1
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Negru Apostol G, Ghinet A, Bîcu E. 7-Chloroquinolinehydrazones as First-in-Class Anticancer Experimental Drugs in the NCI-60 Screen among Different Investigated Series of Aryl, Quinoline, Pyridine, Benzothiazole and Imidazolehydrazones. Pharmaceuticals (Basel) 2023; 16:ph16050691. [PMID: 37242474 DOI: 10.3390/ph16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the context of a continuously increasing global cancer risk, the search for new effective and affordable anticancer drugs remains a constant demand. This study describes chemical experimental drugs able to destroy cancer cells by arresting their growth. New hydrazones with quinoline, pyridine, benzothiazole and imidazole moieties have been synthesized and evaluated for their cytotoxic potential against 60 cancer cell lines. 7-Chloroquinolinehydrazones were the most active in the current study and exhibited good cytotoxic activity with submicromolar GI50 values on a large panel of cell lines from nine tumor types (leukemia, non-small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer). This study provided consistent structure-activity relationships in this series of experimental antitumor compounds.
Collapse
Affiliation(s)
- Georgiana Negru Apostol
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi, Romania
| | - Alina Ghinet
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi, Romania
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France
| | - Elena Bîcu
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi, Romania
| |
Collapse
|
3
|
Colini Baldeschi A, Zattoni M, Vanni S, Nikolic L, Ferracin C, La Sala G, Summa M, Bertorelli R, Bertozzi SM, Giachin G, Carloni P, Bolognesi ML, De Vivo M, Legname G. Innovative Non-PrP-Targeted Drug Strategy Designed to Enhance Prion Clearance. J Med Chem 2022; 65:8998-9010. [PMID: 35771181 PMCID: PMC9289883 DOI: 10.1021/acs.jmedchem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prion diseases are a group of neurodegenerative disorders characterized by the accumulation of misfolded prion protein (called PrPSc). Although conversion of the cellular prion protein (PrPC) to PrPSc is still not completely understood, most of the therapies developed until now are based on blocking this process. Here, we propose a new drug strategy aimed at clearing prions without any direct interaction with neither PrPC nor PrPSc. Starting from the recent discovery of SERPINA3/SerpinA3n upregulation during prion diseases, we have identified a small molecule, named compound 5 (ARN1468), inhibiting the function of these serpins and effectively reducing prion load in chronically infected cells. Although the low bioavailability of this compound does not allow in vivo studies in prion-infected mice, our strategy emerges as a novel and effective approach to the treatment of prion disease.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Silvia Vanni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Lea Nikolic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Chiara Ferracin
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Giuseppina La Sala
- Molecular Modeling & Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Carloni
- Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, "Computational Medicine", Forschungszentrum Jülich, 52428 Jülich, Germany.,Institute for Neuroscience and Medicine (INM)-11, "Molecular Neuroscience and Neuroimaging", Forschungszentrum Jülich, 52428 Jülich, Germany.,Department of Physics, RWTH-Aachen University, 52074 Aachen, Germany
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco De Vivo
- Molecular Modeling & Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
4
|
Uliassi E, Nikolic L, Bolognesi ML, Legname G. Therapeutic strategies for identifying small molecules against prion diseases. Cell Tissue Res 2022; 392:337-347. [PMID: 34989851 DOI: 10.1007/s00441-021-03573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders, for which there are no effective therapeutic and diagnostic agents. The main pathological hallmark has been identified as conformational changes of the cellular isoform prion protein (PrPC) to a misfolded isoform of the prion protein (PrPSc). Targeting PrPC and its conversion to PrPSc is still the central dogma in prion drug discovery, particularly in in silico and in vitro screening endeavors, leading to the identification of many small molecules with therapeutic potential. Nonetheless, multiple pathological targets are critically involved in the intricate pathogenesis of prion diseases. In this context, multi-target-directed ligands (MTDLs) emerge as valuable therapeutic approach for their potential to effectively counteract the complex etiopathogenesis by simultaneously modulating multiple targets. In addition, diagnosis occurs late in the disease process, and consequently a successful therapeutic intervention cannot be provided. In this respect, small molecule theranostics, which combine imaging and therapeutic properties, showed tremendous potential to cure and diagnose in vivo prion diseases. Herein, we review the major advances in prion drug discovery, from anti-prion small molecules identified by means of in silico and in vitro screening approaches to two rational strategies, namely MTDLs and theranostics, that have led to the identification of novel compounds with an expanded anti-prion profile.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Lea Nikolic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
5
|
Nochebuena J, Quintanar L, Vela A, Cisneros GA. Structural and electronic analysis of the octarepeat region of prion protein with four Cu 2+ by polarizable MD and QM/MM simulations. Phys Chem Chem Phys 2021; 23:21568-21578. [PMID: 34550129 PMCID: PMC8497436 DOI: 10.1039/d1cp03187b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prions have been linked to neurodegenerative diseases that affect various species of mammals including humans. The prion protein, located mainly in neurons, is believed to play the role of metal ion transporter. High levels of copper ions have been related to structural changes. A 32-residue region of the N-terminal domain, known as octarepeat, can bind up to four copper ions. Different coordination modes have been observed and are strongly dependent on Cu2+ concentration. Many theoretical studies carried out so far have focused on studying the coordination modes of a single copper ion. In this work we investigate the octarepeat region coordinated with four copper ions. Molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations using the polarizable AMOEBA force field have been carried out. The polarizable MD simulations starting from a fully extended conformation indicate that the tetra-Cu2+/octarepeat complex forms a globular structure. The globular form is stabilized by interactions between Cu2+ and tryptophan residues resulting in some coordination sites observed to be in close proximity, in agreement with experimental results. Subsequent QM/MM simulations on several snapshots suggests the system is in a high-spin quintet state, with all Cu2+ bearing one single electron, and all unpaired electrons are ferromagnetically coupled. NMR simulations on selected structures provides insights on the chemical shifts of the first shell ligands around the metals with respect to inter-metal distances.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| | - Liliana Quintanar
- Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - Alberto Vela
- Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| |
Collapse
|
6
|
Whitmore CA, Boules MI, Behof WJ, Haynes JR, Koktysh D, Rosenberg AJ, Tantawy MN, Pham W. Design, Synthesis, and Validation of a Novel [ 11C]Promethazine PET Probe for Imaging Abeta Using Autoradiography. Molecules 2021; 26:molecules26082182. [PMID: 33920113 PMCID: PMC8070574 DOI: 10.3390/molecules26082182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Promethazine, an antihistamine drug used in the clinical treatment of nausea, has been demonstrated the ability to bind Abeta in a transgenic mouse model of Alzheimer’s disease. However, so far, all of the studies were performed in vitro using extracted tissues. In this work, we report the design and synthesis of a novel [11C]promethazine PET radioligand for future in vivo studies. The [11C]promethazine was isolated by RP-HPLC with radiochemical purity >95% and molar activity of 48 TBq/mmol. The specificity of the probe was demonstrated using human hippocampal tissues via autoradiography.
Collapse
Affiliation(s)
- Clayton A. Whitmore
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariam I. Boules
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William J. Behof
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R. Haynes
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dmitry Koktysh
- Department of Chemistry, Vanderbilt University, VU Station, Nashville, TN 37235, USA;
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Adam J. Rosenberg
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mohammed N. Tantawy
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wellington Pham
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Institute of Imaging Science, Vanderbilt University, 1161, 21st Avenue South, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-(615)-936-7621
| |
Collapse
|
7
|
Yan C, Zhou Z. Ellagic acid and pentagalloylglucose are potential inhibitors of prion protein fibrillization. Int J Biol Macromol 2021; 172:371-380. [PMID: 33460657 DOI: 10.1016/j.ijbiomac.2021.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases caused by the conformational transition of the cellular prion protein (PrPC) to the abnormal pathological prion protein (PrPSc). In this work, the effects of ellagic acid (EA) and pentagalloylglucose (PGG) on prion protein (PrP) fibrillization were investigated. Fluorescence quenching experiments indicated that both EA and PGG could specifically interact with native human PrP with binding affinities of 1.92 × 105 and 2.36 × 105 L·mol-1, respectively. Thioflavin-T (ThT) fluorescence assays showed that the binding of EA or PPG could effectively inhibit the nucleation and elongation of PrP fibrilization and reduce the amount of PrP fibrils generated. EA and PGG could also lead to a significant disaggregation of PrP fibrils. Circular dichroism (CD) measurements suggested that EA- or PPG-bound PrP could preserve a higher content of α-helical structures than β-sheet-rich PrP fibrils. The PrP aggregates formed in the presence of EA or PGG showed lower resistance to proteinase K (PK) digestion. Overall, the present work reported the inhibitory effect of EA and PGG on PrP fibrillization. These two natural polyphenols could be potential prodrug molecules for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Chunjun Yan
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|