1
|
Jing L, Wu G, Zhao F, Jiang X, Liu N, Feng D, Sun Y, Zhang T, De Clercq E, Pannecouque C, Kang D, Liu X, Zhan P. Discovery of potent HIV-1 NNRTIs by CuAAC click-chemistry-based miniaturized synthesis, rapid screening and structure optimization. Eur J Med Chem 2024; 277:116772. [PMID: 39167895 DOI: 10.1016/j.ejmech.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
In addressing the urgent need for novel HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) to combat drug resistance, we employed CuAAC click chemistry to construct a diverse 312-member diarylpyrimidine (DAPY) derivative library. This rapid synthesis approach facilitated the identification of A6N36, demonstrating exceptional HIV-1 RT inhibitory activity. Moreover, it was demonstrated with EC50 values of 1.8-8.7 nM for mutant strains L100I, K103 N, Y181C, and E138K, being equipotent or superior to that of ETR. However, A6N36's efficacy was compromised against specific resistant strains (Y188L, F227L + V106A and RES056), highlighting a need for further optimization. Through scaffold hopping, we optimized this lead to develop 10c, which exhibited broad-spectrum activity with EC50 values ranging from 3.2 to 57.5 nM and superior water solubility. Molecular docking underscored the key interactions of 10c within the NNIBP. Our findings present 10c as a promising NNRTI lead, illustrating the power of click chemistry and rational design in combatting HIV-1 resistance.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Na Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, B-3000, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Gao P, Song S, Pannecouque C, De Clercq E, Zhan P, Liu X. Rapid identification of novel indolylarylsulfone derivatives as potent HIV-1 NNRTIs via miniaturized CuAAC click-chemistry-based combinatorial libraries. RSC Med Chem 2024; 16:d4md00469h. [PMID: 39421538 PMCID: PMC11480823 DOI: 10.1039/d4md00469h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
This article presents the rapid identification of novel indolylarylsulfone (IAS) derivatives as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 through a miniaturized click-chemistry-based combinatorial library approach. Utilizing copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC), a reliable and biocompatible click chemistry technique, the researchers synthesized and characterized a series of IAS derivatives. Several compounds selected through the in situ enzyme inhibition assay demonstrated promising activity in subsequent cellular level tests. Notably, compound C1N4 displayed the most potent anti-HIV-1 IIIB activity with an EC50 of 0.024 μM and low cytotoxicity (CC50 > 215.88 μM). Molecular docking studies provided insights into the binding mode of these novel compounds within the NNIBP, aiding in the structure-based design of future NNRTIs. The findings underscore the potential of click chemistry in the discovery of new anti-HIV agents with improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University Ji'nan 250012 China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 China
| | - Shu Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University Ji'nan 250012 China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K. U. Leuven Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, K. U. Leuven Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University Ji'nan 250012 China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province 44 West Culture Road 250012 Jinan Shandong PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University Ji'nan 250012 China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
3
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
5
|
Wang R, Stevaert A, Truong TN, Li Q, Krasniqi B, Van Loy B, Voet A, Naesens L, Dehaen W. Exploration of 1,2,3-triazolo fused triterpenoids as inhibitors of human coronavirus 229E targeting the viral nsp15 protein. Arch Pharm (Weinheim) 2024; 357:e2300442. [PMID: 37840345 DOI: 10.1002/ardp.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 μM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18β-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tien Nguyen Truong
- Department of Chemistry, Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Qifei Li
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Besir Krasniqi
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Benjamin Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Sun Y, Feng D, Zhou Z, Zhang T, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. In situ click chemistry-based discovery of 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs by exploiting the tolerant region I in binding pocket. Bioorg Med Chem 2023; 96:117484. [PMID: 37976805 DOI: 10.1016/j.bmc.2023.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023]
Abstract
HIV-1 reverse transcriptase (RT) is considered as one of the most significant targets for the anti-HIV-1 drug design due to their determined mechanism and well-decoded crystal structure. As a part of our continuous efforts towards the development of potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) by exploiting the tolerant region I of NNRTIs binding pocket (NNIBP), the miniaturized parallel synthesis via CuAAC click chemistry reaction followed by in situ biological screening have been performed in this work. The in situ enzyme inhibition screening results showed that 14 compounds exhibited higher or equivalent inhibitory activity compared to the lead K-5a2 and ETR. Anti-HIV-1 activity results indicated that C1N51 displayed the most potent activity (EC50 = 0.01-0.26 μM) against wild-type and a panel of NNRTIs-resistant strains. Moreover, the molecular simulation demonstrated that the newly introduced triazole ring could develop new hydrogen bonds with Lys103 and Pro236, which explained the feasibility of introducing triazole in the tolerant region I of the RT binding pocket.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, PR China.
| |
Collapse
|
7
|
Jiang X, Li J, Viayna A, Luque FJ, Woodson M, Jing L, Gao S, Zhao F, Xie M, Toth K, Tavis J, Tollefson AE, Liu X, Zhan P. Identification of novel 1,2,3-triazole isatin derivatives as potent SARS-CoV-2 3CLpro inhibitors via click-chemistry-based rapid screening. RSC Med Chem 2023; 14:2068-2078. [PMID: 37859715 PMCID: PMC10583828 DOI: 10.1039/d3md00306j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) is considered an attractive target for the development of anti-COVID-19 agents due to its vital function. The N-substituted isatin derivative L-26 is a potential SARS-CoV-2 3CLpro inhibitor, but it has poor cell-based antiviral activity and high cytotoxicity. With L-26 as the lead compound, 58 isatin derivatives were prepared using click-chemistry-based miniaturized synthesis and their 3CLpro inhibitory activities were determined by a fluorescence resonance energy transfer-based enzymatic assay. Compounds D1N8 (IC50 = 0.44 ± 0.12 μM) and D1N52 (IC50 = 0.53 ± 0.21 μM) displayed excellent inhibitory potency against SARS-CoV-2 3CLpro, being equivalent to that of L-26 (IC50 = 0.30 ± 0.14 μM). In addition, the cytotoxicity of D1N8 (CC50 >20 μM) and D1N52 (CC50 >20 μM) decreased significantly compared with L-26 (CC50 <2.6 μM). Further molecular dynamics simulations revealed the potential binding interactions between D1N52 and SARS-CoV-2 3CLpro. These efforts lay a solid foundation for the research of novel anti-SARS-CoV-2 agents targeting 3CLpro.
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Jing Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Antonio Viayna
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB) Av. Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB) Barcelona Spain
| | - F Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB) Av. Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB) Barcelona Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB) Barcelona Spain
| | - Molly Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - John Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
8
|
Lane T, Makarov V, Nelson JAE, Meeker RB, Sanna G, Riabova O, Kazakova E, Monakhova N, Tsedilin A, Urbina F, Jones T, Suchy A, Ekins S. N-Phenyl-1-(phenylsulfonyl)-1 H-1,2,4-triazol-3-amine as a New Class of HIV-1 Non-nucleoside Reverse Transcriptase Inhibitor. J Med Chem 2023; 66:6193-6217. [PMID: 37130343 PMCID: PMC10269403 DOI: 10.1021/acs.jmedchem.2c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Highly active antiretroviral therapy (HAART) has revolutionized human immunodeficiency virus (HIV) healthcare, turning it from a terminal to a potentially chronic disease, although some patients can develop severe comorbidities. These include neurological complications, such as HIV-associated neurocognitive disorders (HAND), which result in cognitive and/or motor function symptoms. We now describe the discovery, synthesis, and evaluation of a new class of N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) aimed at avoiding HAND. The most promising molecule, 12126065, exhibited antiviral activity against wild-type HIV-1 in TZM cells (EC50 = 0.24 nM) with low in vitro cytotoxicity (CC50 = 4.8 μM) as well as retained activity against clinically relevant HIV mutants. 12126065 also demonstrated no in vivo acute or subacute toxicity, good in vivo brain penetration, and minimal neurotoxicity in mouse neurons up to 10 μM, with a 50% toxicity concentration (TC50) of >100 μM, well below its EC50.
Collapse
Affiliation(s)
- Thomas Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Julie A. E. Nelson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina, NC 27514, USA
| | - Giuseppina Sanna
- Department of Biomedical Science, University of Cagliari, Monserrato, 09042, Italy
| | - Olga Riabova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Natalia Monakhova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Andrey Tsedilin
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Fabio Urbina
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Thane Jones
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Ashley Suchy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| |
Collapse
|
9
|
Zhan F, Zhu J, Xie S, Xu J, Xu S. Advances of bioorthogonal coupling reactions in drug development. Eur J Med Chem 2023; 253:115338. [PMID: 37037138 DOI: 10.1016/j.ejmech.2023.115338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Currently, bioorthogonal coupling reactions have garnered considerable interest due to their high substrate selectivity and less restrictive reaction conditions. During recent decades, bioorthogonal coupling reactions have emerged as powerful tools in drug development. This review describes the current applications of bioorthogonal coupling reactions in compound library building mediated by the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and in situ click chemistry or conjunction with other techniques; druggability optimization with 1,2,3-triazole groups; and intracellular self-assembly platforms with ring tension reactions, which are presented from the viewpoint of drug development. There is a reasonable prospect that bioorthogonal coupling reactions will accelerate the screening of lead compounds, the designing strategies of small molecules and expand the variety of designed compounds, which will be a new trend in drug development in the future.
Collapse
|
10
|
Jing L, Wei W, Meng B, Chantegreil F, Nachon F, Martínez A, Wu G, Zhao H, Song Y, Kang D, Brazzolotto X, Zhan P, Liu X. Rapid discovery and crystallography study of highly potent and selective butylcholinesterase inhibitors based on oxime-containing libraries and conformational restriction strategies. Bioorg Chem 2023; 134:106465. [PMID: 36933339 DOI: 10.1016/j.bioorg.2023.106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Butyrylcholinesterase is regarded as a promising drug target in advanced Alzheimer's disease. In order to identify highly selective and potent BuChE inhibitors, a 53-membered compound library was constructed via the oxime-based tethering approach based on microscale synthesis. Although A2Q17 and A3Q12 exhibited higher BuChE selectivity versus acetylcholinesterase, the inhibitory activities were unsatisfactory and A3Q12 did not inhibit Aβ1-42 peptide self-induced aggregation. With A2Q17 and A3Q12 as leads, a novel series of tacrine derivatives with nitrogen-containing heterocycles were designed based on conformation restriction strategy. The results demonstrated that 39 (IC50 = 3.49 nM) and 43 (IC50 = 7.44 nM) yielded much improved hBuChE inhibitory activity compared to the lead A3Q12 (IC50 = 63 nM). Besides, the selectivity indexes (SI = AChE IC50 / BChE IC50) of 39 (SI = 33) and 43 (SI = 20) were also higher than A3Q12 (SI = 14). The results of the kinetic study showed that 39 and 43 exhibited a mixed-type inhibition against eqBuChE with respective Ki values of 1.715 nM and 0.781 nM. And 39 and 43 could inhibit Aβ1-42 peptide self-induced aggregation into fibril. X-ray crystallography structures of 39 or 43 complexes with BuChE revealed the molecular basis for their high potency. Thus, 39 and 43 are deserve for further study to develop potential drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Ji'nan, Shandong, PR China.
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
11
|
Kumar V, Lal K, Kumar A, Tittal RK, Singh MB, Singh P. Efficient synthesis, antimicrobial and molecular modelling studies of 3-sulfenylated oxindole linked 1,2,3-triazole hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole 'all-in-one' ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin Drug Discov 2022; 17:1209-1236. [PMID: 36164263 DOI: 10.1080/17460441.2022.2129613] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kübra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
13
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. Current scenario on non-nucleoside reverse transcriptase inhibitors (2018-present). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
14
|
Kasza P, Pociecha K, Wójcik-Pszczoła K, Canale V, Wyska E, Zajdel P, Szafrański PW, Cegła M. Ligand assisted CuAAC labelling and RP-HPLC analysis of zidovudine and Retrovir using propargyl-Fmoc probe. Eur J Pharm Sci 2022; 178:106293. [PMID: 36116697 DOI: 10.1016/j.ejps.2022.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
The extensive application of zidovudine (ZDV) as a stand-alone anti-HIV drug and a component in antiviral combination therapies, has made its analysis important both in the pharmaceutical and environmental context. The azide group in ZDV structure makes it a ready-to-use substrate for copper-catalyzed azide-alkyne cycloaddition (CuAAC), which is an efficient method for "click chemistry" labeling. In this paper, we describe a ligand-assisted CuAAC procedure for the precolumn derivatization of ZDV. We used propargyl-Fmoc fluorescent label and trans-2-(4-((dimethylamino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexan-1-ol (AMTC) as a copper-binding ligand. We tested the applicability of AMTC for precolumn derivatization and developed chromatographic analytical procedures for ZDV and its formulation (50 mg/5 ml oral solution, Retrovir™ syrup). Our research aimed to improve labeling efficiency with a Cu-chelating ligand, using an accessible and affordable fluorescent probe. We also developed a sustainable mechanochemical synthesis procedure for obtaining propargyl-Fmoc in a gram scale and thus boosted the accessibility of this probe. The advantages of the developed derivatization procedure are its simplicity and easy availability of the propargyl-Fmoc probe. Moreover, the high lipophilicity of the propargyl-Fmoc probe enables efficient separation of the analyte from polar matrix components. In addition, the derivatization procedure can be performed directly on a sample solution. We tested its usability for samples in environmental and biological matrices, including tap water, river water, urine, and human serum.
Collapse
Affiliation(s)
- Patryk Kasza
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Przemysław W Szafrański
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| | - Marek Cegła
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
15
|
Wang R, Krasniqi B, Li Y, Dehaen W. Triphenylphosphonium-linked derivative of allobetulin: preparation, anticancer properties and their mechanism of inhibiting SGC-7901 cells proliferation. Bioorg Chem 2022; 126:105853. [DOI: 10.1016/j.bioorg.2022.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
|
16
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
17
|
Degrading FLT3-ITD protein by proteolysis targeting chimera (PROTAC). Bioorg Chem 2021; 119:105508. [PMID: 34959180 DOI: 10.1016/j.bioorg.2021.105508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Clinical FLT3 mutations caused poor therapeutic benefits toward the present FLT3 inhibitors, and degradation of the FLT3 mutant protein may be a promising alternative approach to protect against acute myeloid leukemia (AML). Herein, we report the discovery of small molecule FLT3 degraders based on the proteolysis targeting chimera (PROTAC). FLT3 degraders were designed, synthesized, and evaluated for FLT3 degradation. Promising PF15 significantly inhibited the proliferation of FLT3-ITD-positive cells, induced FLT3 degradation and downregulated the phosphorylation of FLT3 and STAT5. An in vivo xenograft model and survival period evaluation verified the efficacy of PROTAC. These findings laid a robust foundation for FLT3-PROTAC molecules as an effective strategy for treating AML.
Collapse
|
18
|
Tao Y, Hao X, Jing L, Sun L, Cherukupalli S, Liu S, Wu G, Xu S, Zhang X, Shi X, Song Y, Liu X, Zhan P. Discovery of potent and selective Cdc25 phosphatase inhibitors via rapid assembly and in situ screening of Quinonoid-focused libraries. Bioorg Chem 2021; 115:105254. [PMID: 34426152 DOI: 10.1016/j.bioorg.2021.105254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022]
Abstract
Cell division cycle 25 (Cdc25) phosphatase is an attractive target for drug discovery. The rapid assembly and in situ screening of focused combinatorial fragment libraries using efficient modular reactions is a highly robust strategy for discovering bioactive molecules. In this study, we have utilized miniaturized synthesis to generate several quinonoid-focused libraries, by standard CuAAC reaction and HBTU-based amide coupling chemistry. Then the enzyme inhibition screening afforded some potent and selective Cdc25s inhibitors. Compound M5N36 (Cdc25A: IC50 = 0.15 ± 0.05 μM; Cdc25B: IC50 = 0.19 ± 0.06 μM; Cdc25C: IC50 = 0.06 ± 0.04 μM) exhibited higher inhibitory activity than the initial lead NSC663284 (Cdc25A: IC50 = 0.27 ± 0.02 μM; Cdc25B: IC50 = 0.42 ± 0.01 μM; Cdc25C: IC50 = 0.23 ± 0.01 μM). Moreover, M5N36 displayed about three-fold more potent against Cdc25C than Cdc25A and B, indicating that M5N36 could act as a relatively selective Cdc25C inhibitor. Cell viability evaluation, western blotting and molecular simulations provided a mechanistic understanding of the activity of M5N36. It showed promising anti-growth activity against the MDA-MB-231 cell line and desirable predicted physicochemical properties. Overall, M5N36 was proven to be a promising novel Cdc25C inhibitor.
Collapse
Affiliation(s)
- Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shugong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012 Jinan, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
19
|
Wang R, Li Y, Hu H, Persoons L, Daelemans D, De Jonghe S, Luyten W, Krasniqi B, Dehaen W. Antibacterial and antitumoral properties of 1,2,3-triazolo fused triterpenes and their mechanism of inhibiting the proliferation of HL-60 cells. Eur J Med Chem 2021; 224:113727. [PMID: 34352711 DOI: 10.1016/j.ejmech.2021.113727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023]
Abstract
Antimicrobial resistance and cancer are two important problems affecting human health. Actively developing novel antibiotics and anticancer medicines is a priority. Natural pentacyclic triterpenoids have attracted wide attention due to their significant biological activities. In this study, a series of 1,2,3-triazolo fused triterpenoids (betulin, oleanolic acid and ursolic acid) were functionalized on the A-ring by an in-house developed multi-component triazolization reaction. The compounds were investigated for antitumoral activity in twelve cancer cell lines and were also tested for antibacterial activity against four bacteria. In terms of anticancer effects, compounds 5b-f and 8a-d displayed strong cytotoxic activity in pancreatic adenocarcinoma (Capan-1), chronic myeloid leukemia (Hap-1), acute myeloid leukemia (HL-60), acute lymphoblastic leukemia (Jurkat) and non-Hodgkin lymphoma (Rec-1) cell lines. Among them, compound 5f exhibited the most potent antiproliferative effect on HL-60 cells. Further pharmacological research confirmed that compound 5f caused mitochondrial dysfunction and arrested the cell cycle in the G0/G1 phase to induce apoptosis of HL-60 cells. In addition, compound 5f also induced autophagy to inhibit the proliferation of HL-60 cells. Antibacterial screening revealed that compounds 2a-g and 5a-d showed modest activity against Gram-negative bacteria (Escherichia coli and Salmonella enterica subsp. enterica) with especially compounds 2c and 2d being potent inhibitors of Salmonella enterica subsp. enterica growth. Because of their promising anticancer and antibacterial activity, this series of compounds deserve further study.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, PR China
| | - Haibo Hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, B-3000, Leuven, Belgium
| | - Leentje Persoons
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - Box 1043, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - Box 1043, B-3000, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - Box 1043, B-3000, Leuven, Belgium
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, B-3000, Leuven, Belgium
| | - Besir Krasniqi
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| |
Collapse
|
20
|
Molęda Z, Zawadzka A, Czarnocki Z, Monjas L, Hirsch AKH, Budzianowski A, Maurin JK. "Clicking" fragment leads to novel dual-binding cholinesterase inhibitors. Bioorg Med Chem 2021; 42:116269. [PMID: 34130217 DOI: 10.1016/j.bmc.2021.116269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Cholinesterase inhibitors are potent therapeutics in the treatment of Alzheimer's disease. Among them, dual binding ligands have recently gained a lot of attention. We discovered novel dual-binding cholinesterase inhibitors, using "clickable" fragments, which bind to either catalytic active site (CAS) or peripheral anionic site (PAS) of the enzyme. Copper(I)-catalyzed azide-alkyne cycloaddition allowed to effectively synthesize a series of final heterodimers, and modeling and kinetic studies confirmed their ability to bind to both CAS and PAS. A potent acetylcholinesterase inhibitor with IC50 = 18 nM (compound 23g) was discovered. A target-guided approach to link fragments by the enzyme itself was tested using butyrylcholinesterase.
Collapse
Affiliation(s)
- Zuzanna Molęda
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| | - Anna Zawadzka
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Zbigniew Czarnocki
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Leticia Monjas
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Jan K Maurin
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| |
Collapse
|
21
|
Ding L, Zhuang C, Chen F. Druggability modification strategies of the diarylpyrimidine-type non-nucleoside reverse transcriptase inhibitors. Med Res Rev 2021; 41:1255-1290. [PMID: 33497504 DOI: 10.1002/med.21760] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
Drug discovery of human immunodeficiency virus (HIV) is a hot field in medicinal chemistry community for many years. The diarylpyrimidines (DAPYs) are the second-generation non-nucleoside reverse transcriptase inhibitors (NNRTIs) targeting reverse transcriptase, playing a great irreplaceable role in HIV transcriptional therapy. However, fast-growing drug-resistant mutations as nonnegligible challenge are still unpredictably appeared in the clinical practice, leading to deactivate or reduce the existing drugs. In the last 20 years, more and more novel DAPY derivatives have developed with the purpose to counter the mutants. Nevertheless, most of them have dissatisfactory pharmacokinetics (PK) or poor antiviral activity toward resistant mutant strains. In this article, we will analyze the NNRTI derivatives with promising druggability, and summarize a series of druggability modification strategies to improve the antiviral activity, reduce toxicity and improve the PK properties in recent years. The prospects of DAPYs and the directions for future efforts will be discussed.
Collapse
Affiliation(s)
- Li Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fener Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
22
|
Sun Y, Kang D, Da F, Zhang T, Li P, Zhang B, De Clercq E, Pannecouque C, Zhan P, Liu X. Identification of novel potent HIV-1 inhibitors by exploiting the tolerant regions of the NNRTIs binding pocket. Eur J Med Chem 2021; 214:113204. [PMID: 33567378 DOI: 10.1016/j.ejmech.2021.113204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
With our previously identified potent NNRTIs 25a and HBS-11c as leads, series of novel thiophene[3,2-d]pyrimidine and thiophene[2,3-d]pyrimidine derivatives were designed via molecular hybridization strategy. All the target compounds were evaluated for their anti-HIV-1 activity and cytotoxicity in MT-4 cells. Compounds 16a1 and 16b1 turned out to be the most potent inhibitors against WT and mutant HIV-1 strains (L100I, K103N, and E138K), with EC50 values ranging from 0.007 μM to 0.043 μM. Gratifyingly, 16b1 exhibited significantly reduced cytotoxicity (CC50 > 217.5 μM) and improved water solubility (S = 49.3 μg/mL at pH 7.0) compared to the lead 25a (S < 1 μg/mL at pH 7.0, CC50 = 2.30 μM). Moreover, molecular docking was also conducted to rationalize the structure-activity relationships of these novel derivatives and to understand their key interactions with the binding pocket.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; Suzhou Research Institute, Shandong University, Room522, Building H of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, 215123 Jiangsu, PR China.
| | - Feng Da
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Pei Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Baodan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
23
|
Wang R, Li Y, Dehaen W. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur J Med Chem 2020; 207:112737. [DOI: 10.1016/j.ejmech.2020.112737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
|
24
|
Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim) 2020; 354:e2000163. [PMID: 32960467 DOI: 10.1002/ardp.202000163] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) is the major etiological agent responsible for the acquired immunodeficiency syndrome (AIDS), which is a serious infectious disease and remains one of the most prevalent problems at present. Currently, combined antiretroviral therapy is the primary modality for the treatment and management of HIV/AIDS, but the long-term use can result in major drawbacks such as the development of multidrug-resistant viruses and multiple side effects. 1,2,3-Triazole is the common framework in the development of new drugs, and its derivatives have the potential to inhibit various HIV-1 enzymes such as reverse transcriptase, integrase, and protease, consequently possessing a potential anti-HIV-1 activity. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential anti-HIV-1 activity; it focuses on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
| | | | | | - Duan Liu
- WuXi AppTec Co., Ltd., Wuhan, China
| |
Collapse
|