1
|
Xu Q, Tu Y, Zhang Y, Xiu Y, Yu Z, Jiang H, Wang C. Discovery and biological evaluation of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives with promising antitumor activities as novel colchicine-binding site inhibitors. Eur J Med Chem 2024; 279:116869. [PMID: 39316845 DOI: 10.1016/j.ejmech.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tubulin, as the fundamental unit of microtubules, is a crucial target in the investigation of anticarcinogens. The synthesis and assessment of small-molecule tubulin polymerization inhibitors remains a promising avenue for the development of novel cancer therapeutics. Through an analysis of reported colchicine-binding site inhibitors (CBSIs) and tubulin binding models, a set of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives were meticulously crafted as potential CBSIs. Notably, compound 14u exhibited potent anti-proliferative efficacy, displaying IC50 values ranging from 0.03 to 0.18 μM against three human cancer cell lines (Huh7, MCF-7, and SGC-7901). Mechanistic investigations revealed that compound 14u could disrupt tubulin polymerization, dismantle the microtubule architecture, arrest the cell cycle at G2/M phase, and induce apoptosis in cancer cells. Furthermore, compound 14u demonstrated significant inhibition of tumor proliferation in vivo with no discernible toxicity in the Huh7 orthotopic tumor model mice. Additionally, physicochemical property predictions indicated that compound 14u adhered well to Lipinski's rule of five. These findings collectively suggest that compound 14u holds promise as an antitumor agent targeting the colchicine-binding site on tubulin and warrants further investigation.
Collapse
Affiliation(s)
- Qianqian Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuxuan Tu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zongjiang Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 26610, Shandong, China.
| | - Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
La Monica G, Bono A, Alamia F, Lauria A, Martorana A. Bioisosteric heterocyclic analogues of natural bioactive flavonoids by scaffold-hopping approaches: State-of-the-art and perspectives in medicinal chemistry. Bioorg Med Chem 2024; 109:117791. [PMID: 38870715 DOI: 10.1016/j.bmc.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy.
| |
Collapse
|
3
|
Zhang J, Tan L, Wu C, Li Y, Chen H, Liu Y, Wang Y. Discovery and biological evaluation of 4,6-pyrimidine analogues with potential anticancer agents as novel colchicine binding site inhibitors. Eur J Med Chem 2023; 248:115085. [PMID: 36621138 DOI: 10.1016/j.ejmech.2022.115085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Novel 4,6-pyrimidine analogues were designed and synthesized as colchicine binding site inhibitors (CBSIs) with potent antiproliferative activities. Among them, compound 17j has the most potent activities against 6 human cancer cell lines with IC50 values from 1.1 nM to 4.4 nM, which was 76 times higher than the lead compound 3 in A549 cells. The co-crystal structure of 17j in complex with tubulin confirms the key binding mode at the colchicine binding site. Moreover, 17j inhibited the tubulin polymerization in biochemical assays, depolymerized cellular microtubules, induced the G2/M arrest, inhibited the cell migration, and promoted the initiation of apoptosis. In vivo, 17j effectively inhibits primary tumor growth with tumor growth inhibition rates of 42.51% (5 mg/kg) and 65.42% (10 mg/kg) in A549 xenograft model. Taken together, 17j represents a promising new generation of CBSIs.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuyan Li
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yinghuan Liu
- Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
An update on the recent advances and discovery of novel tubulin colchicine binding inhibitors. Future Med Chem 2023; 15:73-95. [PMID: 36756851 DOI: 10.4155/fmc-2022-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Microtubules, formed by α- and β-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.
Collapse
|
5
|
Dutta L, Ramasastry SSV. Phosphine-Mediated Redox Cyclization of 1-(2-Nitroaryl)prop-2-ynones to 3-Hydroxyquinolin-4-ones: Formal Intramolecular Oxyamination of α,β-Ynones. Org Lett 2022; 24:7665-7670. [PMID: 36226855 DOI: 10.1021/acs.orglett.2c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Hydroxyquinoline-4(1H)-ones (3HQs) are privileged structural motifs. The current methods for their synthesis necessitate strongly acidic or basic conditions, which hamper the generality and practicality. Here, we describe phosphine-mediated redox transformation of easily accessible 1-(2-nitroaryl)prop-2-ynones to 3HQs. Besides establishing a new entry to the synthesis of 3HQs under neutral conditions, this method is the first formal intramolecular oxyamination of α,β-ynones. The synthetic utility of this method is demonstrated in the total synthesis of japonine, its analogs, and rare quinoline derivatives.
Collapse
Affiliation(s)
- Lona Dutta
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Sahibzada Ajit Singh Nagar, Manauli PO, Punjab 140306, India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Sahibzada Ajit Singh Nagar, Manauli PO, Punjab 140306, India
| |
Collapse
|
6
|
Novel 7-Chloro-(4-thioalkylquinoline) Derivatives: Synthesis and Antiproliferative Activity through Inducing Apoptosis and DNA/RNA Damage. Pharmaceuticals (Basel) 2022; 15:ph15101234. [PMID: 36297346 PMCID: PMC9607427 DOI: 10.3390/ph15101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5-40 and sulfinyl 41-62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63-82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53-/- (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for compound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.
Collapse
|
7
|
Popova M, Borowski T, Elsberg JGD, Dederich CT, Berreau LM. Mechanistic studies of visible light-induced CO release from a 3-hydroxybenzo[ g]quinolone. RSC Adv 2022; 12:2751-2758. [PMID: 35425331 PMCID: PMC8979009 DOI: 10.1039/d1ra07527f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Organic compounds that can be triggered using light to release CO in biological environments are of significant current interest to probe the role of CO in biology and as potential therapeutics. We recently reported that a 3-hydroxybenzo[g]quinolone (5) can be used as a CO delivery molecule to produce anticancer and potent anti-inflammatory effects. Herein we report mechanistic studies of the visible light-induced CO release reaction of this compound. In wet CH3CN under aerobic conditions, 5 releases 0.90(2) equivalents of CO upon illumination with visible light (419 nm) to give a single depside product. Performing the same reaction under an 18O2 atmosphere results in quantitative incorporation of two labeled oxygen atoms in the depside product. Monitoring via1H NMR and UV-vis during the illumination of 5 in CH3CN using 419 nm light revealed the substoichiometric formation of a diketone (6) in the reaction mixture. H2O2 formation was detected in the same reaction mixtures. DFT studies indicate that upon light absorption an efficient pathway exists for the formation of a triplet excited state species (5b) that can undergo reaction with 3O2 resulting in CO release. DFT investigations also provide insight into diketone (6) and H2O2 formation and subsequent reactivity. The presence of water and exposure to visible light play an important role in lowering activation barriers in the reaction between 6 and H2O2 to give CO. Overall, two reaction pathways have been identified for CO release from a 3-hydroxybenzo[g]quinolone. Illumination of a 3-hydroxybenzo[g]quinolone with visible light results in CO release via two different reaction pathways.![]()
Collapse
Affiliation(s)
- Marina Popova
- Department of Chemistry and Biochemistry, Utah State University 0300 Old Main Hill Logan UT 84322-0300 USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science Niezapominajek 8 Krakow 30-239 Poland
| | - Josiah G D Elsberg
- Department of Chemistry and Biochemistry, Utah State University 0300 Old Main Hill Logan UT 84322-0300 USA
| | - C Taylor Dederich
- Department of Chemistry and Biochemistry, Utah State University 0300 Old Main Hill Logan UT 84322-0300 USA
| | - Lisa M Berreau
- Department of Chemistry and Biochemistry, Utah State University 0300 Old Main Hill Logan UT 84322-0300 USA
| |
Collapse
|
8
|
Porubský M, Vychodilová K, Milićević D, Buděšinský M, Stanková J, Džubák P, Hajdúch M, Hlaváč J. Cytotoxicity of Amino-BODIPY Modulated via Conjugation with 2-Phenyl-3-Hydroxy-4(1H)-Quinolinones. ChemistryOpen 2021; 10:1104-1110. [PMID: 34427046 PMCID: PMC8562313 DOI: 10.1002/open.202100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Indexed: 11/12/2022] Open
Abstract
The combination of cytotoxic amino-BODIPY dye and 2-phenyl-3-hydroxy-4(1H)-quinolinone (3-HQ) derivatives into one molecule gave rise to selective activity against lymphoblastic or myeloid leukemia and the simultaneous disappearance of the cytotoxicity against normal cells. Both species' conjugation can be realized via a disulfide linker cleavable in the presence of glutathione characteristic for cancer cells. The cleavage liberating the free amino-BODIPY dye and 3-HQ derivative can be monitored by ratiometric fluorescence or by the OFF-ON effect of the amino-BODIPY dye. A similar cytotoxic activity is observed when the amino-BODIPY dye and 3-HQ derivative are connected through a non-cleavable maleimide linker. The work reports the synthesis of several conjugates, the study of their cleavage inside cells, and cytotoxic screening.
Collapse
Affiliation(s)
- Martin Porubský
- Department of Organic ChemistryFaculty of SciencePalacký UniversityTř. 17. Listopadu 12771 46OlomoucCzech Republic
| | - Kristýna Vychodilová
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - David Milićević
- Department of Organic ChemistryFaculty of SciencePalacký UniversityTř. 17. Listopadu 12771 46OlomoucCzech Republic
| | - Miloš Buděšinský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 542/2160 00PragueCzech Republic
| | - Jarmila Stanková
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - Petr Džubák
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - Jan Hlaváč
- Department of Organic ChemistryFaculty of SciencePalacký UniversityTř. 17. Listopadu 12771 46OlomoucCzech Republic
| |
Collapse
|
9
|
Zhou X, Liu J, Meng J, Fu Y, Wu Z, Ouyang G, Wang Z. Discovery of facile amides-functionalized rhodanine-3-acetic acid derivatives as potential anticancer agents by disrupting microtubule dynamics. J Enzyme Inhib Med Chem 2021; 36:1996-2009. [PMID: 34525898 PMCID: PMC8451688 DOI: 10.1080/14756366.2021.1975695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microtubule dynamics are crucial for multiple cell functions, and cancer cells are particularly sensitive to microtubule-modulating agents. Here, we describe the design and synthesis of a series of (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide derivatives and evaluation of their microtubule-modulating and anticancer activities in vitro. Proliferation assays identified I20 as the most potent of the antiproliferative compounds, with 50% inhibitory concentrations ranging from 7.0 to 20.3 µM with A549, PC-3, and HepG2 human cancer cell lines. Compound I20 also disrupted cancer A549 cell migration in a concentration-dependent manner. Immunofluorescence microscopy, transmission electron microscopy, and tubulin polymerisation assays suggested that compound I20 promoted protofilament assembly. In support of this possibility, computational docking studies revealed a strong interaction between compound I20 and tubulin Arg β369, which is also the binding site for the anticancer drug Taxol. Our results suggest that (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide derivatives could have utility for the development of microtubule-stabilising therapeutic agents.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China.,College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Jiamin Liu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Jiao Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China
| | - Yihong Fu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Zhibin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China
| | - Guiping Ouyang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China.,College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
10
|
Li X, Wang Y, Ouyang Y, Yu Z, Zhang B, Zhang J, Shi H, Zuilhof H, Du Y. Unexpected Substituent Effects in Spiro-Compound Formation: Steering N-Aryl Propynamides and DMSO toward Site-Specific Sulfination in Quinolin-2-ones or Spiro[4,5]trienones. J Org Chem 2021; 86:9490-9502. [PMID: 34184892 PMCID: PMC8291627 DOI: 10.1021/acs.joc.1c00775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A highly substituent-dependent
rearrangement allows for the novel and SOCl2-induced divergent
synthesis of 3-methylthioquinolin-2-ones and 3-methylthiospiro[4.5]trienones
through intramolecular electrophilic cyclization of N-aryl propyamides. DMSO acts as both solvent and sulfur source, and
use of DMSO-h6/d6 enables the incorporation of SCH3 or SCD3 moieties to the 3-position of the heterocyclic framework. Different para-substituents trigger divergent reaction pathways leading
to the formation of quinolin-2-ones for mild substituents and spiro[4,5]trienones
for both electron-withdrawing and -donating substituents, respectively.
On the basis of both computational and experimental results, a new
mechanism has been put forward that accounts for the exclusive spirolization/defluorination
process and the surprising substituent effects.
Collapse
Affiliation(s)
- Xiaoxian Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuanxun Wang
- National Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yaxin Ouyang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haofeng Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Han Zuilhof
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Krajčovičová S, Hlaváč J, Vychodilová K. Polymer-supported synthesis of N-substituted anthranilates as the building blocks for preparation of N-arylated 3-hydroxyquinolin-4(1 H)-ones. RSC Adv 2021; 11:9362-9365. [PMID: 35423420 PMCID: PMC8695337 DOI: 10.1039/d1ra01308d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Fast and simple access to N-arylated 3-hydroxyquinolin-4(1H)-ones starting from easily available 1-methyl-2-iodoterephthalate and variously substituted anilines is presented. N-Alkylated anthranilic acid derivatives represent important intermediates. They can be advantageously prepared by solid-phase synthesis, by Buchwald–Hartwig amination or reductive amination with wide substrate scope and with excellent crude purities. Fast and simple access to N-arylated 3-hydroxyquinolin-4(1H)-ones starting from easily available 1-methyl-2-iodoterephthalate and variously substituted anilines is presented.![]()
Collapse
Affiliation(s)
- Soňa Krajčovičová
- Department of Organic Chemistry, Faculty of Science, Palacký University 17. Listopadu 12 77146 Olomouc Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University 17. Listopadu 12 77146 Olomouc Czech Republic
| | - Kristýna Vychodilová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Hněvotínská 5 77900 Olomouc Czech Republic
| |
Collapse
|
12
|
Steroid Glycosides Hyrcanoside and Deglucohyrcanoside: On Isolation, Structural Identification, and Anticancer Activity. Foods 2021; 10:foods10010136. [PMID: 33440629 PMCID: PMC7827417 DOI: 10.3390/foods10010136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiac glycosides (CGs) represent a group of sundry compounds of natural origin. Most CGs are potent inhibitors of Na+/K+-ATPase, and some are routinely utilized in the treatment of various cardiac conditions. Biological activities of other lesser known CGs have not been fully explored yet. Interestingly, the anticancer potential of some CGs was revealed and thereby, some of these compounds are now being evaluated for drug repositioning. However, high systemic toxicity and low cancer cell selectivity of the clinically used CGs have severely limited their utilization in cancer treatment so far. Therefore, in this study, we have focused on two poorly described CGs: hyrcanoside and deglucohyrcanoside. We elaborated on their isolation, structural identification, and cytotoxicity evaluation in a panel of cancerous and noncancerous cell lines, and on their potential to induce cell cycle arrest in the G2/M phase. The activity of hyrcanoside and deglucohyrcanoside was compared to three other CGs: ouabain, digitoxin, and cymarin. Furthermore, by in silico modeling, interaction of these CGs with Na+/K+-ATPase was also studied. Hopefully, these compounds could serve not only as a research tool for Na+/K+-ATPase inhibition, but also as novel cancer therapeutics.
Collapse
|
13
|
Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. Eur J Med Chem 2020; 208:112847. [DOI: 10.1016/j.ejmech.2020.112847] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|