasite growth. The immune responses induced by the infection of RHΔCPSII tachyzoites in mice were evaluated. During infection in mice, the RHΔCPSII mutant displayed notable defects in replication and virulence, and significantly enhanced the survival of mice compared with survival of RH-infected mice. We tracked parasite propagation from ascitic fluid in mice infected with the RHΔCPSII mutant, and few tachyzoites were observed at early infection. We also observed that the RHΔCPSII mutant induced greater accumulation of neutrophils. The mutant induced a higher level of T-helper type-1 cytokines [interferon (IFN)-γ, interleukin (IL)-12]. The mRNA levels of signal transducer and activator of transcription cellular transcription factor 1 and IFN regulatory factor 8 were significantly higher in the RHΔCPSII mutant-infected group. Together, these data suggest that CPSII is crucial for parasite growth, and that strains lack the de novo pyrimidine biosynthesis pathway and salvage pathway may become a promising live attenuated vaccine to prevent infection with T. gondii.
Collapse
Affiliation(s)
- Xunhui Zhuo
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Kaige Du
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China.,Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Haojie Ding
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
29
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
30
|
Li D, Yang J, Fan X. Ligand-free Pd(II)-catalyzed cyclization of α-chloroimino-N-arylamides to synthesis of quinoxalin-2(1H)-ones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Almeria S, Dubey JP. Foodborne transmission of Toxoplasma gondii infection in the last decade. An overview. Res Vet Sci 2020; 135:371-385. [PMID: 33148402 DOI: 10.1016/j.rvsc.2020.10.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023]
Abstract
Toxoplasmosis is a zoonotic disease of global distribution and importance. It is caused by the protozoan parasite Toxoplasma gondii, the only species in the Toxoplasma genus. This parasite can infect most warm-blooded animals, including humans and livestock. Main routes of transmission are by ingestion of tissue cysts in raw or undercooked meat of infected animals, ingestion of raw vegetables or water contaminated with T. gondii oocysts from cat feces, and transplacental. Around one-third of human beings are chronically infected with T. gondii. Most infections appear to be asymptomatic in immunocompetent persons, but toxoplasmosis can be fatal to the fetus and immunocompromised adults. Water and foodborne outbreaks have been caused by this parasite worldwide, but few are well documented. Importantly, T. gondii is a parasite of high importance in animal health, causing reproductive failure, particularly in small ruminants, and clinical toxoplasmosis in many species. This overview discusses the knowledge of T. gondii infections in the last decade focusing on the foodborne transmission of this parasite.
Collapse
Affiliation(s)
- S Almeria
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA.
| | - J P Dubey
- USA Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Service, Animal Parasitic Disease Laboratory, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA
| |
Collapse
|
32
|
Tan S, Tong WH, Vyas A. Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator odor. Brain Behav Immun Health 2020; 8:100128. [PMID: 34589880 PMCID: PMC8474456 DOI: 10.1016/j.bbih.2020.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
Neurotoxoplasmosis, also known as cerebral toxoplasmosis, is an opportunistic chronic infection caused by the persistence of parasite Toxoplasma gondii cysts in the brain. In wild animals, chronic infection is associated with behavioral manipulation evident by an altered risk perception towards predators. In humans, reactivation of cysts and conversion of quiescent parasites into highly invasive tachyzoites is a significant cause of mortality in immunocompromised patients. However, the current standard therapy for toxoplasmosis is not well tolerated and is ineffective against the parasite cysts. In recent years, the concept of dietary supplementation with natural products derived from plants has gained popularity as a natural remedy for brain disorders. Notably, urolithin-A, a metabolite produced in the gut following consumption of ellagitannins-enriched food such as pomegranate, is reported to be blood-brain barrier permeable and exhibits neuroprotective effects in-vivo. In this study, we investigated the potential of pomegranate extract and urolithin-A as anti-neurotoxoplasmosis agents in-vitro and in-vivo. Treatment with pomegranate extract and urolithin-A reduced the parasite tachyzoite load and interfered with cyst development in differentiated human neural culture. Administration of urolithin-A also resulted in the formation of smaller brain cysts in chronically infected mice. Interestingly, this phenomenon was mirrored by an enhanced risk perception of the UA-treated infected mice towards predatory cues. Together, our findings demonstrate the potential of dietary supplementation with urolithin-A-enriched food as a novel natural remedy for the treatment of acute and chronic neurotoxoplasmosis. Pomegranate extract reduces T. gondii tachyzoite load and cyst formation in-vitro. Urolithin-A, in part, underlies the anti-T. gondii effect of pomegranate extract. Urolithin-A perturbs cyst development in the brain of chronically infected mice. The reduction in brain cyst burden associates with enhanced fear of infected mice towards cat odor. Dietary supplementation with urolithin-A is a potential therapy for neurotoxoplasmosis.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
33
|
Zwicker JD, Smith D, Guerra AJ, Hitchens JR, Haug N, Vander Roest S, Lee P, Wen B, Sun D, Wang L, Keep RF, Xiang J, Carruthers VB, Larsen SD. Discovery and Optimization of Triazine Nitrile Inhibitors of Toxoplasma gondii Cathepsin L for the Potential Treatment of Chronic Toxoplasmosis in the CNS. ACS Chem Neurosci 2020; 11:2450-2463. [PMID: 32027110 DOI: 10.1021/acschemneuro.9b00674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With roughly 2 billion people infected, the neurotropic protozoan Toxoplasma gondii remains one of the most pervasive and infectious parasites. Toxoplasma infection is the second leading cause of death due to foodborne illness in the United States, causes severe disease in immunocompromised patients, and is correlated with several cognitive and neurological disorders. Currently, no therapies exist that are capable of eliminating the persistent infection in the central nervous system (CNS). In this study we report the identification of triazine nitrile inhibitors of Toxoplasma cathepsin L (TgCPL) from a high throughput screen and their subsequent optimization. Through rational design, we improved inhibitor potency to as low as 5 nM, identified pharmacophore features that can be exploited for isoform selectivity (up to 7-fold for TgCPL versus human isoform), and improved metabolic stability (t1/2 > 60 min in mouse liver microsomes) guided by a metabolite ID study. We demonstrated that this class of compounds is capable of crossing the blood-brain barrier in mice (1:1 brain/plasma at 2 h). Importantly, we also show for the first time that treatment of T. gondii bradyzoite cysts in vitro with triazine nitrile inhibitors reduces parasite viability with efficacy equivalent to a TgCPL genetic knockout.
Collapse
Affiliation(s)
- Jeffery D. Zwicker
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alfredo J. Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jacob R. Hitchens
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole Haug
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pil Lee
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Scott D. Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Baker TL, Sun M, Semple BD, Tyebji S, Tonkin CJ, Mychasiuk R, Shultz SR. Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury? J Neuroinflammation 2020; 17:222. [PMID: 32711529 PMCID: PMC7382044 DOI: 10.1186/s12974-020-01885-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Shiraz Tyebji
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
35
|
Liu S, Wu M, Hua Q, Lu D, Tian Y, Yu H, Cheng L, Chen Y, Cao J, Hu X, Tan F. Two old drugs, NVP-AEW541 and GSK-J4, repurposed against the Toxoplasma gondii RH strain. Parasit Vectors 2020; 13:242. [PMID: 32393321 PMCID: PMC7216583 DOI: 10.1186/s13071-020-04094-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Toxoplasma gondii is a zoonotic pathogen that causes toxoplasmosis and leads to serious public health problems in developing countries. However, current clinical therapeutic drugs have some disadvantages, such as serious side effects, a long course of treatment and the emergence of drug-resistant strains. The urgent need to identify novel anti-Toxoplasma drugs has initiated the effective strategy of repurposing well-characterized drugs. As a principled screening for the identification of effective compounds against Toxoplasma gondii, in the current study, a collection of 666 compounds were screened for their ability to significantly inhibit Toxoplasma growth. Methods The inhibition of parasite growth was determined using a luminescence-based β-galactosidase activity assay. Meanwhile, the effect of compounds on the viability of host cells was measured using CCK8. To assess the inhibition of the selected compounds on discrete steps of the T. gondii lytic cycle, the invasion, intracellular proliferation and egress abilities were evaluated. Finally, a murine infection model of toxoplasmosis was used to monitor the protective efficacy of drugs against acute infection of a highly virulent RH strain. Results A total of 68 compounds demonstrated more than 70% parasite growth inhibition. After excluding compounds that impaired host cell viability, we further characterized two compounds, NVP-AEW541 and GSK-J4 HCl, which had IC50 values for parasite growth of 1.17 μM and 2.37 μM, respectively. In addition, both compounds showed low toxicity to the host cell. Furthermore, we demonstrated that NVP-AEW541 inhibits tachyzoite invasion, while GSK-J4 HCl inhibits intracellular tachyzoite proliferation by halting cell cycle progression from G1 to S phase. These findings prompted us to analyse the efficacy of the two compounds in vivo by using established mouse models of acute toxoplasmosis. In addition to prolonging the survival time of mice acutely infected with T. gondii, both compounds had a remarkable ability to reduce the parasite burden of tissues. Conclusions Our findings suggest that both NVP-AEW541 and GSK-J4 could be potentially repurposed as candidate drugs against T. gondii infection.![]()
Collapse
Affiliation(s)
- Shuxian Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mimi Wu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qianqian Hua
- Clinical Laboratory, Dongyang People's Hospital, Jinhua, 322100, Zhejiang, People's Republic of China
| | - Daiqiang Lu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuan Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Helin Yu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Linyan Cheng
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yinqi Chen
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiaxin Cao
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Hu
- School of Medical Laboratory Science and School of Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
36
|
Arctigenin exhibits hepatoprotective activity in Toxoplasma gondii-infected host through HMGB1/TLR4/NF-κB pathway. Int Immunopharmacol 2020; 84:106539. [PMID: 32361192 DOI: 10.1016/j.intimp.2020.106539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
Toxoplasmosis is a parasitic zoonosis with the highest incidence in humans. Severe lesions due to acute toxoplasmosis have been recorded in the visceral organs including the liver, where hepatocytes and Kupffer cells are important innate immune cells. Arctigenin (AG) is a bioactive ingredient of Arctium lappa L. and increasing evidence suggests that AG exhibits anti-oxidant, anti-inflammatory and anti-Toxoplasma gondii (T. gondii) effects. However, the role of AG in acute liver damage induced by T. gondii infection remains unclear. In this study, we analyzed the effects of AG against T. gondii-induced liver damage by establishing an in vitro infection model using a murine liver cell line (NCTC-1469 cells) and an in vivo mouse model with acute T. gondii infection of virulent RH strain. In the current study, AG effectively attenuated hepatocytes apoptosis and inhibited the reproduction of T. gondii. The results of in vitro and in vivo studies showed that AG significantly reduced alanine aminotransferase/aspartate aminotransferase activities and lessened pathological damage of liver. Moreover, AG suppressed T. gondii-induced inducible nitric oxide synthase production. AG also attenuated liver inflammation by inhibiting T. gondii-induced activation of the high-mobility group box1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway. These findings demonstrated that AG exhibited prominent hepatoprotective activities in toxoplasmic liver injury with anti-inflammatory effects by inhibiting the HMGB1/TLR4/NF-κB signaling axis. Thus, this study provides the basis for the development of new drugs to treat toxoplasmic hepatitis.
Collapse
|
37
|
Key M, Bergmann A, Micchelli C, Thornton LB, Millard S, Dou Z. Determination of Chemical Inhibitor Efficiency against Intracellular Toxoplasma Gondii Growth Using a Luciferase-Based Growth Assay. J Vis Exp 2020. [PMID: 32420988 DOI: 10.3791/60985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Toxoplasma gondii is a protozoan pathogen that widely affects the human population. The current antibiotics used for treating clinical toxoplasmosis are limited. In addition, they exhibit adverse side effects in certain groups of people. Therefore, discovery of novel therapeutics for clinical toxoplasmosis is imperative. The first step of novel antibiotic development is to identify chemical compounds showing high efficacy in inhibition of parasite growth using a high throughput screening strategy. As an obligate intracellular pathogen, Toxoplasma can only replicate within host cells, which prohibits the use of optical absorbance measurements as a quick indicator of growth. Presented here is a detailed protocol for a luciferase-based growth assay. As an example, this method is used to calculate the doubling time of wild-type Toxoplasma parasites and measure the efficacy of morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl (LHVS, a cysteine protease-targeting compound) regarding inhibition of parasite intracellular growth. Also described, is a CRISPR-Cas9-based gene deletion protocol in Toxoplasma using 50 bp homologous regions for homology-dependent recombination (HDR). By quantifying the inhibition efficacies of LHVS in wild-type and TgCPL (Toxoplasma cathepsin L-like protease)-deficient parasites, it is shown that LHVS inhibits wild-type parasite growth more efficiently than Δcpl growth, suggesting that TgCPL is a target that LHVS binds to in Toxoplasma. The high sensitivity and easy operation of this luciferase-based growth assay make it suitable for monitoring Toxoplasma proliferation and evaluating drug efficacy in a high throughput manner.
Collapse
Affiliation(s)
- Melanie Key
- Department of Biological Sciences, Clemson University; Eukaryotic Pathogens Innovation Center, Clemson University
| | - Amy Bergmann
- Department of Biological Sciences, Clemson University; Eukaryotic Pathogens Innovation Center, Clemson University
| | - Chiara Micchelli
- Department of Biological Sciences, Clemson University; Eukaryotic Pathogens Innovation Center, Clemson University
| | - L Brock Thornton
- Department of Biological Sciences, Clemson University; Eukaryotic Pathogens Innovation Center, Clemson University
| | - Sophie Millard
- Department of Biological Sciences, Clemson University; Eukaryotic Pathogens Innovation Center, Clemson University
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University; Eukaryotic Pathogens Innovation Center, Clemson University;
| |
Collapse
|
38
|
Secrieru A, Costa ICC, O’Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020; 25:E1574. [PMID: 32235463 PMCID: PMC7181032 DOI: 10.3390/molecules25071574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Toxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Inês C. C. Costa
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Maria L. S. Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| |
Collapse
|
39
|
Zhai B, He JJ, Elsheikha HM, Li JX, Zhu XQ, Yang X. Transcriptional changes in Toxoplasma gondii in response to treatment with monensin. Parasit Vectors 2020; 13:84. [PMID: 32070423 PMCID: PMC7029487 DOI: 10.1186/s13071-020-3970-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background Infection with the apicomplexan protozoan parasite T. gondii can cause severe and potentially fatal cerebral and ocular disease, especially in immunocompromised individuals. The anticoccidial ionophore drug monensin has been shown to have anti-Toxoplasma gondii properties. However, the comprehensive molecular mechanisms that underlie the effect of monensin on T. gondii are still largely unknown. We hypothesized that analysis of T. gondii transcriptional changes induced by monensin treatment can reveal new aspects of the mechanism of action of monensin against T. gondii. Methods Porcine kidney (PK)-15 cells were infected with tachyzoites of T. gondii RH strain. Three hours post-infection, PK-15 cells were treated with 0.1 μM monensin, while control cells were treated with medium only. PK-15 cells containing intracellular tachyzoites were harvested at 6 and 24 h post-treatment, and the transcriptomic profiles of T. gondii-infected PK-15 cells were examined using high-throughput RNA sequencing (RNA-seq). Quantitative real-time PCR was used to verify the expression of 15 differentially expressed genes (DEGs) identified by RNA-seq analysis. Results A total of 4868 downregulated genes and three upregulated genes were identified in monensin-treated T. gondii, indicating that most of T. gondii genes were suppressed by monensin. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of T. gondii DEGs showed that T. gondii metabolic and cellular pathways were significantly downregulated. Spliceosome, ribosome, and protein processing in endoplasmic reticulum were the top three most significantly enriched pathways out of the 30 highly enriched pathways detected in T. gondii. This result suggests that monensin, via down-regulation of protein biosynthesis in T. gondii, can limit the parasite growth and proliferation. Conclusions Our findings provide a comprehensive insight into T. gondii genes and pathways with altered expression following monensin treatment. These data can be further explored to achieve better understanding of the specific mechanism of action of monensin against T. gondii.![]()
Collapse
Affiliation(s)
- Bintao Zhai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia Autonomous Region, People's Republic of China.
| |
Collapse
|