1
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
2
|
Tan H, Han X, Li C, Liu W, Li K, Sheng X, Qi S. Myelopreservation with Trilaciclib in recurrent advanced ovarian cancer: a case report. Front Oncol 2024; 14:1343239. [PMID: 38764584 PMCID: PMC11099831 DOI: 10.3389/fonc.2024.1343239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/04/2024] [Indexed: 05/21/2024] Open
Abstract
Ovarian cancer is a prevalent malignant tumor of the female reproductive system, often remaining concealed until it reaches an advanced stage. The standard treatment protocol includes cytoreductive surgery for ovarian cancer plus postoperative consolidation chemotherapy and maintenance therapy, although it carries a high recurrence rate. During the treatment period, chemotherapy can lead to bone marrow suppression, a condition known as Chemotherapy-Induced Myelosuppression (CIM). This suppression may necessitate dose reduction or chemotherapy treatment cycle delay. In severe cases, CIM can result in infection, fever, and potential harm to the patient's life. Here, we report a case of a female patient with ovarian malignant tumor of biochemical recurrence who treated with chemotherapy combined with Trilaciclib, following previous perioperative chemotherapy with occurrence of severe CIM. It involves an intravenous injection of Trilaciclib before chemotherapy, which significantly abates the side effects of chemotherapy, reduces the occurrence of severe CIM, improves the patients' quality of life, and decreases the economic burden of hospitalization. We hope that this retrospective analysis of the case may serve as a reference in preventing and treating severe CIM during chemotherapy in some patients with malignant tumors, ultimately benefiting more patients with tumors.
Collapse
Affiliation(s)
- Huaming Tan
- Medical College, Shantou University Medical College, Shantou, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Cancer Center, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiuchen Han
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chao Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wenli Liu
- Medical College, Shenzhen University, Shenzhen, China
| | - Kanghong Li
- Gynecology Department, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Xiugui Sheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Cancer Center, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shuying Qi
- Medical College, Shantou University Medical College, Shantou, China
- Department of Reproductive Medicine, Longgang Central Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Chan LH, Wang P, Abuhammad S, Lim LRJ, Cursons J, Sheppard KE, Goode DL. PRMT5 and CDK4/6 inhibition result in distinctive patterns of alternative splicing in melanoma. PLoS One 2023; 18:e0292278. [PMID: 37917641 PMCID: PMC10621831 DOI: 10.1371/journal.pone.0292278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
Drugs targeting cyclin-dependent kinases 4 and 6 (CDK4/6) are promising new treatments for melanoma and other solid malignancies. In studies on CDK4/6 inhibitor resistance, protein arginine methyltransferase 5 (PRMT5) regulation of alternative splicing was shown to be an important downstream component of the CDK4/6 pathway. However, the full effects of inhibition of CDK4/6 on splicing events in melanoma and the extent to which they are dependent on PRMT5 has not been established. We performed full-length mRNA sequencing on CHL1 and A375 melanoma cell lines treated with the CDK4/6 inhibitor palbociclib and the PRMT5 inhibitor GSK3326595 and analysed data for differential gene expression and differential pre-mRNA splicing induced by these agents. Changes in gene expression and RNA splicing were more extensive under PRMT5 inhibition than under CDK4/6 inhibition. Although PRMT5 inhibition and CDK4/6 inhibition induced common RNA splicing events and gene expression profiles, the majority of events induced by CDK4/6 inhibition were distinct. Our findings indicate CDK4/6 has the ability to regulate alternative splicing in a manner that is distinct from PRMT5 inhibition, resulting in divergent changes in gene expression under each therapy.
Collapse
Affiliation(s)
- Lok Hang Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peihan Wang
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shatha Abuhammad
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lydia Rui Jia Lim
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph Cursons
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Karen E. Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - David L. Goode
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
5
|
Kreuger IZM, Slieker RC, van Groningen T, van Doorn R. Therapeutic Strategies for Targeting CDKN2A Loss in Melanoma. J Invest Dermatol 2023; 143:18-25.e1. [PMID: 36123181 DOI: 10.1016/j.jid.2022.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Loss of the tumor suppressor gene CDKN2A, encoding p16 and p14, is a frequent event driving melanoma progression. Therefore, therapeutic strategies aimed at CDKN2A loss hold great potential to improve melanoma treatment. Pharmacological inhibition of the p16 targets CDK4/6 is a prime example of such a strategy. Other approaches exploit cell cycle deregulation, target metabolic rewiring, epigenetically restore expression, act on dependencies resulting from co-deleted genes, or are directed at the effects of CDKN2A loss on immune responses. This review explores these therapeutic strategies targeting CDKN2A loss, which potentially open up new avenues for precision medicine in melanoma.
Collapse
Affiliation(s)
- Inger Z M Kreuger
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roderick C Slieker
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands; Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tim van Groningen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
6
|
Russo T, Piccolo V, Moscarella E, Tschandl P, Kittler H, Paoli J, Lallas A, Braun RP, Thomas L, Soyer HP, Malvehy J, Puig S, Marghoob A, Scope A, Blum A, Halpern AC, Cabo H, Menzies S, Stolz W, Tanaka M, Rabinovitz H, Hofmann-Wellenhof R, Bakos RM, Zalaudek I, Pellacani G, Veiga AV, Maceiras LR, de las Heras-Sotos C, Argenziano G. Indications for Digital Monitoring of Patients With Multiple Nevi: Recommendations from the International Dermoscopy Society. Dermatol Pract Concept 2022; 12:e2022182. [PMID: 36534527 PMCID: PMC9681223 DOI: 10.5826/dpc.1204a182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction In patients with multiple nevi, sequential imaging using total body skin photography (TBSP) coupled with digital dermoscopy (DD) documentation reduces unnecessary excisions and improves the early detection of melanoma. Correct patient selection is essential for optimizing the efficacy of this diagnostic approach. Objectives The purpose of the study was to identify, via expert consensus, the best indications for TBSP and DD follow-up. Methods This study was performed on behalf of the International Dermoscopy Society (IDS). We attained consensus by using an e-Delphi methodology. The panel of participants included international experts in dermoscopy. In each Delphi round, experts were asked to select from a list of indications for TBSP and DD. Results Expert consensus was attained after 3 rounds of Delphi. Participants considered a total nevus count of 60 or more nevi or the presence of a CDKN2A mutation sufficient to refer the patient for digital monitoring. Patients with more than 40 nevi were only considered an indication in case of personal history of melanoma or red hair and/or a MC1R mutation or history of organ transplantation. Conclusions Our recommendations support clinicians in choosing appropriate follow-up regimens for patients with multiple nevi and in applying the time-consuming procedure of sequential imaging more efficiently. Further studies and real-life data are needed to confirm the usefulness of this list of indications in clinical practice.
Collapse
Affiliation(s)
- Teresa Russo
- Dermatology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Piccolo
- Dermatology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elvira Moscarella
- Dermatology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Harald Kittler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John Paoli
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Ralph P. Braun
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Luc Thomas
- Department of Dermatology, Lyon-1 University, and Cancer research center Lyon, Lyon, France
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Universitat de Barcelona & IDIBAPS & CIBERER, Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Universitat de Barcelona & IDIBAPS & CIBERER, Barcelona, Spain
| | - Ashfaq Marghoob
- Memorial Sloan Kettering Cancer Center, Hauppauge, New York, USA
| | - Alon Scope
- The Kittner Skin Cancer Screening and Research Institute, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Blum
- Public, Private and Teaching Practice of Dermatology, Konstanz, Germany
| | - Allan C. Halpern
- Memorial Sloan Kettering Cancer Center, Hauppauge, New York, USA
| | - Horacio Cabo
- Dermatology Institute of Medical Research, University of Buenos Aires, Buenos Aires, Argentina
| | - Scott Menzies
- Discipline of Dermatology, Sydney Medical School, The University of Sydney and Sydney Melanoma Diagnostic Centre, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Wilhelm Stolz
- Department of Dermatology, Allergology, and Environmental Medicine Clinic Thalkirchen, Hospital Munich, Munich, Germany
| | - Masaru Tanaka
- Department of Dermatology, Tokyo Women’s Medical University Medical Center East, Japan
| | - Harold Rabinovitz
- Department of Dermatology Medical College of Georgia, Augusta, United States
| | | | - Renato Marchiori Bakos
- Department of Dermatology, Hospital de Clınicas de Porto Alegre - Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Iris Zalaudek
- Department of Dermatology, University of Trieste, Trieste, Italy
| | | | - Ana Varela Veiga
- Department of Dermatology, University Hospital Complex of Ferrol, A Coruña, Spain
| | | | | | | |
Collapse
|
7
|
Bayer AL, Pietruska J, Farrell J, McRee S, Alcaide P, Hinds PW. AKT1 Is Required for a Complete Palbociclib-Induced Senescence Phenotype in BRAF-V600E-Driven Human Melanoma. Cancers (Basel) 2022; 14:572. [PMID: 35158840 PMCID: PMC8833398 DOI: 10.3390/cancers14030572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a carefully regulated process of proliferative arrest accompanied by functional and morphologic changes. Senescence allows damaged cells to avoid neoplastic proliferation; however, the induction of the senescence-associated secretory phenotype (SASP) can promote tumor growth. The complexity of senescence may limit the efficacy of anti-neoplastic agents, such as CDK4/6 inhibitors (Cdk4/6i), that induce a senescence-like state in tumor cells. The AKT kinase family, which contains three isoforms that play both unique and redundant roles in cancer progression, is commonly hyperactive in many cancers including melanoma and has been implicated in the regulation of senescence. To interrogate the role of AKT isoforms in Cdk4/6i-induced cellular senescence, we generated isoform-specific AKT knockout human melanoma cell lines. We found that the CDK4/6i Palbociclib induced a form of senescence in these cells that was dependent on AKT1. We then evaluated the activity of the cGAS-STING pathway, recently implicated in cellular senescence, finding that cGAS-STING function was dependent on AKT1, and pharmacologic inhibition of cGAS had little effect on senescence. However, we found SASP factors to require NF-κB function, in part dependent on a stimulatory phosphorylation of IKKα by AKT1. In summary, we provide the first evidence of a novel, isoform-specific role for AKT1 in therapy-induced senescence in human melanoma cells acting through NF-κB but independent of cGAS.
Collapse
Affiliation(s)
- Abraham L. Bayer
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA; (A.L.B.); (P.A.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jodie Pietruska
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
| | - Jaymes Farrell
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Siobhan McRee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pilar Alcaide
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA; (A.L.B.); (P.A.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip W. Hinds
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
8
|
Nassar KW, Hintzsche JD, Bagby SM, Espinoza V, Langouët-Astrié C, Amato CM, Chimed TS, Fujita M, Robinson W, Tan AC, Schweppe RE. Targeting CDK4/6 Represents a Therapeutic Vulnerability in Acquired BRAF/MEK Inhibitor-Resistant Melanoma. Mol Cancer Ther 2021; 20:2049-2060. [PMID: 34376578 PMCID: PMC9768695 DOI: 10.1158/1535-7163.mct-20-1126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
There is a clear need to identify targetable drivers of resistance and potential biomarkers for salvage therapy for patients with melanoma refractory to the combination of BRAF and MEK inhibition. In this study, we performed whole-exome sequencing on BRAF-V600E-mutant melanoma patient tumors refractory to the combination of BRAF/MEK inhibition and identified acquired oncogenic mutations in NRAS and loss of the tumor suppressor gene CDKN2A We hypothesized the acquired resistance mechanisms to BRAF/MEK inhibition were reactivation of the MAPK pathway and activation of the cell-cycle pathway, which can both be targeted pharmacologically with the combination of a MEK inhibitor (trametinib) and a CDK4/6 inhibitor (palbociclib). In vivo, we found that combination of CDK4/6 and MEK inhibition significantly decreased tumor growth in two BRAF/MEK inhibitor-resistant patient-derived xenograft models. In vitro, we observed that the combination of CDK4/6 and MEK inhibition resulted in synergy and significantly reduced cellular growth, promoted cell-cycle arrest, and effectively inhibited downstream signaling of MAPK and cell-cycle pathways in BRAF inhibitor-resistant cell lines. Knockdown of CDKN2A in BRAF inhibitor-resistant cells increased sensitivity to CDK4/6 inhibition alone and in combination with MEK inhibition. A key implication of our study is that the combination of CDK4/6 and MEK inhibitors overcomes acquired resistance to BRAF/MEK inhibitors, and loss of CDKN2A may represent a biomarker of response to the combination. Inhibition of the cell-cycle and MAPK pathway represents a promising strategy for patients with metastatic melanoma who are refractory to BRAF/MEK inhibitor therapy.
Collapse
Affiliation(s)
- Kelsey W Nassar
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer D Hintzsche
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stacey M Bagby
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Veronica Espinoza
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christophe Langouët-Astrié
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carol M Amato
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mayumi Fujita
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - William Robinson
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida.
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Li Q, Chen L, Ma YF, Jian XE, Ji JH, You WW, Zhao PL. Development of pteridin-7(8H)-one analogues as highly potent cyclin-dependent kinase 4/6 inhibitors: Synthesis, structure-activity relationship, and biological activity. Bioorg Chem 2021; 116:105324. [PMID: 34509794 DOI: 10.1016/j.bioorg.2021.105324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022]
Abstract
CDK4/6 have been validated as the cancer therapeutic targets. Here, we describe a series of pteridin-7(8H)-one analogues as potent CDK4/6 inhibitors. Among them, the most promising compound 7s demonstrated remarkable and broad-spectrum antiproliferative activities toward HCT116, HeLa, MDA-MB-231, and HT-29 cells with IC50 values of 0.65, 0.70, 0.39, and 2.53 μM, respectively, which were more potent than that of the anticancer drug Palbociclib. Interestingly, 7s also manifested the greatest inhibitory activities toward both CDK4/cyclin D3 and CDK6/cyclin D3 (IC50 = 34.0 and 65.1 nM, respectively), which was comparable with Palbociclib. Additionally, molecular simulation indicated that 7s bound efficiently at the ATPbindingsitesofCDK4 and CDK6. Further mechanistic studies revealed that compound 7s could concentration-dependently induce cell cycle arrest and apoptosis in HeLa cells. Takentogether, 7s represents a promising novel CDK4/6 inhibitor for the potential treatment of cancer.
Collapse
Affiliation(s)
- Qiu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Feng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jia-Hao Ji
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
10
|
Tovar-Parra D, Gil-Quiñones SR, Nova J, Gutiérrez-Castañeda LD. 3'UTR-CDKN2A and CDK4 Germline Variants Are Associated With Susceptibility to Cutaneous Melanoma. In Vivo 2021; 35:1529-1536. [PMID: 33910831 DOI: 10.21873/invivo.12406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Genetic variations of the CDKN2A and CDK4 gene have been associated to melanoma development. In the present study we investigated the potential associations of CDKN2A and CDK4 gene variants in a colombian population diagnosed with melanoma. MATERIALS AND METHODS DNA was extracted from whole blood samples from 85 patients diagnosed with cutaneous melanoma and 166 healthy controls. CDKN2A and CDK4 genes were genotyped using a high-resolution melting assay. RESULTS A similar distribution of CDKN2A variants 500C>G and 540C>T was found among cases (12% and 31% respectively) and controls (15% and 31% respectively). The CDKN2A variants were present in 36% of acral lentiginous melanoma and 39.47% of lentigo maligna. The haplotype analysis showed an association with susceptibility in the development of melanoma. CONCLUSION The presence of haplotype 500G/540C in males is associated with an increased risk of melanoma in a colombian population, especially in subjects with a family history of cancer.
Collapse
Affiliation(s)
- David Tovar-Parra
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - Sebastián Ramiro Gil-Quiñones
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - John Nova
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - Luz D Gutiérrez-Castañeda
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| |
Collapse
|
11
|
Garutti M, Targato G, Buriolla S, Palmero L, Minisini AM, Puglisi F. CDK4/6 Inhibitors in Melanoma: A Comprehensive Review. Cells 2021; 10:cells10061334. [PMID: 34071228 PMCID: PMC8227121 DOI: 10.3390/cells10061334] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Historically, metastatic melanoma was considered a highly lethal disease. However, recent advances in drug development have allowed a significative improvement in prognosis. In particular, BRAF/MEK inhibitors and anti-PD1 antibodies have completely revolutionized the management of this disease. Nonetheless, not all patients derive a benefit or a durable benefit from these therapies. To overtake this challenges, new clinically active compounds are being tested in the context of clinical trials. CDK4/6 inhibitors are drugs already available in clinical practice and preliminary evidence showed a promising activity also in melanoma. Herein we review the available literature to depict a comprehensive landscape about CDK4/6 inhibitors in melanoma. We present the molecular and genetic background that might justify the usage of these drugs, the preclinical evidence, the clinical available data, and the most promising ongoing clinical trials.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (L.P.); (F.P.)
- Correspondence:
| | - Giada Targato
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (G.T.); (S.B.); (A.M.M.)
| | - Silvia Buriolla
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (G.T.); (S.B.); (A.M.M.)
| | - Lorenza Palmero
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (L.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (G.T.); (S.B.); (A.M.M.)
| | | | - Fabio Puglisi
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (L.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (G.T.); (S.B.); (A.M.M.)
| |
Collapse
|
12
|
Thinking Small: Small Molecules as Potential Synergistic Adjuncts to Checkpoint Inhibition in Melanoma. Int J Mol Sci 2021; 22:ijms22063228. [PMID: 33810078 PMCID: PMC8005112 DOI: 10.3390/ijms22063228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma remains the deadliest form of skin cancer. Immune checkpoint inhibition (ICI) immunotherapy has defined a new age in melanoma treatment, but responses remain inconsistent and some patients develop treatment resistance. The myriad of newly developed small molecular (SM) inhibitors of specific effector targets now affords a plethora of opportunities to increase therapeutic responses, even in resistant melanoma. In this review, we will discuss the multitude of SM classes currently under investigation, current and prospective clinical combinations of ICI and SM therapies, and their potential for synergism in melanoma eradication based on established mechanisms of immunotherapy resistance.
Collapse
|
13
|
Peng Z, Gong Y, Liang X. Role of FAT1 in health and disease. Oncol Lett 2021; 21:398. [PMID: 33777221 PMCID: PMC7988705 DOI: 10.3892/ol.2021.12659] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes a protocadherin, is one of the most frequently mutated genes in human cancer. Over the past 20 years, the role of FAT1 in tissue growth and in the development of diseases has been extensively studied. There is definitive evidence that FAT1 serves a substantial role in the maintenance of organs and development, and its expression appears to be tissue-specific. FAT1 activates a variety of signaling pathways through protein-protein interactions, including the Wnt/β-catenin, Hippo and MAPK/ERK signaling pathways, which affect cell proliferation, migration and invasion. Abnormal FAT1 expression may lead to the development of tumors and may affect prognosis. Therefore, FAT1 may have potential in tumor therapy. The structural and functional changes mediated by FAT1, its tissue distribution and changes in FAT1 expression in human diseases are described in the present review, which provides further insight for understanding the role of FAT1 in development and disease.
Collapse
Affiliation(s)
- Zizhen Peng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
14
|
Kargbo RB. Cyclin-Dependent Kinase Inhibitors in Cancer Therapeutics. ACS Med Chem Lett 2021; 12:11-12. [PMID: 33488958 DOI: 10.1021/acsmedchemlett.0c00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
15
|
Pilla L, Alberti A, Di Mauro P, Gemelli M, Cogliati V, Cazzaniga ME, Bidoli P, Maccalli C. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers (Basel) 2020; 12:E3456. [PMID: 33233603 PMCID: PMC7699774 DOI: 10.3390/cancers12113456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients' overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale. The need for robust biomarkers to predict patients' responsiveness to defined therapies and for their stratification is still unmet. Progress in immunological assays and genomic techniques as long as improvement in designing and performing studies monitoring the expression of these markers along with the evolution of the disease allowed to identify candidate biomarkers. However, none of them achieved a definitive role in predicting patients' clinical outcomes. Along this line, the cross-talk of melanoma cells with tumor microenvironment plays an important role in the evolution of the disease and needs to be considered in light of the role of predictive biomarkers. The overview of the relationship between the molecular basis of melanoma and targeted therapies is provided in this review, highlighting the benefit for clinical responses and the limitations. Moreover, the role of different candidate biomarkers is described together with the technical approaches for their identification. The provided evidence shows that progress has been achieved in understanding the molecular basis of melanoma and in designing advanced therapeutic strategies. Nevertheless, the molecular determinants of melanoma and their role as biomarkers predicting patients' responsiveness to therapies warrant further investigation with the vision of developing more effective precision medicine.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Health Science and Public Health, University of Brescia, ASST Ospedali Civili, 25123 Brescia, Italy;
| | - Pierluigi Di Mauro
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Maria Gemelli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Viola Cogliati
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Marina Elena Cazzaniga
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Paolo Bidoli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha 26999, Qatar;
| |
Collapse
|