1
|
Alganem K, Hamoud AR, Creeden JF, Henkel ND, Imami AS, Joyce AW, Ryan V WG, Rethman JB, Shukla R, O'Donovan SM, Meller J, McCullumsmith R. The active kinome: The modern view of how active protein kinase networks fit in biological research. Curr Opin Pharmacol 2022; 62:117-129. [PMID: 34968947 PMCID: PMC9438800 DOI: 10.1016/j.coph.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Biological regulatory networks are dynamic, intertwined, and complex systems making them challenging to study. While quantitative measurements of transcripts and proteins are key to investigate the state of a biological system, they do not inform the "active" state of regulatory networks. In consideration of that fact, "functional" proteomics assessments are needed to decipher active regulatory processes. Phosphorylation, a key post-translation modification, is a reversible regulatory mechanism that controls the functional state of proteins. Recent advancements of high-throughput protein kinase activity profiling platforms allow for a broad assessment of protein kinase networks in complex biological systems. In conjunction with sophisticated computational modeling techniques, these profiling platforms provide datasets that inform the active state of regulatory systems in disease models and highlight potential drug targets. Taken together, system-wide profiling of protein kinase activity has become a critical component of modern molecular biology research and presents a promising avenue for drug discovery.
Collapse
Affiliation(s)
- Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Nicholas D Henkel
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - William G Ryan V
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Jacob B Rethman
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA; Neurosciences Institute, ProMedica, Toledo, OH, USA.
| |
Collapse
|
2
|
Laufkötter O, Hu H, Miljković F, Bajorath J. Structure- and Similarity-Based Survey of Allosteric Kinase Inhibitors, Activators, and Closely Related Compounds. J Med Chem 2021; 65:922-934. [PMID: 33476146 DOI: 10.1021/acs.jmedchem.0c02076] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allosteric kinase inhibitors are thought to have high selectivity and are prime candidates for kinase drug discovery. In addition, the exploration of allosteric mechanisms represents an attractive topic for basic research and drug design. Although the identification and characterization of allosteric kinase inhibitors is still far from being routine, X-ray structures of kinase complexes have been determined for a significant number of such inhibitors. On the basis of structural data, allosteric inhibitors can be confirmed. We report a comprehensive survey of allosteric kinase inhibitors and activators from publicly available X-ray structures, map their binding sites, and determine their distribution over binding pockets in kinases. In addition, we discuss structural features of these compounds and identify active structural analogues and high-confidence target annotations, indicating additional activities for a subset of allosteric inhibitors. This contribution aims to provide a detailed structure-based view of allosteric kinase inhibition.
Collapse
Affiliation(s)
- Oliver Laufkötter
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Huabin Hu
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Filip Miljković
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| |
Collapse
|