1
|
Camargo-Ayala L, Prent-Peñaloza L, Osorio E, Camargo-Ayala PA, Jimenez CA, Zúñiga-Arbalti F, Brito I, Delgado GE, Gutiérrez M, Polo-Cuadrado E. Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease. Bioorg Chem 2024; 153:107896. [PMID: 39454497 DOI: 10.1016/j.bioorg.2024.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat AD. These studies revealed that compounds 1a-1k and 2l-2m were obtained in moderate yield. Four amides (1h, 1j, 1k, and 2l) were selective for one of the enzymes (BChE); thus, those that inhibited BChE were more active than the positive control (galantamine) and showed better IC50 values (3.30-5.03 µM). The theoretical free binding energies calculated by MM-GBSA indicated that all inhibitors were more stable than rivastigmine, and the inhibition mechanisms involved the entire active site: peripheral anionic site, oxyanion hole, acyl-binding pockets, and catalytic site. We examined the cytotoxicity of compounds 1h, 1j, 1k, and 2l in human dermal cells and found that they did not exhibit any toxic effects under the tested conditions. Additionally, these compounds, which also inhibited BChE, displayed mixed inhibition and did not exhibit hemolytic effects on human erythrocytes. Furthermore, the ABTS and DPPH assays indicated that, although none of the compounds showed activity in the DPPH assay, the EC50 values for radical trapping by the ABTS method showed that compounds 1a, 1d, 1e, and 1g had EC50 values lower than 10 µg/mL, indicating their strong radical scavenging capacity. We also report the crystal structures of compounds 1c, 1d, 1f, and 1g, which are found in monoclinic crystal systems.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730001, Colombia
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Claudio A Jimenez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile
| | - Gerzon E Delgado
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile; Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Margarita Gutiérrez
- Laboratorio de Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile.
| |
Collapse
|
2
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
3
|
Tang WF, Chang YH, Lin CC, Jheng JR, Hsieh CF, Chin YF, Chang TY, Lee JC, Liang PH, Lin CY, Lin GH, Cai JY, Chen YL, Chen YS, Tsai SK, Liu PC, Yang CM, Shadbahr T, Tang J, Hsu YL, Huang CH, Wang LY, Chen CC, Kau JH, Hung YJ, Lee HY, Wang WC, Tsai HP, Horng JT. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024; 68:e0095623. [PMID: 38446062 PMCID: PMC10989008 DOI: 10.1128/aac.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Fan Chin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Guan-Hua Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jie-Yun Cai
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Tolou Shadbahr
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Division of Medical Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Hsin-Yi Lee
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hui-Ping Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
4
|
Yadav Y, Singh K, Sharma S, Mishra VK, Sagar R. Recent Efforts in Identification of Privileged Scaffolds as Antiviral Agents. Chem Biodivers 2023; 20:e202300921. [PMID: 37589569 DOI: 10.1002/cbdv.202300921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Viral infections are the most important health concern nowadays to mankind, which is unexpectedly increasing the health complications and fatality rate worldwide. The recent viral infection outbreak developed a pressing need for small molecules that can be quickly deployed for the control/treatment of re-emerging or new emerging viral infections. Numerous viruses, including the human immunodeficiency virus (HIV), hepatitis, influenza, SARS-CoV-1, SARS-CoV-2, and others, are still challenging due to emerging resistance to known drugs. Therefore, there is always a need to search for new antiviral small molecules that can combat viral infection with new modes of action. This review highlighted recent progress in developing new antiviral molecules based on natural product-inspired scaffolds. Herein, the structure-activity relationship of the FDA-approved drugs along with the molecular docking studies of selected compounds have been discussed against several target proteins. The findings of new small molecules as neuraminidase inhibitors, other than known drug scaffolds, Anti-HIV and SARS-CoV are incorporated in this review paper.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
5
|
Ettahiri W, Salim R, Adardour M, Ech-Chihbi E, Yunusa I, Alanazi MM, Lahmidi S, Barnossi AE, Merzouki O, Iraqi Housseini A, Rais Z, Baouid A, Taleb M. Synthesis, Characterization, Antibacterial, Antifungal and Anticorrosion Activities of 1,2,4-Triazolo[1,5-a]quinazolinone. Molecules 2023; 28:5340. [PMID: 37513216 PMCID: PMC10385296 DOI: 10.3390/molecules28145340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis of 5,6,7,8-tetrahydro-[1,2,4]triazolo[5,1-b]quinazolin-9(4H)-one (THTQ), a potentially biologically active compound, was pursued, and its structure was determined through a sequence of spectral analysis, including 1H-NMR, 13C-NMR, IR, and HRMS. Four bacterial and four fungal strains were evaluated for their susceptibility to the antibacterial and antifungal properties of the THTQ compound using the well diffusion method. The impact of THTQ on the corrosion of mild steel in a 1 M HCl solution was evaluated using various methods such as weight loss, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. The study revealed that the effectiveness of THTQ as an inhibitor increased with the concentration but decreased with temperature. The PDP analysis suggested that THTQ acted as a mixed-type inhibitor, whereas the EIS data showed that it created a protective layer on the steel surface. This protective layer occurs due to the adsorption behavior of THTQ following Langmuir's adsorption isotherm. The inhibition potential of THTQ is also predicted theoretically using DFT at B3LYP and Monte Carlo simulation.
Collapse
Affiliation(s)
- Walid Ettahiri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Rajae Salim
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Mohamed Adardour
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Elhachmia Ech-Chihbi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ismaeel Yunusa
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11541, Saudi Arabia
| | - Sanae Lahmidi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Oussama Merzouki
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Zakia Rais
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdesselam Baouid
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
6
|
Ettahiri W, Dalbouha A, Baouid A, Alsubari A, Mague JT, Taleb M, Ramli Y. 5,6,7,8-Tetra-hydro-[1,2,4]triazolo[5,1- b]quinazolin-9(4 H)-one. IUCRDATA 2023; 8:x230409. [PMID: 37287860 PMCID: PMC10242730 DOI: 10.1107/s2414314623004091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
The triazole ring in the title mol-ecule, C9H10N4O, is not quite coplanar with the six-membered ring to which it is fused, the dihedral angle between the two least-squares planes being 2.52 (6)°. In the crystal, a layered structure is formed by N-H⋯N and C-H⋯O hydrogen bonds plus slipped π-stacking inter-actions, with the fused cyclo-hexene rings projecting to either side.
Collapse
Affiliation(s)
- Walid Ettahiri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Amal Dalbouha
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdesselam Baouid
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
| |
Collapse
|
7
|
Discovery of Novel Thioquinazoline- N-aryl-acetamide/ N-arylacetohydrazide Hybrids as Anti-SARS-CoV-2 Agents: Synthesis, in vitro Biological Evaluation, and Molecular Docking Studies. J Mol Struct 2022; 1276:134690. [PMCID: PMC9709698 DOI: 10.1016/j.molstruc.2022.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In the current investigation, two novel series of (tetrahydro)thioquinazoline-N-arylacetamides and (tetrahydro)thioquinazoline-N-arylacetohydrazides were designed, synthesized and investigated for their antiviral activity against SARS-CoV-2. The thioquinazoline-N-arylacetamide 17g as well as the tetrahydrothioquinazoline-N-arylacetohydrazides 18c and 18f showed potent antiviral activity with IC50 of 21.4, 38.45 and 26.4 µM, respectively. In addition, 18c and 18f demonstrated potential selectivity toward the SARS-CoV-2 over the host cells with SI of 10.67 and 16.04, respectively. Further evaluation of the mechanism of action of the three derivatives 17g, 18c, and 18f displayed that they can inhibit the virus at the adsorption as well as at the replication stages, in addition to their virucidal properties. In addition, 17g, 18c, and 18f demonstrated satisfactory physicochemical properties as well as drug-likeness properties to be further optimized for the discovery of novel antiviral agents. The docking simulation predicted the binding pattern of the target compounds rationalizing their differential activity based on their hydrophobic interaction and fitting in the hydrophobic S2 subsite of the binding site
Collapse
|
8
|
Xu X, Chen Y, Lu X, Zhang W, Fang W, Yuan L, Wang X. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges. Biochem Pharmacol 2022; 205:115279. [PMID: 36209840 PMCID: PMC9535928 DOI: 10.1016/j.bcp.2022.115279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The highly transmissible variants of SARS-CoV-2, the causative pathogen of the COVID-19 pandemic, bring new waves of infection worldwide. Identification of effective therapeutic drugs to combat the COVID-19 pandemic is an urgent global need. RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication, is the most promising target for antiviral drug research since it has no counterpart in human cells and shows the highest conservation across coronaviruses. This review summarizes recent progress in studies of RdRp inhibitors, focusing on interactions between these inhibitors and the enzyme complex, based on structural analysis, and their effectiveness. In addition, we propose new possible strategies to address the shortcomings of current inhibitors, which may guide the development of novel efficient inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yuheng Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wanlin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wenxiu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Luping Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
9
|
Ding M, Wu N, Lin Q, Yan Y, Yang Y, Tian G, An L, Bao X. Discovery of Novel Quinazoline-2-Aminothiazole Hybrids Containing a 4-Piperidinylamide Linker as Potential Fungicides against the Phytopathogenic Fungus Rhizoctonia solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10100-10110. [PMID: 35960511 DOI: 10.1021/acs.jafc.1c07706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A total of 29 novel quinazoline-2-aminothiazole hybrids containing a 4-piperidinylamide linker were designed, synthesized, and evaluated for their anti-microbial properties against phytopathogenic fungi and bacteria of agricultural importance. The anti-fungal assays indicated that some of the target compounds exhibited excellent inhibitory effects in vitro against Rhizoctonia solani. For example, 11 compounds within this series (including 4a, 4g, 4h, 4j, 4o, 4s, 4t, 4u, 4v, 4y, and 4b') were found to possess EC50 values (effective concentration for 50% activity) ranging from 0.42 to 2.05 μg/mL against this pathogen. In particular, compound 4y with a 2-chloro-6-fluorophenyl substituent displayed a potent anti-R. solani efficacy with EC50 = 0.42 μg/mL, nearly threefold more effective than the commercialized fungicide Chlorothalonil (EC50 = 1.20 μg/mL) and also slightly superior to the other fungicide Carbendazim (EC50 = 0.53 μg/mL). Moreover, compound 4y could efficiently inhibit the growth of R. solani in vivo on the potted rice plants, displaying an impressive protection efficacy of 82.3% at 200 μg/mL, better than those of the fungicides Carbendazim (69.8%) and Chlorothalonil (48.9%). Finally, the mechanistic studies showed that compound 4y exerted its anti-fungal effects by altering the mycelial morphology, increasing the cell membrane permeability, and destroying the cell membrane integrity. On the other hand, some compounds demonstrated good anti-bacterial effects in vitro against Xanthomonas oryzae pv. oryzae (Xoo). Overall, the presented results implied that 4-piperidinylamide-bridged quinazoline-2-aminothiazole hybrids held the promise of acting as lead compounds for developing more efficient fungicides to control R. solani.
Collapse
Affiliation(s)
- Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qiao Lin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yehui Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Guangmin Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Lian An
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
10
|
Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02897-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Zhao J, Zhang Y, Wang M, Liu Q, Lei X, Wu M, Guo S, Yi D, Li Q, Ma L, Liu Z, Guo F, Wang J, Li X, Wang Y, Cen S. Quinoline and Quinazoline Derivatives Inhibit Viral RNA Synthesis by SARS-CoV-2 RdRp. ACS Infect Dis 2021; 7:1535-1544. [PMID: 34038639 PMCID: PMC8188755 DOI: 10.1021/acsinfecdis.1c00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a fatal respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of potential drugs is urgently needed to control the pandemic. RNA dependent RNA polymerase (RdRp) is a conserved protein within RNA viruses and plays a crucial role in the viral life cycle, thus making it an attractive target for development of antiviral drugs. In this study, 101 quinoline and quinazoline derivatives were screened against SARS-CoV-2 RdRp using a cell-based assay. Three compounds I-13e, I-13h, and I-13i exhibit remarkable potency in inhibiting RNA synthesis driven by SARS-CoV-2 RdRp and relatively low cytotoxicity. Among these three compounds, I-13e showed the strongest inhibition upon RNA synthesis driven by SARS-CoV-2 RdRp, the resistance to viral exoribonuclease activity and the inhibitory effect on the replication of CoV, thus holding potential of being drug candidate for treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Jianyuan Zhao
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Yongxin Zhang
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Minghua Wang
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qian Liu
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Xiaobo Lei
- Institute
of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100730, China
| | - Meng Wu
- Department
of Urology, Beijing Hospital, Beijing 100730, China
| | - SaiSai Guo
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Dongrong Yi
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Quanjie Li
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Ling Ma
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Zhenlong Liu
- Lady
Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Fei Guo
- Institute
of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100730, China
| | - Jianwei Wang
- Institute
of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiaoyu Li
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Yucheng Wang
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Shan Cen
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| |
Collapse
|
12
|
Antiviral Agents - Benzazine Derivatives. Chem Heterocycl Compd (N Y) 2021; 57:374-382. [PMID: 34007084 PMCID: PMC8118681 DOI: 10.1007/s10593-021-02915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
The review outlines the results of studies of the antiviral activity of quinoline, quinoxaline, and quinazoline derivatives published over the past 5 years. The supplied data indicate the enormous potential of benzazines for the design of effective antiviral drugs.
Collapse
|
13
|
Liu G, Yan C, Zhang Y, Zhao G, Jin X, Yang W, Niu P, Wang H. Synthesis and Biological Activities of Selenium/Thioether Quinazoline Compounds. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|