1
|
Zhang H, Yu J, Yang Z, Guo Z, Liu R, Qin Q, Sun Y, Liu N, Gao Z, Zhao D, Cheng M. Structure-based virtual screening discovers novel PKMYT1 inhibitors. RSC Med Chem 2024; 15:3114-3124. [PMID: 39309356 PMCID: PMC11411631 DOI: 10.1039/d4md00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/21/2024] [Indexed: 09/25/2024] Open
Abstract
PKMYT1, a member of the WEE family, plays a crucial role in the cell cycle by specifically phosphorylating CDK1-CyclinB at Tyr15 and Thr14. Recent investigations have revealed that the amplification of CCNE1 and the inhibition of PKMYT1 kinase collectively result in synthetic lethality, further indicating that PKMYT1 is promising as an effective target for tumor therapy. Existing PKMYT1 inhibitors are mostly derivatives of RP-6306 or pan-inhibitors, limiting their further development. Herein, we conducted virtual screening of a natural product library, and in vitro enzyme experiments demonstrated that EGCG, GCG, and luteolin exhibited potent inhibitory activities with IC50 values of 0.137 μM, 0.159 μM, and 1.5 μM, respectively. Subsequently, analysis of the hit compounds and RP-6306, using different molecular simulation methods, revealed that stable hydrogen bonds with Asp251 and Glu157 in the DFG region were vital for binding to PKMYT1, more so than hydrogen bonds in the hinge and loop regions.
Collapse
Affiliation(s)
- Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Jinyu Yu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Ziheng Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Zhiqiang Guo
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Rui Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang 110016 China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University Shenyang 110016 China
| |
Collapse
|
2
|
Wang Y, Wang A, Zhao G, Liu S, Li K, Li W, Peng Y, Zheng J. Glutathione conjugation and protein modification resulting from metabolic activation of pesticide metalaxyl in vitro and in vivo. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105606. [PMID: 37945228 DOI: 10.1016/j.pestbp.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 11/12/2023]
Abstract
Metalaxyl (MTL), a germicidal agent, is widely used in agriculture. Due to the biological amplification effect, MTL entering the ecological environment would result in a threat to human health through the food chain. MTL is reportedly accumulated in liver. The objectives of the study included investigating the metabolic activation of MTL in liver and defining the mechanisms participating in the hepatotoxicity of MTL. The corresponding glutathione (GSH), N-acetylcysteine (NAC) conjugate, and cysteine conjugates were observed in liver microsomes, prepared from liver tissues of mice, containing MTL and GSH, NAC or cysteine. These conjugates were also detected in urine and bile of rats receiving MTL. Apparently, MTL was biotransformed to a quinone imine intermediate dose-dependently attacking the thiols and cysteine residues of protein. The bioactivation of MTL required cytochrome P450 enzymes, and CYP3A dominated the bio-activation of MTL.
Collapse
Affiliation(s)
- Yang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Aixuan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Siyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Kaixuan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
3
|
Mao Y, Sun J, Wang Z, Liu Y, Sun J, Wei Z, Wang M, Yang Y. Combining transcriptomic analysis and network pharmacology to explore the mechanism by which Shaofu Zhuyu decoction improves diabetes mellitus erectile dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155006. [PMID: 37567007 DOI: 10.1016/j.phymed.2023.155006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Erectile dysfunction is common among the complications of diabetes mellitus. Shaofu Zhuyu decoction (SFZYD) is commonly used to treat diabetic mellitus erectile dysfunction (DMED). However, its main active components and specific mechanism are still unknown. PURPOSE To confirm the activity of SFZYD in improving DMED, explore the main active components of SFZYD, and clarify the underlying mechanism. METHODS A diabetic rat model was induced with streptozotocin (STZ). After intragastric administration, erectile function was assessed by the maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP). Corpus cavernosum fibrosis was evaluated by Masson staining, and ELISA methods were used to determine the serum levels of IL-6, TNF-α, IL-10, IL-4 and IL-1β to evaluate inflammation. Then, the main active components of SFZYD were identified by UPLC‒MS/MS. Finally, the target and biological mechanism of SFZYD in improving DMED were predicted by combined network pharmacology and transcriptomics, which was also validated by molecular docking and cellular thermal shift assay (CETSA) experiments. RESULTS SFZYD significantly improved erectile dysfunction and inhibited inflammatory responses and local tissue fibrosis in diabetic rats. A total of 1846 active components were identified by UPLC‒MS/MS, and isorhamnetin was the main active component. The transcriptomic results were used to identify differentially expressed genes among the control, DM and SFZYD groups, and 1264 differentially expressed genes were obtained from the intersection. The network pharmacology results showed that SFZYD acts on core targets such as AKT1, ALB, HSP90AA1 and ESR1 through core components such as isorhamnetin, quercetin and chrysophanic acid. Further combined analysis revealed that multiple targets, such as CYP1B1, DPP4, NOS2 and LCN2, as well as the regulation of the PI3K-AKT signaling pathway, may be important mechanisms by which SFZYD improves DMED. Molecular docking verification showed that isorhamnetin, the key component of SFZYD, has good binding ability with several core targets, and its binding ability with CYP1B1 was the strongest. The CETSA results showed that isorhamnetin binds to CYP1B1 in CCECs. CONCLUSION SFZYD improves DMED, inhibits the inflammatory response and alleviates local tissue fibrosis. The combined application of transcriptomic, network pharmacology, molecular docking and CETSA approaches was helpful for revealing the mechanism by which SFZYD improves DMED, which may be related to the regulation of CYP1B1 and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yinhui Mao
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juntao Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Liu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jilei Sun
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingxing Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Yong Yang
- Changchun University of Chinese Medicine, Changchun 130117, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
4
|
Hijazi MA, Gessner A, El-Najjar N. Repurposing of Chronically Used Drugs in Cancer Therapy: A Chance to Grasp. Cancers (Basel) 2023; 15:3199. [PMID: 37370809 DOI: 10.3390/cancers15123199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advancement in drug discovery for cancer therapy, drug repurposing remains an exceptional opportunistic strategy. This approach offers many advantages (faster, safer, and cheaper drugs) typically needed to overcome increased challenges, i.e., side effects, resistance, and costs associated with cancer therapy. However, not all drug classes suit a patient's condition or long-time use. For that, repurposing chronically used medications is more appealing. This review highlights the importance of repurposing anti-diabetic and anti-hypertensive drugs in the global fight against human malignancies. Extensive searches of all available evidence (up to 30 March 2023) on the anti-cancer activities of anti-diabetic and anti-hypertensive agents are obtained from multiple resources (PubMed, Google Scholar, ClinicalTrials.gov, Drug Bank database, ReDo database, and the National Institutes of Health). Interestingly, more than 92 clinical trials are evaluating the anti-cancer activity of 14 anti-diabetic and anti-hypertensive drugs against more than 15 cancer types. Moreover, some of these agents have reached Phase IV evaluations, suggesting promising official release as anti-cancer medications. This comprehensive review provides current updates on different anti-diabetic and anti-hypertensive classes possessing anti-cancer activities with the available evidence about their mechanism(s) and stage of development and evaluation. Hence, it serves researchers and clinicians interested in anti-cancer drug discovery and cancer management.
Collapse
Affiliation(s)
- Mohamad Ali Hijazi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Chen X, Zhao T, Du J, Guan X, Yu H, Wang D, Wang C, Meng Q, Yao J, Sun H, Liu K, Wu J. Comparative Inhibitory Effects of Natural Biflavones from Ginkgo against Human CYP1B1 in Recombinant Enzymes and MCF-7 Cells. PLANTA MEDICA 2023; 89:397-407. [PMID: 36064115 DOI: 10.1055/a-1936-4807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic enzyme overexpressed in many tumors and associated with angiogenesis. Ginkgetin, isoginkgetin, sciadopitysin, and amentoflavone, the primary biflavones found in Ginkgo biloba, have excellent anti-inflammatory and anti-tumor effects. However, the effect of biflavones on CYP1B1 activities remains unknown. In this study, 7-ethoxyresorufin O-deethylation (EROD) was used to characterize the activities of CYP1 families. The impacts of four ginkgo biflavones on CYP1B1 activity and the cellular protein expression of CYP1B1 were systematically investigated. The results showed that amentoflavone with six hydroxyl substituents exhibited the most potent selective inhibitory effect on CYP1B1 activity with IC50 of 0.054 µM in four biflavones. Sciadopitysin, with three hydroxyl and three methoxy substituents, had the weakest inhibitory activity against CYP1B1. Ginkgetin and isoginkgetin, both with four hydroxyl and two methoxy substituents, showed similar inhibitory intensity towards CYP1B1 with IC50 values of 0.289 and 0.211 µM, respectively. Kinetic analysis showed that ginkgetin and amentoflavone inhibited CYP1B1 in a non-competitive mode, whereas sciadopitysin and isoginkgetin induced competitive or mixed types of inhibition. Notably, four ginkgo biflavones were also confirmed to suppress the protein expressions of CYP1B1 and AhR in MCF-7. Furthermore, molecular docking studies indicated more hydrogen bonds formed between amentoflavone and CYP1B1, which might explain the strongest inhibitory action towards CYP1B1. In summary, these findings suggested that biflavones remarkably inhibited both the activity and protein expression of CYP1B1 and the inhibitory activities enhanced with the increasing hydroxyl substitution, providing new insights into the anti-tumor potentials of biflavones.
Collapse
Affiliation(s)
- Xiaodong Chen
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Zhao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jie Du
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xintong Guan
- College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Hong Yu
- Department of Pharmacy, Dalian Municipal Women and Children's Medical Center, Liaoning Dalian, China
| | - Dalong Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jialin Yao
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jingjing Wu
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Sharma H, Raju B, Narendra G, Kumar M, Verma H, Sharma B, Tung GK, Kumar Jain S, Brás NF, Silakari O. In silico guided designing of optimized benzochalcones derivatives as potent CYP1B1 inhibitors: An integrated in vitro and ONIOM study. J Mol Graph Model 2023; 119:108390. [PMID: 36502606 DOI: 10.1016/j.jmgm.2022.108390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Cytochrome P4501B1 (CYP1B1) is reported to be overexpressed in various malignancies including ovarian, lung, lymph, and breast cancers. The overexpression of this enzyme is accountable for the biotransformation-based inactivation of some anti-cancer drugs i.e. Docetaxel, Paclitaxel, and Cisplatin. To circumvent solutions to this issue, the current study reports some optimized derivatives of benzochalcone as selective CYP1B1 inhibitors. The optimized derivatives were screened using some structure-based drug-designing approaches including molecular docking and molecular dynamics. The implemented approaches revealed that all the designed molecules demonstrated not only essential interactions with key amino acid residues but also maintained stability within the active site of CYP1B1. Furthermore, to validate the in-silico results and develop a SAR, the designed molecules were subsequently synthesized and tested for their ability to selectively inhibit CYP1B1 over CYP1A1 using well established EROD assay. This assay results suggested that compounds 1(c), 1(d), and 1(e) are eightfold more selective CYP1B1 inhibitors over CYP1A1 with IC50 values ranging from 0.06 to 0.09 μM respectively. Among these, compound 1(d) manifested potent inhibitory activity i.e. IC50 of 0.06 μM with 24 folds selectivity over 1A1. To have a better insight into the binding pattern of 1(d) within CYP1B1 and precisely compute binding affinity for 1(d)-CYP1B1 complex, one of the advanced QM/MM approaches i.e. ONIOM has been implemented. Where 1(d)-CYP1B1 complex conferred comparable binding affinity in terms of ΔG (kcal/mol) with that of ANF-CYP1B1 complex. This research could provide a suitable starting point for the development of more potent multi-functional compounds with CYP1B1 inhibitory activity.
Collapse
Affiliation(s)
- Himani Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bhavna Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gurleen Kaur Tung
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Center for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Natércia F Brás
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
7
|
Zhao G, Ma Y, Wang X, Li W, Chen Y, Li W, Peng Y, Zheng J. Configurational Alteration Results in Change in Hepatotoxicity of Asarone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:884-894. [PMID: 36584355 DOI: 10.1021/acs.jafc.2c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
α-Asarone (αA) and β-asarone (βA) are often used as flavoring agents for alcoholic beverages and food supplements. They possess a double bond in the side chain with different configurations. Double bonds are a class of alert chemical group, due to their metabolic epoxidation to the corresponding epoxides eliciting liver injury. Little is known about changes of configuration on metabolic activation and related toxicity. Here, we report the insight into the mechanisms of hepatotoxicity of asarone with different configurations. In vitro and in vivo comparative studies demonstrated βA displayed higher metabolic activation effectiveness. Apparently, the major metabolic pathway of βA underwent epoxidation at C-1' and C-2', while αA was mainly metabolized to the corresponding alcohol resulting from the hydroxylation of C-3'. CYP1A2 dominated the metabolism of αA and βA. The molecular simulation studies showed that the orientation of βA at the active site of CYP1A2 favored the epoxidation of βA over that of αA. These findings not only remind us that configuration is another important factor for toxicities but also facilitate the understanding of the mechanisms of toxic action of asarone. Additionally, these findings would benefit the risk assessment of αA and βA exposure from foods.
Collapse
Affiliation(s)
- Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yufei Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yuqin Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
8
|
The Role of procollagen type 1 amino-terminal propertied (P1NP) Cytochrome P450 (CYPs) and Osteoprotegerin (OPG) as Potential Bone function markers in Prostate Cancer Bone Metastasis. REV ROMANA MED LAB 2023. [DOI: 10.2478/rrlm-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Background: Procollagen type I amino-terminal propeptide (PINP) is often present during osteoblast development and could be a biomarker of early bone development. Osteoprotegerin (OPG) may protect tumor cells from apoptosis. Cytochrome P450 enzymes help tumor development and treatment (CYPs). Cytochrome P450 activates and deactivates anticancer drugs and procarcinogens.
Objective: The study examined the amounts of a diagnostic marker of bone formation, the amino terminal propeptide of type I procollagen (PINP), Osteoprotegerin (OPG), and P450, in prostate cancer patients at different stages and its ability to detect osteoblastic metastases.
Methods: ELISA was used to measure PINP, OPG, and P450 levels in 30 prostate cancer patients. (n = 32) and healthy men’s serum (n = 36).
Results: Prostate cancer patients had higher blood levels of PINP, OPG, and P450 than healthy persons (301.3±134.9, 980±467.2, and 84.2±28.4 pg/mL, respectively). Compared to I+II prostate cancer patients, III+IV patients showed higher serum PINP, OPG, and P450 levels (P 0.001). OPG, P450, and PINP had statistically significant Area under the ROC curve (0.9467, P= 0.0001, 0.91, P= 0.0001, and 0.6977, P= 0.4035) in prostate cancer patients.
Conclusions: Metastatic prostate cancer patients had greater PINP, OPG, and P450 levels, according to our findings. PINP, OPG, and P450 levels may affect prostate cancer progression. These findings imply that serum PINP, OPG, and P450 levels may predict and diagnose prostate cancer.
Collapse
|
9
|
Mao J, Wang D, Xu P, Wang Y, Zhang H, Wang S, Xu F, Wang J, Zhang F. Structure-Based Drug Design and Synthesis of Novel N-Aryl-2,4-bithiazole-2-amine CYP1B1-Selective Inhibitors in Overcoming Taxol Resistance in A549 Cells. J Med Chem 2022; 65:16451-16480. [PMID: 36512763 DOI: 10.1021/acs.jmedchem.2c01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a promising therapeutic target for cancer, CYP1B1 is overexpressed in Taxol-resistant A549 cells; however, its role in drug resistance still remains unclear. Bioinformatic analysis data indicated that CYP1B1 was closely correlated with AKT/ERK1/2 and focal adhesion pathways, thereby playing an important role in Taxol resistance and cancer migration/invasion. Along similar lines, the AhR agonist 7,12-dimethylbenz[a]anthracene (DMBA) enhanced Taxol resistance and promoted migration/invasion of A549 and H460 cells likely stemming from CYP1B1 upregulation. Moreover, 83 novel N-aryl-2,4-bithiazole-2-amine CYP1B1-selective inhibitors were designed and synthesized to verify the role of CYP1B1 in Taxol-resistant A549 cells. Impressively, the most potent and selective one, namely, 77, remarkably inhibited AKT/ERK1/2 and FAK/SRC pathways and thereby reversed Taxol resistance as well as inhibited both migration and invasion of A549/Taxol cells. Collectively, this study not only displayed the role of CYP1B1 in Taxol resistance and cancer migration/invasion but also helped unlock the CYP1B1-oriented anticancer discovery.
Collapse
Affiliation(s)
- Jianping Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Dong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Ping Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Shiyu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Feng Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| |
Collapse
|
10
|
Wu Y, Wang S, Wang H, Hu B, Wang J. Selectivity mechanism of GRK2/5 inhibition through in silico investigation. Comput Biol Chem 2022; 101:107786. [DOI: 10.1016/j.compbiolchem.2022.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
11
|
Tong W, Wenze G, Libing H, Yuchen C, Hejia Z, Xi G, Xiongyi Y, Guoguo Y, Min F. Exploration of shared TF-miRNA‒mRNA and mRNA-RBP-pseudogene networks in type 2 diabetes mellitus and breast cancer. Front Immunol 2022; 13:915017. [PMID: 36131924 PMCID: PMC9484524 DOI: 10.3389/fimmu.2022.915017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has been confirmed to be closely associated with breast cancer (BC). However, the shared mechanisms between these diseases remain unclear. By comparing different datasets, we identified shared differentially expressed (DE) RNAs in T2DM and BC, including 427 mRNAs and 6 miRNAs from the GEO(Gene Expression Omnibus) database. We used databases to predict interactions to construct two critical networks. The transcription factor (TF)-miRNA‒mRNA network contained 236 TFs, while the RNA binding protein (RBP)-pseudogene-mRNA network showed that the pseudogene S-phase kinase associated protein 1 pseudogene 1 (SKP1P1) might play a key role in regulating gene expression. The shared mRNAs between T2DM and BC were enriched in cytochrome (CYP) pathways, and further analysis of CPEB1 and COLEC12 expression in cell lines, single cells and other cancers showed that they were strongly correlated with the survival and prognosis of patients with BC. This result suggested that patients with T2DM presenting the downregulation of CPEB1 and COLEC12 might have a higher risk of developing BC. Overall, our work revealed that high expression of CYPs in patients with T2DM might be a susceptibility factor for BC and identified novel gene candidates and immune features that are promising targets for immunotherapy in patients with BC.
Collapse
Affiliation(s)
- Wu Tong
- The First Clinical School, Southern Medical University, Guangzhou, China
| | - Gu Wenze
- The First Clinical School, Southern Medical University, Guangzhou, China
| | - Hong Libing
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Cao Yuchen
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Zhao Hejia
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Guo Xi
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Yang Xiongyi
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Yi Guoguo
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun-Yat-Sen University Guangzhou, Guangdong, China
- *Correspondence: Fu Min, ; Yi Guoguo,
| | - Fu Min
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Fu Min, ; Yi Guoguo,
| |
Collapse
|
12
|
Hepatic RNA adduction derived from metabolic activation of retrorsine in vitro and in vivo. Chem Biol Interact 2022; 365:110047. [DOI: 10.1016/j.cbi.2022.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
|
13
|
Liu Y, Ahmed S, Fang Y, Chen M, An J, Yang G, Hou X, Lu J, Ye Q, Zhu R, Liu Q, Liu S. Discovery of Chitin Deacetylase Inhibitors through Structure-Based Virtual Screening and Biological Assays. J Microbiol Biotechnol 2022; 32:504-513. [PMID: 35131956 PMCID: PMC9628821 DOI: 10.4014/jmb.2201.01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Chitin deacetylase (CDA) inhibitors were developed as novel antifungal agents because CDA participates in critical fungal physiological and metabolic processes and increases virulence in soilborne fungal pathogens. However, few CDA inhibitors have been reported. In this study, 150 candidate CDA inhibitors were selected from the commercial Chemdiv compound library through structure-based virtual screening. The top-ranked 25 compounds were further evaluated for biological activity. The compound J075-4187 had an IC50 of 4.24 ± 0.16 μM for AnCDA. Molecular docking calculations predicted that compound J075-4187 binds to the amino acid residues, including active sites (H101, D48). Furthermore, compound J075-4187 inhibited food spoilage fungi and plant pathogenic fungi, with minimum inhibitory concentration (MIC) at 260 μg/ml and minimum fungicidal concentration (MFC) at 520 μg/ml. Therefore, compound J075-4187 is a good candidate for use in developing antifungal agents for fungi control.
Collapse
Affiliation(s)
- Yaodong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Sibtain Ahmed
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China,Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, P.R. China
| | - Meng Chen
- Lianyungang Inspection and Testing Center for Food and Drug Control, P.R. China
| | - Jia An
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Qinwen Ye
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Rongjun Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Qitong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, P.R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, P.R. China,Corresponding author E-mail:
| |
Collapse
|
14
|
Zhao R, Fu J, Zhu L, Chen Y, Liu B. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J Hematol Oncol 2022; 15:14. [PMID: 35123522 PMCID: PMC8817562 DOI: 10.1186/s13045-022-01230-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been defined as a class of RNA molecules transcribed from the genome but not encoding proteins, such as microRNAs, long non-coding RNAs, Circular RNAs, and Piwi-interacting RNAs. Accumulating evidence has recently been revealing that ncRNAs become potential druggable targets for regulation of several small-molecule compounds, based on their complex spatial structures and biological functions in cancer therapy. Thus, in this review, we focus on summarizing some new emerging designing strategies, such as high-throughput screening approach, small-molecule microarray approach, structure-based designing approach, phenotypic screening approach, fragment-based designing approach, and pharmacological validation approach. Based on the above-mentioned approaches, a series of representative small-molecule compounds, including Bisphenol-A, Mitoxantrone and Enoxacin have been demonstrated to modulate or selectively target ncRNAs in different types of human cancers. Collectively, these inspiring findings would provide a clue on developing more novel avenues for pharmacological modulations of ncRNAs with small-molecule drugs for future cancer therapeutics.
Collapse
|
15
|
Pu J, Wang H, Huang C, Bo C, Gong B, Ou J. Progress of molecular imprinting technique for enantioseparation of chiral drugs in recent ten years. J Chromatogr A 2022; 1668:462914. [DOI: 10.1016/j.chroma.2022.462914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
|
16
|
Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci 2021; 22:ijms222312808. [PMID: 34884615 PMCID: PMC8657965 DOI: 10.3390/ijms222312808] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
Human cytochrome P450 (CYP) enzymes, as membrane-bound hemoproteins, play important roles in the detoxification of drugs, cellular metabolism, and homeostasis. In humans, almost 80% of oxidative metabolism and approximately 50% of the overall elimination of common clinical drugs can be attributed to one or more of the various CYPs, from the CYP families 1–3. In addition to the basic metabolic effects for elimination, CYPs are also capable of affecting drug responses by influencing drug action, safety, bioavailability, and drug resistance through metabolism, in both metabolic organs and local sites of action. Structures of CYPs have recently provided new insights into both understanding the mechanisms of drug metabolism and exploiting CYPs as drug targets. Genetic polymorphisms and epigenetic changes in CYP genes and environmental factors may be responsible for interethnic and interindividual variations in the therapeutic efficacy of drugs. In this review, we summarize and highlight the structural knowledge about CYPs and the major CYPs in drug metabolism. Additionally, genetic and epigenetic factors, as well as several intrinsic and extrinsic factors that contribute to interindividual variation in drug response are also reviewed, to reveal the multifarious and important roles of CYP-mediated metabolism and elimination in drug therapy.
Collapse
|
17
|
Chen X, Zhao Z, Luo J, Wu T, Shen Y, Chang S, Wan S, Li Z, Zhang J, Pang J, Tian Y. Novel natural scaffold as hURAT1 inhibitor identified by 3D-shape-based, docking-based virtual screening approach and biological evaluation. Bioorg Chem 2021; 117:105444. [PMID: 34775203 DOI: 10.1016/j.bioorg.2021.105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
As a promising therapeutic target for gout, hURAT1 has attracted increasing attention. In this work, we identified a novel scaffold of hURAT1 inhibitors from a personal natural product database of verified herb-treated gout. First, we constructed more than 800 natural compounds from Chinese medicine that were verified to treat gout. Following the application of both shape-based and docking-based virtual screening (VS) methods, taking into account the shape similarity and flexibility of the target, we identified isopentenyl dihydroflavones that might inhibit hURAT1. Specifically, 9 compounds with commercial availability were tested with biochemical assays for the inhibition of 14C-uric acid uptake in high-expression hURAT1 cells (HEK293-hURAT1), and their structure-activity relationship was evaluated. As a result, 8-isopentenyl dihydroflavone was identified as a novel scaffold of hURAT1 inhibitors since isobavachin (DHF3) inhibited hURAT1 with an IC50 value of 0.39 ± 0.17 μM, which was comparable to verinurad with an IC50 value of 0.32 ± 0.23 μM. Remarkably, isobavachin also displayed an eminent effect in the decline of serum uric acid in vivo experiments. Taken together, isobavachin is a promising candidate for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Xinhua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiajun Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yudong Shen
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information, Engineering, Jiangsu University of Technology, Changzhou 213001, People's Republic of China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
18
|
Intermolecular insights into allosteric inhibition of histone lysine-specific demethylase 1. Biochim Biophys Acta Gen Subj 2021; 1865:129990. [PMID: 34390793 DOI: 10.1016/j.bbagen.2021.129990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Histone lysine-specific demethylase 1 (LSD1) has become a potential anticancer target for the novel drug discovery. Recent reports have shown that SP2509 and its derivatives strongly inhibit LSD1 as allosteric inhibitors. However, the binding mechanism of these allosteric inhibitors in the allosteric site of LSD1 is not known yet. METHODS The stability and binding mechanism of allosteric inhibitors in the binding site of LSD1 were evaluated by molecular docking, ligand-based pharmacophore, molecular dynamics (MD) simulations, molecular mechanics generalized born surface area (MM/GBSA) analysis, quantum mechanics/molecular mechanics (QM/MM) calculation and Hirshfeld surface analysis. RESULTS The conformational geometry and the intermolecular interactions of allosteric inhibitors showed high binding affinity towards allosteric site of LSD1 with the neighboring amino acids (Gly358, Cys360, Leu362, Asp375 and Glu379). Meanwhile, MD simulations and MM/GBSA analysis were performed on selected allosteric inhibitors in complex with LSD1 protein, which confirmed the high stability and binding affinity of these inhibitors in the allosteric site of LSD1. CONCLUSION The simulation results revealed the crucial factors accounting for allosteric inhibitors of LSD1, including different protein-ligand interactions, the positions and conformations of key residues, and the ligands flexibilities. Meanwhile, a halogen bond interaction between chlorine atom of ligand and key residues Trp531 and His532 was recurrent in our analysis confirming its importance. GENERAL SIGNIFICANCE Overall, our research analyzed in depth the binding modes of allosteric inhibitors with LSD1 and could provide useful information for the design of novel allosteric inhibitors.
Collapse
|
19
|
Xia Y, Ying S, Jin R, Wu H, Shen Y, Yin T, Yan F, Zhang W, Lan F, Zhang B, Zhu C, Li C, Li W, Shen H. Application of a classifier combining bronchial transcriptomics and chest computed tomography features facilitates the diagnostic evaluation of lung cancer in smokers and nonsmokers. Int J Cancer 2021; 149:1290-1301. [PMID: 33963762 DOI: 10.1002/ijc.33675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer screening by computed tomography (CT) reduces mortality but exhibited high false-positive rates. We established a diagnostic classifier combining chest CT features with bronchial transcriptomics. Patients with CT-detected suspected lung cancer were enrolled. The sample collected by bronchial brushing was used for RNA sequencing. The e1071 and pROC packages in R software was applied to build the model. Eventually, a total of 283 patients, including 183 with lung cancer and 100 with benign lesions, were included into final analysis. When incorporating transcriptomic data with radiological characteristics, the advanced model yielded 0.903 AUC with 81.1% NPV. Moreover, the classifier performed well regardless of lesion size, location, stage, histologic type or smoking status. Pathway analysis showed enhanced epithelial differentiation, tumor metastasis, and impaired immunity were predominant in smokers with cancer, whereas tumorigenesis played a central role in nonsmokers with cancer. Apoptosis and oxidative stress contributed critically in metastatic lung cancer; by contrast, immune dysfunction was pivotal in locally advanced lung cancer. Collectively, we devised a minimal-to-noninvasive, efficient diagnostic classifier for smokers and nonsmokers with lung cancer, which provides evidence for different mechanisms of cancer development and metastasis associated with smoking. A negative classifier result will help the physician make conservative diagnostic decisions.
Collapse
Affiliation(s)
- Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Tong Yin
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhang
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
21
|
Design, synthesis and biological evaluation of novel benzofuran derivatives as potent LSD1 inhibitors. Eur J Med Chem 2021; 220:113501. [PMID: 33945992 DOI: 10.1016/j.ejmech.2021.113501] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a FAD-dependent enzyme, which has been proposed as a promising target for therapeutic cancer. Herein, a series of benzofuran derivatives were designed, synthesized and biochemical evaluated as novel LSD1 inhibitors based on scaffold hopping and conformational restriction strategy. Most of the compounds potently suppressed the enzymatic activities of LSD1 and potently inhibited tumor cells proliferation. In particular, the representative compound 17i exhibited excellent LSD1 inhibition at the molecular levels with IC50 = 0.065 μM, as well as anti-proliferation against MCF-7, MGC-803, H460, A549 and THP-1 tumor cells with IC50 values of 2.90 ± 0.32, 5.85 ± 0.35, 2.06 ± 0.27, 5.74 ± 1.03 and 6.15 ± 0.49 μM, respectively. The binding modes of these compounds were rationalized by molecular docking. Meanwhile, a preliminary druggability evaluation showed that compound 17i displayed favorable liver microsomal stability and weak inhibitory activity against CYPs at 10 μM. Remarkably, H460 xenograft tumors studies revealed that 17i demonstrated robust in vivo antitumor efficacy without significant side effects. All the results demonstrated that compound 17i could represent a promising lead for further development.
Collapse
|
22
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
23
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
24
|
Wang H, Wang Y, Li C, Wang H, Geng X, Hu B, Wen R, Wang J, Zhang F. Structural basis for tailor-made selective PI3K α/β inhibitors: a computational perspective. NEW J CHEM 2021. [DOI: 10.1039/d0nj04216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PI3K α and β are Class IA PI3K isoforms that share a highly homologous ATP binding site, differing only in a few residues around the binding site.
Collapse
Affiliation(s)
- Huibin Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Ying Wang
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Chunshi Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Xiaohui Geng
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Rui Wen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Fengjiao Zhang
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| |
Collapse
|
25
|
Jiang C, Wang L, Shao J, Jing H, Ye X, Jiang C, Wang H, Ma C. Screening and identifying of α-amylase inhibitors from medicine food homology plants: Insights from computational analysis and experimental studies. J Food Biochem 2020; 44:e13536. [PMID: 33103275 DOI: 10.1111/jfbc.13536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
There is a growing interest in screening α-amylase inhibitors from natural products for application in the development of new antidiabetic drugs or functional foods. In this study, a structure-based virtual screening was applied to rapidly identify the α-amylase inhibitors from medicine food homology (MFH) plants. Similarity search, docking & scoring were used for further filter small molecules. As a result, 21 corresponding potential α-amylase inhibitors from MFH plants were obtained. And, six polyphenol compounds (curcumin, procyanidins, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), hesperidin, and puerarin) were highlighted for further verification after a thorough assessment of the classification of hit molecules as well as docking scores. The results of the enzyme inhibition test showed that ECG, EGCG, and procyanidins had the better binding ability of α-amylase among these six polyphenols. The Ki values of ECG, EGCG, and procyanidins on α-amylase were 0.70, 1.68, and 0.24, respectively. The CD spectra results indicated that the three polyphenols can cause conformational changes in α-amylase. PRACTICAL APPLICATIONS: A structure-based virtual screening method for rapid identifying α-amylase inhibitors from MFH plants was developed successfully in this study. These findings suggested that natural polyphenols such as ECG, EGCG, and procyanidins may be a potential inhibitor of α-amylase which could be used as a nutrient supplement for the prevention of diabetes mellitus or can be further used in the development of hypoglycemic drugs. At the same time, it can provide theoretical guidance for the better utilization and development of medicine food homology plants containing these potential α-amylase inhibitors. Moreover, this work may provide ideas and references for the screening of other target protein inhibitors.
Collapse
Affiliation(s)
- Chao Jiang
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Jiajia Shao
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Huijuan Jing
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Xin Ye
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Chengyu Jiang
- School of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Hongxin Wang
- School of Food Science & Technology, Jiangnan University, Wuxi, China.,The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, China
| | - Chaoyang Ma
- School of Food Science & Technology, Jiangnan University, Wuxi, China.,The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Huang H, Li QZ, Liu YQ, Leng HJ, Xiang P, Dai QS, He XH, Huang W, Li JL. Dearomative [4 + 2] annulations between 3-nitroindoles and enals through oxidative N-heterocyclic carbene catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00868k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel intermolecular dearomative [4 + 2] annulation of 3-nitroindoles and enals under oxidative N-heterocyclic carbene catalysis has been developed. This protocol was also suitable for the oxidative cyclisation of 2-nitrobenzothiophenes with enals.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Peng Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| |
Collapse
|