1
|
Ciesielska K, Wawrzyniak D, Dutkiewicz G, Kubicki M, Jankowski W, Hoffmann M, Kamel K, Rolle K, Pluskota-Karwatka D. Diastereoselective synthesis and biological evaluation of new fluorine-containing α-aminophosphonates as anticancer agents and scaffold to human urokinase plasminogen activator inhibitors. Eur J Med Chem 2025; 283:117116. [PMID: 39637829 DOI: 10.1016/j.ejmech.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Phosphonate analogues of α-amino acids are increasingly valued for their significant potential in medicinal chemistry. Fluorine is a "magic" element that plays a huge role in modulating the properties of organic compounds. In this work, we combined the two pharmacophores in the synthesis of three series of new α-aminophosphonates. These compounds were obtained by diastereoselective hydrophosphonylation of imines prepared by an environmentally friendly mechanochemical approach. Results of computational SwissADME analysis suggested favorable drug-like properties of the α-aminophosphonates and indicated their potential for interaction with diverse biological targets including proteases, showing promising pharmacokinetic profiles compared to 5-fluoro-2'-deoxyuridine (FdU) used as a standard anticancer drug. Screening against ten cancer cell lines from seven types of cancer showed that five of the twenty compounds tested (1c, 2a, 2h, 3e, and 3f) exhibited superior activity against the HeLa cell line and lower cytotoxicity against normal MRC-5 cells than FdU. Compound 3e showed notable inhibitory effect on the MDA-MB-231 cell line, while 3a, 3h, and 3g demonstrated significant cytotoxic activity against U-87 MG and U-251 MG lines. Molecular docking highlighted the strong binding of compound 2a to the urokinase-type plasminogen activator (uPA) protein, with a binding affinity of -6.41 kcal/mol, suggesting the anti-metastatic potential of the compound. These findings enable to position the newly synthesized α-aminophosphonates as promising scaffolds for developing targeted anticancer therapies for metastatic cancers characterized by elevated uPA expression.
Collapse
Affiliation(s)
- Karolina Ciesielska
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Dariusz Wawrzyniak
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Grzegorz Dutkiewicz
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Maciej Kubicki
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Wojciech Jankowski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Hoffmann
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Donata Pluskota-Karwatka
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Dormán G, Szalai Z, Keglevich G. Cytotoxic Activity of Distinct Families of Phosphonic Acid Derivatives - A Chemocentric Approach to Assess Their Molecular Action. ChemMedChem 2024; 19:e202400370. [PMID: 38965788 DOI: 10.1002/cmdc.202400370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Phosphorus containing small molecules (particularly α-aminophosphonates, α-hydroxyphosphonates and bisphosphonates) represent a unique chemical space among the biologically active compounds. We selected 35 diverse compounds that showed remarkable cytotoxicity effects on various cancer cell lines. However, the exact mechanism of action often requires further investigations, in vitro or in silico target identification even though many target-based activity data were gathered for the above cluster of compounds. In our conceptual account, we offer a systematic in silico analysis between the cytotoxicity, cell lines, their (over)expressed protein targets associated with malignant diseases, and the activity data on protein targets already reported for those compounds in the hope that we gain better understanding and explanation, what is behind their cytotoxic behavior.
Collapse
Affiliation(s)
- György Dormán
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Budapest, Műegyetem rkp. 3., Hungary
- TargetEx llc., 2120, Dunakeszi, Madách Imre Street 31/2., Hungary
| | - Zsuzsanna Szalai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Budapest, Műegyetem rkp. 3., Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Budapest, Műegyetem rkp. 3., Hungary
| |
Collapse
|
4
|
Liang Q, Zhang S, Liu J, Zhou X, Syamimi Ariffin N, Wei J, Shi C, Ma X, Zhang Y, Huang R. Discovery of novel 1,8-naphthalimide piperazinamide based benzenesulfonamides derivatives as potent carbonic anhydrase IX inhibitors and ferroptosis inducers for the treatment of triple-negative breast cancer. Bioorg Chem 2024; 150:107596. [PMID: 38941699 DOI: 10.1016/j.bioorg.2024.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
A novel series of 1,8-naphthalimide piperazinamide based benzenesulfonamides derivatives were designed and synthesized as carbonic anhydrase IX (CA IX) inhibitors and ferroptosis inducers for the treatment of triple-negative breast cancer (TNBC). The representative compound 9o exhibited more potent inhibitory activity and selective against CA IX over off-target CA II, compared with positive control SLC-0111. Molecular docking study was also performed to gain insights into the binding interactions of 9o in the binding pocket of CAIX. Moreover, compound 9o exhibited superior antitumor activities against breast cancer cells under hypoxia than that of normoxia conditions. Mechanism studies revealed that compound 9o could act as DNA intercalator and effectively suppressed cell migration, arrested the cell cycle at G1/S phase and induced apoptosis in MDA-MB-231 cells, while inducing ferroptosis accompanied by the dissipation of MMP and the elevation intracellular levels of ROS. Notably, in vivo studies demonstrated that 9o effectively inhibited tumor growth and metastasis in a highly metastatic murine breast cancer 4 T1 xenograft model. Taken together, this study suggests that compound 9o represents a potent and selective CA IX inhibitor and ferroptosis inducer for the treatment of TNBC.
Collapse
Affiliation(s)
- Qiaoling Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shi Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiajia Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoqun Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor
| | - Nur Syamimi Ariffin
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor
| | - Jianhua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Chengyi Shi
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Liang SM, Liang GB, Wang HL, Jiang H, Ma XL, Wei JH, Huang RZ, Zhang Y. Discovery of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide as a potent multi-target antitumor agent with good efficacy, limited toxicity, and low resistance. Eur J Med Chem 2024; 263:115937. [PMID: 37972528 DOI: 10.1016/j.ejmech.2023.115937] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
A series of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide derivatives 4-6 were designed, synthesized, and evaluated as novel multi-target antitumor agents. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) results showed that compounds 5j, 5k, and 6j exhibited superior in vitro antiproliferative activity in MGC-803, HepG-2, SKOV-3, and T24 cancer cell lines and the cisplatin-resistant cell line A549/DDP. HepG-2, SKOV-3, and T24 xenograft assay results revealed that compounds 5j, 5k, and 6j exhibited good antitumor effects compared with amonafide. The pathology results indicated that compound 5j exhibited the least comprehensive toxicity among the three compounds, identifying compound 5j as a good candidate antitumor agent with good efficacy, limited toxicity, and low resistance. Compound 5j was thus chose for further antitumor mechanism investigation. Results from the omics research, confocal immunofluorescence, Western blot, transmission electron microscopy, and flow cytometry indicated that compound 5j exerted antitumor effects through multiple mechanisms, including ferroptosis, autophagy, apoptosis, and cell cycle arrest. These results suggest that screening novel 1,8-naphthalimide-based antitumor agents for good efficacy, limited toxicity, and low resistance based on a multi-target drug strategy is feasible.
Collapse
Affiliation(s)
- Si-Min Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Gui-Bin Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
6
|
Shekhar NR, Nagappan K, Singh MT, Dhanabal SP. Nitrosamine Impurities in Herbal Formulations: A Review of Risks and Mitigation Strategies. Drug Res (Stuttg) 2023; 73:431-440. [PMID: 37487523 DOI: 10.1055/a-2081-4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Nitrosamines are a class of chemical compounds that have been found to be impurities in a variety of pharmaceutical products. These impurities have raised concerns due to their potential carcinogenic effects. Recent studies have identified nitrosamines as impurities in a number of pharmaceutical products including angiotensin II receptor blockers (ARBs) and proton pump inhibitors (PPIs). The presence of nitrosamines in these products has led to recalls and market withdrawals. In addition to pharmaceuticals, nitrosamines have also been found in some herbal medicines particularly those containing traditional Chinese medicinal ingredients. The presence of nitrosamines in herbal formulations poses a significant risk to public health and highlights the need for quality control and regulations in the herbal drug industry. The present review article aims to discuss nitrosamine impurities (NMI) prominent causes, risks and scientific strategies for preventing NMI in herbal formulations. The primary objective of this study is to examine the origins of nitrosamine contamination in herbal formulations, the risks associated with these contaminants, and the methods for reducing them. The significance of thorough testing and examination before releasing herbal products to the public is also emphasized. In conclusion, the presence of nitrosamines is not limited to pharmaceutical products and poses a significant threat to the safety of herbal drugs as well. Adequate testing and extensive research are crucial for producing and distributing herbal medicines to the general population.
Collapse
Affiliation(s)
- Nunavath Raja Shekhar
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Krishnaveni Nagappan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - S P Dhanabal
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
7
|
van Niekerk A, Wrzesinski K, Steyn D, Gouws C. A Novel NCI-H69AR Drug-Resistant Small-Cell Lung Cancer Mini-Tumor Model for Anti-Cancer Treatment Screening. Cells 2023; 12:1980. [PMID: 37566059 PMCID: PMC10416941 DOI: 10.3390/cells12151980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Small-cell lung cancer is a fast-growing carcinoma with a poor prognosis and a high level of relapse due to multi-drug resistance (MDR). Genetic mutations that lead to the overexpression of efflux transporter proteins can contribute to MDR. In vitro cancer models play a tremendous role in chemotherapy development and the screening of possible anti-cancer molecules. Low-cost and simple in vitro models are normally used. Traditional two-dimensional (2D) models have numerous shortcomings when considering the physiological resemblance of an in vivo setting. Three-dimensional (3D) models aim to bridge the gap between conventional 2D models and the in vivo setting. Some of the advantages of functional 3D spheroids include better representation of the in vivo physiology and tumor characteristics when compared to traditional 2D cultures. During this study, an NCI-H69AR drug-resistant mini-tumor model (MRP1 hyperexpressive) was developed by making use of a rotating clinostat bioreactor system (ClinoStar®; CelVivo ApS, Odense, Denmark). Spheroid growth and viability were assessed over a 25-day period to determine the ideal experimental period with mature and metabolically stable constructs. The applicability of this model for anti-cancer research was evaluated through treatment with irinotecan, paclitaxel and cisplatin for 96 h, followed by a 96 h recovery period. Parameters measured included planar surface area measurements, estimated glucose consumption, soluble protein content, intracellular adenosine triphosphate levels, extracellular adenylate kinase levels, histology and efflux transporter gene expression. The established functional spheroid model proved viable and stable during the treatment period, with retained relative hyperexpression of the MRP1 efflux transporter gene but increased expression of the P-gp transporter gene compared to the cells cultured in 2D. As expected, treatment with the abovementioned anti-cancer drugs at clinical doses (100 mg/m2 irinotecan, 80 mg/m2 paclitaxel and 75 mg/m2 cisplatin) had minimal impact on the drug-resistant mini-tumors, and the functional spheroid models were able to recover following the removal of treatment.
Collapse
Affiliation(s)
- Alandi van Niekerk
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Krzysztof Wrzesinski
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
- CelVivo ApS, 5491 Blommenslyst, Denmark
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| |
Collapse
|
8
|
Wang K, Song LH, Liang QL, Zhang Y, Ma XL, Wang Q, Zhang HY, Jiang CN, Wei JH, Huang RZ. Discovery of novel sulfonamide chromone-oxime derivatives as potent indoleamine 2,3-dioxygenase 1 inhibitors. Eur J Med Chem 2023; 254:115349. [PMID: 37060754 DOI: 10.1016/j.ejmech.2023.115349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
A series of chromone-oxime derivatives containing piperazine sulfonamide moieties were designed, synthesized and evaluated for their inhibitory activities against IDO1. These compounds displayed moderate to good inhibitory activity against IDO1 with IC50 values in low micromolar range. Among them, compound 10m bound effectively to IDO1 with good inhibitory activities (hIDO1 IC50 = 0.64 μM, HeLa IDO1 IC50 = 1.04 μM) and were selected for further investigation. Surface plasmon resonance analysis confirmed the direct interaction between compound 10m and IDO1 protein. Molecular docking study of the most active compound 10m revealed key interactions between 10m and IDO1 in which the chromone-oxime moiety coordinated to the heme iron and formed several hydrogen bonds with the porphyrin ring of heme and ALA264, consistent with the observation by UV-visible spectra that 10m induced a Soret peak shift from 403 to 421 nm. Moreover, compound 10m exhibited no cytotoxicity at its effective concentration in MTT assay. Consistently, in vivo assays results demonstrated that 10m displayed potent antitumor activity with low toxicity in CT26 tumor-bearing Balb/c mice, in comparison with 1-methyl-l-tryptophan (1-MT) and 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L). In brief, the results suggested that chromone-oxime derivatives containing sulfonamide moieties might serve as IDO1 inhibitors for the development of new antitumor agents.
Collapse
Affiliation(s)
- Ke Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Qiao-Ling Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Xian-Li Ma
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Hui-Yong Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Cai-Na Jiang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
9
|
Chen XM, Zhou JY, Liu SQ, Song LH, Wang HL, Wang Q, Liang SM, Lu L, Wei JH, Huang R, Zhang Y. Design, synthesis, and antitumor evaluation of morpholine substituted bisnaphthalimides as DNA targeting agents. Bioorg Med Chem Lett 2023; 85:129218. [PMID: 36894107 DOI: 10.1016/j.bmcl.2023.129218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
A series of mono- and bisnaphthalimides derivatives containing 3-nitro and 4-morpholine moieties were designed, synthesized, and evaluated for their in vitro anticancer activities against four cancer cell lines. Some compounds exhibited relatively good antiproliferative activity on the cell lines tested, in comparison with mitonafide and amonafide. It is noteworthy that bisnaphthalimide A6 was identified as the most potent compound in anti-proliferation against MGC-803 cells, with an IC50 lowered to 0.09 μM, a far greater potency than that of mono-naphthalimide A7, mitonafide, and amonafide. A gel electrophoresis assay revealed that DNA and Topo I were the potential targets of compounds A6 and A7. The treatment of CNE-2 cells with compounds A6 and A7 resulted in an S phase cell cycle arrest, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of CDK2 and cyclin E. In addition, compounds A6 and A7-induced apoptosis was further confirmed by flow cytometry, ROS generation assay, and Hoechst 33,258 staining. In particular, in vivo antitumor assay results revealed that bisnaphthalimide A6 exhibited potent anticancer efficiency in an MGC-803 xenograft tumor model, in comparison with mitonafide, and had lower toxicity than mono-naphthalimide A7. In brief, the results suggested that bisnaphthalimide derivatives containing 3-nitro and 4-morpholine moieties might serve as DNA binding agents for the development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao-Man Chen
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Yu Zhou
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Shuang-Qiang Liu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Si-Min Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Lin Lu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Rizhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| |
Collapse
|
10
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
11
|
Discovery of two biotin-PEG4‑diarylidenyl piperidone prodrugs as potent antitumor agents with good efficacy, limited toxicity, and low resistance. Bioorg Chem 2023; 131:106323. [PMID: 36538834 DOI: 10.1016/j.bioorg.2022.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Two biotin-polyethylene glycol (PEG)4‑diarylidenyl piperidone (DAP) prodrugs, compounds 3a and 3b, were designed as antineoplastic agents and synthesized by coupling biotin to bifluoro- and binitro-substituted DAP derivatives (DAP-F and DAP-NO2) through a PEG4 linker, respectively. The results of the MTT (3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di- phenytetrazoliumromide) assay and a SW480 xenograft model identified compounds 3a and 3b as candidate antitumor agents with good efficacy, limited toxicity, and low resistance, as compared to the original drugs (DAP-F and DAP-NO2), cisplatin, and doxorubicin (dox). The results of a preliminary pharmacokinetic study showed that compounds 3a and 3b slowly released their original drug DAP-F and DAP-NO2 within 12 h after intraperitoneal injection, respectively. Western blot analysis and computer docking simulations indicated that DAP-F, DAP-NO2, and compounds 3a and 3b were indeed inhibitors of signal transducer and activator of transcription 3 (STAT3) and the antitumor effects of compounds 3a and 3b were exerted by sequentially interacting with the SH2-binding domain followed by the DNA-binding domain after releasing the original drugs DAP-F and DAP-NO2, respectively. These results suggest that the targeted prodrug model led to good antitumor efficacy with reduced toxicity, while a dual STAT3-binding model may promote antitumor efficacy and resistance.
Collapse
|
12
|
Huang X, Chen Y, Zhong W, Liu Z, Zhang H, Zhang B, Wang H. Novel combretastatin A-4 derivative containing aminophosphonates as dual inhibitors of tubulin and matrix metalloproteinases for lung cancer treatment. Eur J Med Chem 2022; 244:114817. [DOI: 10.1016/j.ejmech.2022.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
|
13
|
Yang L, Ma X, Guo K, Li J, Zhang C, Wu L. Dual-functional antitumor conjugates improving the anti-metastasis effect of combretastatin A4 by targeting tubulin polymerization and matrix metalloproteinases. Eur J Med Chem 2022; 238:114439. [PMID: 35551039 DOI: 10.1016/j.ejmech.2022.114439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022]
Abstract
This study prepared different novel conjugates containing tubulin and MMP inhibitors and assessed their anticancer effects. Typically, the conjugate 15g, which contained combretastatin A4 (CA4) and 2-(4-((diethoxyphosphono)(o-tolyl)methylamino)phenyl)acetic acid (19g) connected by an ester bond, showed the maximum effect against proliferation. Particularly, the conjugate yielded a reduced IC50 value of 0.05 μM in controlling the proliferation of HepG2 cells compared to CA4 alone (0.09 μM). Systematic research indicated that 15g suppressed tubulin polymerization, induced cell cycle arrest at the G2/M phase, led to reactive oxidative stress (ROS) generation of HepG2 cells, and resulted in apoptosis by the mitochondrial-dependent apoptotic pathway. Moreover, 15g showed a potent effect on resistant metastasis by decreasing the levels of the proteins MMP2 and MMP9 in the HepG2 cells. Therefore, this conjugate is a potentially effective approach to improve the anti-metastatic effect of CA4 with high safety.
Collapse
Affiliation(s)
- Limin Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xin Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Kerong Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jian Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
14
|
Copper (II)-β-Cyclodextrin Promoted Kabachnik-Fields Reaction: An Efficient, One-Pot Synthesis of α-Aminophosphonates. Top Catal 2022. [DOI: 10.1007/s11244-021-01556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
BEKTAS H, DASDAG S. Extremely Low Frequency Magnetic Field Alters Cytotoxicity of Irinotecan in Glioblastoma: A Preliminary Observation. DICLE MEDICAL JOURNAL 2021. [DOI: 10.5798/dicletip.987802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Cytotoxic Activity of Piperazin-2-One-Based Structures: Cyclic Imines, Lactams, Aminophosphonates, and Their Derivatives. MATERIALS 2021; 14:ma14092138. [PMID: 33922317 PMCID: PMC8122789 DOI: 10.3390/ma14092138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022]
Abstract
N-Heterocycles are considered as desirable scaffolds for the development of novel lead compounds for anticancer drug research. Among them, phosphorus-containing amino-derivatives play a crucial role. A series of imines and products of their further reactions with P-nucleophiles were obtained starting from vicinal bisamines. Reaction of ethylenediamine and α-carbonyl esters yielded in novel unexpected products, which structures were confirmed by crystallographic measurements. The cytotoxic activity evaluation was done on a variety of cell lines including HUH7, AKH12, DAOY, UW228-2, D283, D425, and U251. Human umbilical vein endothelial cells (HUVECs) were used as control. Two of the tested compounds, bearing TADDOL-derived, and trifluoromethyl substituents showed a significant effect on cell viability, though comparable to nonmalignant cells.
Collapse
|
17
|
Zaout S, Chafaa S, Hellal A, Boukhemis O, Khattabi L, Merazig H, Chafai N, Bensouici C, Bendjeddou L. Hydroxyphenylamine phosphonate derivatives: Synthesis, X-ray crystallographic analysis, and evaluation of theirs anti-Alzheimer effects and antioxidant activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Dimukhametov MN, Mironov VF, Islamov DR, Litvinov IA, Gnezdilov OI, Danilova YV. Reaction of sodium N-benzylideneglycinate with dialkyl chlorophosphites in the presence of water. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Iwanejko J, Wojaczyńska E, Turlej E, Maciejewska M, Wietrzyk J. Octahydroquinoxalin-2(1 H)-One-Based Aminophosphonic Acids and Their Derivatives-Biological Activity Towards Cancer Cells. MATERIALS 2020; 13:ma13102393. [PMID: 32455965 PMCID: PMC7287629 DOI: 10.3390/ma13102393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 01/27/2023]
Abstract
In the search for new antitumor agents, aminophosphonic acids and their derivatives based on octahydroquinoxalin-2(1H)-one scaffold were obtained and their cytotoxic properties and a mechanism of action were evaluated. Phosphonic acid and phosphonate moieties increased the antiproliferative activity in comparison to phenolic Mannich bases previously reported. Most of the obtained compounds revealed a strong antiproliferative effect against leukemia cell line (MV-4-11) with simultaneous low cytotoxicity against normal cell line (mouse fibroblasts-BALB/3T3). The most active compound was diphenyl-[(1R,6R)-3-oxo-2,5-diazabicyclo[4.4.0]dec-4-yl]phosphonate. Preliminary evaluation of the mechanism of action showed the proapoptotic effect associated with caspase 3/7 induction.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-320-2410
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| |
Collapse
|