1
|
Yıldız MT, Osmaniye D, Saglik BN, Levent S, Kurnaz R, Ozkay Y, Kaplancıklı ZA. Synthesis, molecular dynamics simulation, and evaluation of biological activity of novel flurbiprofen and ibuprofen-like compounds. J Mol Recognit 2024:e3089. [PMID: 38894531 DOI: 10.1002/jmr.3089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
The frequent use of anti-inflammatory drugs and the side effects of existing drugs keep the need for new compounds constant. For this purpose, flurbiprofen and ibuprofen-like compounds, which are frequently used anti-inflammatory compounds in this study, were synthesized and their structures were elucidated. Like ibuprofen and flurbiprofen, the compounds contain a residue of phenylacetic acid. On the other hand, it contains a secondary amine residue. Thus, it is planned to reduce the acidity, which is the biggest side effect of NSAI drugs, even a little bit. The estimated ADME parameters of the compounds were evaluated. Apart from internal use, local use of anti-inflammatory compounds is also very important. For this reason, the skin permeability values of the compounds were also calculated. And it has been found to be compatible with reference drugs. The COX enzyme inhibitory effects of the obtained compounds were tested by in vitro experiments. Compound 2a showed significant activity against COX-1 enzyme with an IC50 = 0.123 + 0.005 μM. The interaction of the compound with the enzyme active site was clarified by molecular dynamics studies.
Collapse
Affiliation(s)
- Mehmet Taha Yıldız
- Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Begum Nurpelin Saglik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Recep Kurnaz
- Acıbadem Hospital, Orthopedics and Traumatology Clinic, Eskişehir, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
2
|
Ahmadi N, Khoramjouy M, Movahed MA, Amidi S, Faizi M, Zarghi A. Design, Synthesis, In vitro and In vivo Evaluation of New Imidazo[1,2- a]pyridine Derivatives as Cyclooxygenase-2 Inhibitors. Anticancer Agents Med Chem 2024; 24:504-513. [PMID: 38275051 DOI: 10.2174/0118715206269563231220104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases. OBJECTIVE The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits. METHODS Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities. RESULTS The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 μM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 μM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90. CONCLUSION The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.
Collapse
Affiliation(s)
- Nahid Ahmadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zahid S, Malik A, Waqar S, Zahid F, Tariq N, Khawaja AI, Safir W, Gulzar F, Iqbal J, Ali Q. Countenance and implication of Β-sitosterol, Β-amyrin and epiafzelechin in nickel exposed Rat: in-silico and in-vivo approach. Sci Rep 2023; 13:21351. [PMID: 38049552 PMCID: PMC10695965 DOI: 10.1038/s41598-023-48772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
The detrimental impact of reactive oxygen species on D.N.A. repair processes is one of the contributing factors to colon cancer. The idea that oxidative stress may be a significant etiological element for carcinogenesis is currently receiving more and more support. The goal of the current study is to evaluate the anti-inflammatory and anticancer activity of three powerful phytocompounds-sitosterol, amyrin, and epiafzelechin-alone and in various therapeutic combinations against colon cancer to identify the critical mechanisms that mitigate nickel's carcinogenic effect. To evaluate the ligand-protein interaction of four selected components against Vascular endothelial growth factor (VEGF), Matrix metalloproteinase-9 (MMP9) inhibitor and Interleukin-10 (IL-10) molecular docking approach was applied using PyRx bioinformatics tool. For in vivo analysis, hundred albino rats were included, divided into ten groups, each containing ten rats of weight 160-200 g. All the groups were injected with 1 ml/kg nickel intraperitoneally per week for three months, excluding the negative control group. Three of the ten groups were treated with β-sitosterol (100 mg/kg b wt), β-amyrin (100 mg/kg b wt), and epiafzelechin (200 mg/kg b wt), respectively, for one month. The later four groups were fed with combinatorial treatments of the three phyto compounds for one month. The last group was administered with commercial drug Nalgin (500 mg/kg b wt). The biochemical parameters Creatinine, Protein carbonyl, 8-hydroxydeoxyguanosine (8-OHdG), VEGF, MMP-9 Inhibitor, and IL-10 were estimated using ELISA kits and Glutathione (G.S.H.), Superoxide dismutase (S.O.D.), Catalase (C.A.T.) and Nitric Oxide (NO) were analyzed manually. The correlation was analyzed through Pearson's correlation matrix. All the parameters were significantly raised in the positive control group, indicating significant inflammation. At the same time, the levels of the foresaid biomarkers were decreased in the serum in all the other groups treated with the three phytocompounds in different dose patterns. However, the best recovery was observed in the group where the three active compounds were administered concomitantly. The correlation matrix indicated a significant positive correlation of IL-10 vs VEGF (r = 0.749**, p = 0.009), MMP-9 inhibitor vs SOD (r = 0.748**, p = 0.0 21). The study concluded that the three phytocompounds β-sitosterol, β-amyrin, and epiafzelechin are important anticancer agents which can target the cancerous biomarkers and might be used as a better therapeutic approach against colon cancer soon.
Collapse
Affiliation(s)
- Sara Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.
| | - Suleyman Waqar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Fatima Zahid
- Ibadat International University (IIUI), Islamabad, Pakistan
| | - Nusrat Tariq
- M. Islam Medical and Dental College, Gujranwala, Pakistan
| | - Ali Imran Khawaja
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Waqas Safir
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Faisal Gulzar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Javeid Iqbal
- School of Pharmacy, Minhaj University Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
4
|
Fang J, Shang Z, Kaliaperumal K, Ju Z, Chen FE. Design of Balanced Cyclooxygenase Inhibitors Based on Natural Anti-inflammatory Ascidian Metabolites and Celecoxib. ChemMedChem 2023; 18:e202300468. [PMID: 37815017 DOI: 10.1002/cmdc.202300468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The serious adverse effects caused by non-selective and selective cyclooxygenase-2 (COX-2) inhibitors remain significant concerns for current anti-inflammatory drugs. In this study, we present the design and synthesis of a novel series of celecoxib analogs incorporating a hydrazone linker, which were subjected to in silico analysis to compare their binding poses with those of clinically used nonsteroidal anti-inflammatory drugs (NSAIDs) against COX-1 and COX-2. The synthesized analogs were evaluated for their inhibitory activity against both COX enzymes, and compound 6 m, exhibiting potent balanced inhibition, was selected for subsequent in vitro anti-inflammatory assays. Treatment with 6 m effectively suppressed the NF-κB signaling pathway in lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages, resulting in reduced expression of pro-inflammatory factors such as inducible nitric oxide synthase (iNOS), COX-2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, as well as decreased production of prostaglandin E2 (PGE2 ), nitric oxide (NO), and reactive oxygen species (ROS). However, 6 m has no effect on the MAPK signaling pathway. Therefore, due to its potent in vitro anti-inflammatory activity coupled with lack of cytotoxicity, 6 m represents a promising candidate for further development as a new lead compound targeting inflammation.
Collapse
Affiliation(s)
- Jingjie Fang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyi Shang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kumaravel Kaliaperumal
- Department of Orthodontics Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Zhiran Ju
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Lin D, Xu X, Chen L, Chen L, Deng M, Chen J, Ren Z, Lei L, Wang J, Deng J, Li X. Supramolecular nanofiber of indomethacin derivative confers highly cyclooxygenase-2 (COX-2) selectivity and boosts anti-inflammatory efficacy. J Control Release 2023; 364:272-282. [PMID: 37866406 DOI: 10.1016/j.jconrel.2023.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Herein, we report a facile method for converting carboxylate-containing indomethacin (Idm) into a cyclooxygenase-2 (COX-2) selective inhibitor via the amidation of an unnatural peptide sequence (Nal-Nal-Asp). The resulting indomethacin amides (i.e., Idm-Nal-Nal-Asp) have high selectivity for COX-2, and can self-assemble into a one-component supramolecular hydrogel that acts as a 'self-delivery' system for boosting anti-inflammatory efficacy. Self-assembled Idm-Nal-Nal-Asp hydrogel robustly inhibits COX-2 expression in lipopolysaccharide (LPS)-activated Raw 264.7 macrophages while also exhibits superior anti-inflammatory and antioxidant activities via reactive oxygen species (ROS)-related NF-κB and Nrf2/HO-1 pathways. Moreover, a rabbit model of endotoxin-induced uveitis (EIU) reveals that the Idm-Nal-Nal-Asp hydrogel outperforms clinically used 0.1 wt% diclofenac sodium eye drops in terms of in vivo anti-inflammatory efficacy via topical instillation route. As a rational approach to designing and applying COX-2 selective inhibitors, this work presents a simple method for converting non-selective nonsteriodal anti-inflammatory drugs (NSAIDs) into highly selective COX-2 inhibitors that can self-assemble into supramolecular hydrogel for anti-inflammation applications.
Collapse
Affiliation(s)
- Deqing Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoning Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lin Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengyun Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinrun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhibin Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Lei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqing Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Elsayed S, Abdelkhalek AS, Rezq S, Abu Kull ME, Romero DG, Kothayer H. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity. Eur J Med Chem 2023; 260:115724. [PMID: 37611534 PMCID: PMC10528942 DOI: 10.1016/j.ejmech.2023.115724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Emerging evidence points to the intertwining framework of inflammation and oxidative stress in various ailments. We speculate on the potential impact of the magic shotgun approach in these ailments as an attempt to mitigate the drawbacks of current NSAIDs. Hence, we rationally designed and synthesized new tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine monomers/heterodimer as dual selective COX-2/15-LOX inhibitors with potent antioxidant activity. The synthesized compounds were challenged with diverse in vitro biological assays. Regarding the monomeric series, compound 5k exerted the highest COX-2 inhibitory activity (IC50 = 0.068 μM, SI = 160.441), while compound 5i showed the highest 15-LOX inhibitory activity (IC50 = 1.97 μM). Surpassing the most active monomeric members, the heterodimer 11 stemmed as the most potent and selective one in the whole study (COX-2 IC50 = 0.065 μM, SI = 173.846, 15-LOX IC50 = 1.86 μM). Heterodimer design was inspired by the cross-talk between the partner monomers of the COX-2 isoform. Moreover, some of our synthesized compounds could significantly reverse the LPS-enhanced production of ROS and proinflammatory cytokines (IL-6, TNF-α, and NO) in RAW 264.7 macrophages. Again, the heterodimer showed the strongest suppressor activity against ROS (IC50 = 18.79 μM) and IL-6 (IC50 = 4.15 μM) production outperforming the two references, celecoxib and diclofenac. Regarding NO suppressor activity, compound 5j (IC50 = 18.62 μM) surpassed the two references. Only compound 5a significantly suppressed TNF-α production (IC50 = 19.68 μM). Finally, molecular modeling simulated the possible binding scenarios of our synthesized thienopyrimidines within the active sites of COX-2 and 15-LOX. These findings suggest that those novel thienopyrimidines are promising leads showing pharmacodynamics synergy against the selected targets.
Collapse
Affiliation(s)
- Sara Elsayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mansour E Abu Kull
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend Kothayer
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
7
|
Abdelall EKA, Aboelnaga LS, Hassan RM, Lamie PF. Methanesulfonamide derivatives as gastric safe anti-inflammatory agents: Design, synthesis, selective COX-2 inhibitory activity, histopathological and histochemical studies. Bioorg Chem 2023; 140:106787. [PMID: 37597439 DOI: 10.1016/j.bioorg.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Novel chalcone 3a-c, pyrazoline 4a-i and pyridine 5a-c, 6a&b derivatives bearing methanesulfonamide moiety were synthesized. Their construction was confirmed using spectral data and elemental analysis. The stereo-chemical configuration for compounds 3a-c was predicted by MM2 property and 1H NMR spectra. All the prepared compounds were screened for their in vitro COX-1/COX-2 inhibitory activities and in vivo anti-inflammatory activity. The most active anti-inflammatory derivatives, 4f-4i, after 3, 5 & 7 h were further subjected to histopathological and histochemical studies showing safe effect on gastric mucosa, especially 4h derivative. To explore the mechanism of action of COX-2 inhibitory compounds 4f and 6b with the highest S.I. values, they were docked inside COX-2 active site. Physicochemical properties for 4f-i and 6b derivatives were predicted and compared to the reference drug celecoxib. They showed good oral bio-availability specially pyrazoline derivative 4f and pyridine containing compound 6b.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Lamees S Aboelnaga
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Randa M Hassan
- Cytology and Histology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Phoebe F Lamie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
8
|
Yang C, Li Y, Zhang Y, Hu Q, Liu Y, Li YF, Shi HC, Song LL, Cao H, Hao XJ, Zhi XY. Natural Sesquiterpene Lactone as Source of Discovery of Novel Fungicidal Candidates: Structural Modification and Antifungal Activity Evaluation of Xanthatin Derived from Xanthium strumarium L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37449982 DOI: 10.1021/acs.jafc.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As part of our ongoing efforts to discover novel agricultural fungicidal candidates from natural sesquiterpene lactones, in the present work, sixty-three xanthatin-based derivatives containing a arylpyrazole, arylimine, thio-acylamino, oxime, oxime ether, or oxime ester moiety were synthesized. Their structures were well characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry, while the absolute configurations of compounds 5' and 6a were further determined by single-crystal X-ray diffraction. Meanwhile, the antifungal activities of the prepared compounds against several phytopathogenic fungi were investigated using the spore germination method and the mycelium growth rate method in vitro. The bioassay results illustrated that compounds 5, 5', and 15 exhibited excellent inhibitory activity against the tested fungal spores and displayed remarkable inhibitory effects on fungal mycelia. Compounds 5 and 5' exhibited more potent inhibitory activity (IC50 = 1.1 and 24.8 μg/mL, respectively) against the spore of Botrytis cinerea than their precursor xanthatin (IC50 = 37.6 μg/mL), wherein the antifungal activity of compound 5 was 34-fold higher than that of xanthatin and 71-fold higher than that of the positive control, difenoconazole (IC50 = 78.5 μg/mL). Notably, compound 6'a also demonstrated broad-spectrum inhibitory activity against the four tested fungal spores. Meanwhile, compounds 2, 5, 8, and 15 showed prominent inhibitory activity against the mycelia of Cytospora mandshurica with the EC50 values of 2.3, 11.7, 11.1, and 3.0 μg/mL, respectively, whereas the EC50 value of xanthatin was 14.8 μg/mL. Additionally, compounds 5' and 15 exhibited good in vivo therapeutic and protective effects against B. cinerea with values of 55.4 and 62.8%, respectively. The preliminary structure-activity relationship analysis revealed that the introduction of oxime, oxime ether, or oxime ester structural fragment at the C-4 position of xanthatin or the introduction of a chlorine atom at the C-3 position of xanthatin might be significantly beneficial to antifungal activity. In conclusion, the comprehensive investigation indicated that partial xanthatin-based derivatives from this study could be considered for further exploration as potential lead structures toward developing novel fungicidal candidates for crop protection.
Collapse
Affiliation(s)
- Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yuan Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Qiang Hu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang-Fan Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hong-Cheng Shi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Li-Li Song
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| |
Collapse
|
9
|
Li XY, Li YM, Kong RJ, Yan N, Zhou X, Huang JQ, Wang T, Li SY, Cheng H. Feedback-Elevated Antitumor Amplifier of Self-Delivery Nanomedicine by Suppressing Photodynamic Therapy-Caused Inflammation. ACS APPLIED BIO MATERIALS 2023. [PMID: 37326439 DOI: 10.1021/acsabm.3c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inflammation activation is accompanied by tumor growth, migration, and differentiation. Photodynamic therapy (PDT) can trigger an inflammatory response to cause negative feedback of tumor inhibition. In this paper, a feedback-elevated antitumor amplifier is developed by constructing self-delivery nanomedicine for PDT and cascade anti-inflammation therapy. Based on the photosensitizer chlorin e6 (Ce6) and COX-2 inhibitor indomethacin (Indo), the nanomedicine is prepared via molecular self-assembly technology without additional drug carriers. It is exciting that the optimized nanomedicine (designated as CeIndo) possesses favorable stability and dispersibility in the aqueous phase. Moreover, the drug delivery efficiency of CeIndo is significantly improved, which could be effectively accumulated at the tumor site and internalized by tumor cells. Importantly, CeIndo not only exhibits a robust PDT efficacy on tumor cells but also drastically decreases the PDT-induced inflammatory response in vivo, resulting in feedback-elevated tumor inhibition. By virtue of the synergistic effect of PDT and cascade inflammation suppression, CeIndo tremendously reduces tumor growth and leads to a low side effect. This study presents a paradigm for the development of codelivery nanomedicine for enhanced tumor therapy through inflammation suppression.
Collapse
Affiliation(s)
- Xin-Yu Li
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yan-Mei Li
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Ni Yan
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiang Zhou
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jia-Qi Huang
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Redzicka A, Wiatrak B, Jęśkowiak-Kossakowska I, Kochel A, Płaczek R, Czyżnikowska Ż. Design, Synthesis, Biological Evaluation, and Molecular Docking Study of 4,6-Dimethyl-5-aryl/alkyl-2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl]pyrrolo[3,4- c]pyrrole-1,3(2 H,5 H)-diones as Anti-Inflammatory Agents with Dual Inhibition of COX and LOX. Pharmaceuticals (Basel) 2023; 16:804. [PMID: 37375750 DOI: 10.3390/ph16060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In the present study, we characterize the biological activity of a newly designed and synthesized series of 15 compounds 2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl] derivatives of pyrrolo[3,4-c]pyrrole 3a-3o. The compounds were obtained with good yields of pyrrolo[3,4-c]pyrrole scaffold 2a-2c with secondary amines in C2H5OH. The chemical structures of the compounds were characterized by 1H-NMR, 13C-NMR, FT-IR, and MS. All the new compounds were investigated for their potencies to inhibit the activity of three enzymes, i.e., COX-1, COX-2, and LOX, by a colorimetric inhibitor screening assay. In order to analyze the structural basis of interactions between the ligands and cyclooxygenase/lipooxygenase, experimental data were supported by the results of molecular docking simulations. The data indicate that all of the tested compounds influence the activity of COX-1, COX-2, and LOX.
Collapse
Affiliation(s)
- Aleksandra Redzicka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | | | - Andrzej Kochel
- Faculty of Chemistry, University of Wroclaw, ul. F.J oliot-Curie 14, 50-383 Wroclaw, Poland
| | - Remigiusz Płaczek
- Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
12
|
Ayman R, Abusaif MS, Radwan AM, Elmetwally AM, Ragab A. Development of novel pyrazole, imidazo[1,2-b]pyrazole, and pyrazolo[1,5-a]pyrimidine derivatives as a new class of COX-2 inhibitors with immunomodulatory potential. Eur J Med Chem 2023; 249:115138. [PMID: 36696764 DOI: 10.1016/j.ejmech.2023.115138] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Searching for new compounds with anti-inflammatory properties is a significant target since inflammation is a major cause of pain. A series of pyrazole, imidazopyrazolone, and pyrazolopyrimidine derivatives were designed and synthesized by reaction of 3,5-diamino-1H-pyrazole derivative with cyclic and acyclic carbonyl reagents. The structure of the newly synthesized derivatives were fully characterized using different spectroscopic data and elemental analysis, and therefore, evaluated as COX-2 inhibitors. The in vitro COX-2 activity of the tested derivatives 2-13 displayed moderate to good potency with two derivatives 8 and 13 that exhibiting high potency to COX-2 with IC50 values of 5.68 ± 0.08 and 3.37 ± 0.07 μM compared with celecoxib (IC50 = 3.60 ± 0.07 μM) and meloxicam (IC50 = 7.58 ± 0.13 μM). Furthermore, the most active pyrazolo[1,5-a]pyrimidine derivatives 8 and 13 were evaluated to measure the levels of pro-inflammatory proteins such as TNF-α and IL-6 using qRT-PCR in RAW264.7 cells, and the results showed down-regulation of two immunomodulatory proteins. Surprisingly, these derivatives 8 and 13 revealed a decrease in IL-6 level with inhibition percentages of 65.8 and 70.3%, respectively, compared with celecoxib (% = 76.8). Further, compounds 8 and 13 can regulate and suppress the TNF-α with percentage inhibition of 63.1 and 59.2% to controls, while celecoxib displayed an inhibition percentage of 72.7. The Quantum chemical calculation was conducted, and data explained the structural features crucial to the activity. The molecular docking simulation and ADMET predictions revealed that the most active derivatives have good binding affinity, possess appropriate drug-likeness properties and low toxicity profiles. Finally, compounds 8 and 13 demonstrated COX-2 inhibitors with α-TNF and IL-6 suppression capabilities as a dual-action strategy to get more effective treatment.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science Girls, Al-Azhar University, Nasr City, Cairo, 11754, Egypt.
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science Boys, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science Girls, Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | | | - Ahmed Ragab
- Department of Chemistry, Faculty of Science Boys, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
13
|
Ayman R, Radwan AM, Elmetwally AM, Ammar YA, Ragab A. Discovery of novel pyrazole and pyrazolo[1,5-a]pyrimidine derivatives as cyclooxygenase inhibitors (COX-1 and COX-2) using molecular modeling simulation. Arch Pharm (Weinheim) 2023; 356:e2200395. [PMID: 36336646 DOI: 10.1002/ardp.202200395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC50 values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC50 values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
14
|
Hassan AY, Abou-Amra ES, El-Sebaey SA. Design and Synthesis of New Series of Chiral Pyrimidine and Purine analogs as COX-2 Inhibitors: Anticancer Screening, Molecular Modelling, and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Novel thiadiazol derivatives; design, synthesis, biological activity, molecular docking and molecular dynamics. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ren G, Zhang Q, Xia P, Wang J, Fang P, Jin X, Peng X, Xu Y, Zhang J, Zhao L. Synthesis and Biological Evaluation of Gentiopicroside Derivatives as Novel Cyclooxygenase-2 Inhibitors with Anti-Inflammatory Activity. Drug Des Devel Ther 2023; 17:919-935. [PMID: 36992901 PMCID: PMC10042259 DOI: 10.2147/dddt.s398861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Nonsteroidal anti-inflammatory drugs cause a series of adverse reactions. Thus, the search for new cyclooxygenase-2 selective inhibitors have become the main direction of research on anti-inflammatory drugs. Gentiopicroside is a novel selective inhibitor of cyclooxygenase-2 from Chinese herbal medicine. However, it is highly hydrophilic owing to the presence of the sugar fragment in its structure that reduces its oral bioavailability and limits efficacy. This study aimed to design and synthesize novel cyclooxygenase-2 inhibitors by modifying gentiopicroside structure and reducing its polarity. Materials and Methods We introduced hydrophobic acyl chloride into the gentiopicroside structure to reduce its hydrophilicity and obtained some new derivatives. Their in vitro anti-inflammatory activities were evaluated against NO, TNF-α, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by lipopolysaccharide. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Molecular docking predicted that whether new compounds could effectively bind to target protein cyclooxygenase-2. The inhibitory activity of new compounds to cyclooxygenase-2 enzyme were verified by the in vitro experiment. Results A total of 21 novel derivatives were synthesized, and exhibit lower polarities than the gentiopicroside. Most compounds have good in vitro anti-inflammatory activity. The in vivo activity results demonstrated that 8 compounds were more active than gentiopicroside. The inhibition rate of some compounds was higher than celecoxib. Molecular docking predicted that 6 compounds could bind to cyclooxygenase-2 and had high docking scores in accordance with their potency of the anti-inflammatory activity. The confirmatory experiment proved that these 6 compounds had significant inhibitory effect against cyclooxygenase-2 enzyme. Structure-activity relationship analysis presumed that the para-substitution with the electron-withdrawing groups may benefit the anti-inflammatory activity. Conclusion These gentiopicroside derivatives especially PL-2, PL-7 and PL-8 may represent a novel class of cyclooxygenase-2 inhibitors and could thus be developed as new anti-inflammatory agents.
Collapse
Affiliation(s)
- Guojin Ren
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Qili Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
| | - Pengfei Xia
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Jie Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Pengxia Fang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Xiaojie Jin
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Xuejing Peng
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Yanli Xu
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Lanzhou Institute for Food and Drug Control, Lanzhou, 730000, People’s Republic of China
| | - Jian Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Lei Zhao
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
- Lanzhou Institute for Food and Drug Control, Lanzhou, 730000, People’s Republic of China
- Correspondence: Lei Zhao; Jian Zhang, Email ;
| |
Collapse
|
17
|
Mehmood H, Musa M, Woodward S, Hossan MS, Bradshaw TD, Haroon M, Nortcliffe A, Akhtar T. Design, and synthesis of selectively anticancer 4-cyanophenyl substituted thiazol-2-ylhydrazones. RSC Adv 2022; 12:34126-34141. [PMID: 36540407 PMCID: PMC9704493 DOI: 10.1039/d2ra03226k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/18/2022] [Indexed: 04/24/2024] Open
Abstract
Cyclization of substituted thiosemicarbazones with α-bromo-4-cyanoacetophenone allows rapid single-step sustainable syntheses of 4-cyanophenyl-2-hydrazinylthiazoles libraries (30 examples, 66-79%). All show anticancer efficacy against HCT-116 and MCF-7 carcinoma cell lines with the majority being more active than cisplatin positive controls. The compounds 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f) and 2-(2-((pentafluorophenyl)methylene)-hydrazinyl)-4-(4-cyanophenyl)thiazole (3a') show optimal GI50 values (1.0 ± 0.1 μM and 1.7 ± 0.3 μM) against MCF-7 breast cancer cells. Against colorectal carcinoma HCT-116 cells, (2-(2-(3-bromothiophen-2-yl)methylene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3b'), 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f), 2-(2-(2,6-dichlorobenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3n) and 2-(2-(1-(4-fluorophenyl)ethylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3w) are the most active (GI50 values: 1.6 ± 0.2, 1.6 ± 0.1, 1.1 ± 0.5 and 1.5 ± 0.8 μM respectively). Control studies with MRC-5 cells indicate appreciable selectivity towards the cancer cells targeted. Significant (p < 0.005) growth inhibition and cytotoxicity effects for the thiazoles 3 were corroborated by cell count and clonogenic assays using the same cancer cell lines at 5 and 10 μM agent concentrations. Cell cycle, caspase activation and Western blot assays demonstrated that compounds 3b' and 3f induce cancer cell death via caspase-dependent apoptosis. The combination of straight forward synthesis and high activity makes the thiazoles 3 an interesting lead for further development.
Collapse
Affiliation(s)
- Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Mustapha Musa
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - Md Shahadat Hossan
- School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Andrew Nortcliffe
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| |
Collapse
|
18
|
Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem 2022; 13:471-496. [PMID: 35685617 PMCID: PMC9132194 DOI: 10.1039/d1md00280e] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine Walther-Rathenau-Straße 49A 17489 Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
19
|
Burayk S, Oh-hashi K, Kandeel M. Drug Discovery of New Anti-Inflammatory Compounds by Targeting Cyclooxygenases. Pharmaceuticals (Basel) 2022; 15:ph15030282. [PMID: 35337080 PMCID: PMC8955829 DOI: 10.3390/ph15030282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of achieving anti-inflammatory efficacy with the fewest possible adverse effects through selective COX-2 inhibition is still being investigated in order to develop drugs with safe profiles. This work shows the efficacy and safety profile of two novel benzimidazole piperidine and phenoxy pyridine derivatives in reaching this goal, which would be considered a major achievement in inflammatory therapy. The compounds were evaluated by virtual screening campaign, in vitro cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibition, in vivo carrageenan-induced rat paw edema assay, cytotoxicity against Raw264.7 cells, and histopathological examination of rat paw and stomach. Two new compounds, compound 1 ([(2-{[3-(4-methyl-1H-benzimidazol-2-yl)piperidin-1-yl]carbonyl}phenyl)amino]acetic acid) and compound 2 (ethyl 1-(5-cyano-2-hydroxyphenyl)-4-oxo-5-phenoxy-1,4-dihydropyridine-3-carboxylate) showed high selectivity against COX-2, favourable drug-likeness and ADME descriptors, a lack of cytotoxicity, relived paw edema, and inflammation without noticeable side effects on the stomach. These two compounds are promising new NSAIDs.
Collapse
Affiliation(s)
- Shady Burayk
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Saudi Arabia;
| | - Kentaro Oh-hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, KafrelShaikh University, Kafr El-Shaikh 33516, Egypt
- Correspondence:
| |
Collapse
|
20
|
da Silva PR, do Espírito Santo RF, Melo CDO, Pachú Cavalcante FE, Costa TB, Barbosa YV, e Silva YMSDM, de Sousa NF, Villarreal CF, de Moura RO, dos Santos VL. The Compound (E)-2-Cyano- N,3-diphenylacrylamide (JMPR-01): A Potential Drug for Treatment of Inflammatory Diseases. Pharmaceutics 2022; 14:188. [PMID: 35057082 PMCID: PMC8777680 DOI: 10.3390/pharmaceutics14010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The compound (E)-2-cyano-N,3-diphenylacrylamide (JMPR-01) was structurally developed using bioisosteric modifications of a hybrid prototype as formed from fragments of indomethacin and paracetamol. Initially, in vitro assays were performed to determine cell viability (in macrophage cultures), and its ability to modulate the synthesis of nitrite and cytokines (IL-1β and TNFα) in non-cytotoxic concentrations. In vivo, anti-inflammatory activity was explored using the CFA-induced paw edema and zymosan-induced peritonitis models. To investigate possible molecular targets, molecular docking was performed with the following crystallographic structures: LT-A4-H, PDE4B, COX-2, 5-LOX, and iNOS. As results, we observed a significant reduction in the production of nitrite and IL-1β at all concentrations used, and also for TNFα with JMPR-01 at 50 and 25 μM. The anti-edematogenic activity of JMPR-01 (100 mg/kg) was significant, reducing edema at 2-6 h, similar to the dexamethasone control. In induced peritonitis, JMPR-01 reduced leukocyte migration by 61.8, 68.5, and 90.5% at respective doses of 5, 10, and 50 mg/kg. In silico, JMPR-01 presented satisfactory coupling; mainly with LT-A4-H, PDE4B, and iNOS. These preliminary results demonstrate the strong potential of JMPR-01 to become a drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Renan Fernandes do Espírito Santo
- Instituto Gonçalo Moniz, Fundação Osvaldo Cruz, Salvador 40296-710, BA, Brazil; (R.F.d.E.S.); (C.F.V.)
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-290, BA, Brazil
| | - Camila de Oliveira Melo
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Fábio Emanuel Pachú Cavalcante
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| | - Thássia Borges Costa
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| | - Yasmim Vilarim Barbosa
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| | - Yvnni M. S. de Medeiros e Silva
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Natália Ferreira de Sousa
- Programa de Pós Graduação em Produtos Naturais, Sintéticos e Bioativos, Universidade Federal da Paraiba, João Pessoa 58051-900, PB, Brazil;
| | - Cristiane Flora Villarreal
- Instituto Gonçalo Moniz, Fundação Osvaldo Cruz, Salvador 40296-710, BA, Brazil; (R.F.d.E.S.); (C.F.V.)
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-290, BA, Brazil
| | - Ricardo Olímpio de Moura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Vanda Lucia dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| |
Collapse
|
21
|
Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm Sin B 2022; 12:2790-2807. [PMID: 35755295 PMCID: PMC9214066 DOI: 10.1016/j.apsb.2022.01.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclooxygenases play a vital role in inflammation and are responsible for the production of prostaglandins. Two cyclooxygenases are described, the constitutive cyclooxygenase-1 and the inducible cyclooxygenase-2, for which the target inhibitors are the non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins are a class of lipid compounds that mediate acute and chronic inflammation. NSAIDs are the most frequent choices for treatment of inflammation. Nevertheless, currently used anti-inflammatory drugs have become associated with a variety of adverse effects which lead to diminished output even market withdrawal. Recently, more studies have been carried out on searching novel selective COX-2 inhibitors with safety profiles. In this review, we highlight the various structural classes of organic and natural scaffolds with efficient COX-2 inhibitory activity reported during 2011–2021. It will be valuable for pharmaceutical scientists to read up on the current chemicals to pave the way for subsequent research.
Collapse
|
22
|
Felipe JL, Cassamale TB, Lourenço LD, Carvalho DB, das Neves AR, Duarte RCF, Carvalho MG, Toffoli-Kadri MC, Baroni ACM. Anti-inflammatory, ulcerogenic and platelet activation evaluation of novel 1,4-diaryl-1,2,3-triazole neolignan-celecoxib hybrids. Bioorg Chem 2021; 119:105485. [PMID: 34959176 DOI: 10.1016/j.bioorg.2021.105485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023]
Abstract
This study reports the synthesis of novel neolignans-celecoxib hybrids and the evaluation of their biological activity. Analogs8-13(L13-L18) exhibited anti-inflammatory activity, inhibited glycoprotein expression (P-selectin) related to platelet activation, and were considered non- ulcerogenic in the animal model, even with the administration of 10 times higher than the dose used in reference therapy. In silico drug-likeness showed that the analogs are compliant with Lipinski's rule of five. A molecular docking study showed that the hybrids8-13(L13-L18) fitted similarly with celecoxib in the COX-2 active site. According to this data, it is possible to infer that extra hydrophobic interactions and the hydrogen interactions with the triazole core may improve the selectivity towards the COX-2 active site. Furthermore, the molecular docking study with P-selectin showed the binding affinity of the analogs in the active site, performing important interactions with amino acid residues such as Tyr 48. Whereas the P-selectin is a promising target to the design of new anti-inflammatory drugs with antithrombotic properties, a distinct butterfly-like structure of 1,4-diaryl-1,2,3-triazole neolignan-celecoxib hybrids synthesized in this work may be a safer alternative to the traditional COX-2 inhibitors.
Collapse
Affiliation(s)
- Josyelen L Felipe
- Laboratório de Farmacologia e Inflamação (LABFAR), FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil
| | - Tatiana B Cassamale
- Laboratório de Síntese e Química Medicinal (LASQUIM), FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil
| | - Leticia D Lourenço
- Laboratório de Farmacologia e Inflamação (LABFAR), FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil
| | - Diego B Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM), FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil
| | - Amarith R das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM), FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil
| | - Rita C F Duarte
- Departamento de Análises Clínicas e Toxicológicas da Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, Brazil
| | - Maria G Carvalho
- Departamento de Análises Clínicas e Toxicológicas da Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, Brazil
| | - Monica C Toffoli-Kadri
- Laboratório de Farmacologia e Inflamação (LABFAR), FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil.
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM), FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil.
| |
Collapse
|
23
|
An Investigation into the Interaction between Double Hydroxide-Based Antioxidant Benzophenone Derivatives and Cyclooxygenase 2. Molecules 2021; 26:molecules26216622. [PMID: 34771031 PMCID: PMC8587043 DOI: 10.3390/molecules26216622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenases 2 (COX2) is a therapeutic target for many inflammation and oxidative stress associated diseases. A high-throughput technique, biolayer interferometry, was performed to primarily screen the potential COX2 binding activities of twelve newly synthesized double hydroxide-based benzophenone derivatives. Binding confirmation was achieved by molecular docking and multi-spectroscopy studies. Such a combined method provided a comprehensive understanding of binding mechanism and conformational changes. Compounds DB2, SC2 and YB2 showed effective COX2 binding activity and underlined the benefits of three phenolic hydroxyl groups adjacent to each other on the B ring. The twelve tested derivatives were further evaluated for antioxidant activity, wherein compound SC2 showed the highest activity. Its concentration for the 50% of maximal effect (EC50) value was approximately 1000 times greater than that of the positive controls. SC2 treatment effectively improved biochemical indicators caused by oxidative stress. Overall, compound SC2 could serve as a promising candidate for further development of a new potent COX2 inhibitor.
Collapse
|
24
|
New N-Substituted-1,2,4-triazole Derivatives of Pyrrolo[3,4- d]pyridazinone with Significant Anti-Inflammatory Activity-Design, Synthesis and Complementary In Vitro, Computational and Spectroscopic Studies. Int J Mol Sci 2021; 22:ijms222011235. [PMID: 34681894 PMCID: PMC8540742 DOI: 10.3390/ijms222011235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.
Collapse
|
25
|
Bian M, Ma QQ, Wu Y, Du HH, Guo-Hua G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: a review. J Enzyme Inhib Med Chem 2021; 36:2139-2159. [PMID: 34628990 PMCID: PMC8516162 DOI: 10.1080/14756366.2021.1984903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammation and disease are closely related. Inflammation can induce various diseases, and diseases can promote inflammatory response, and two possibly induces each other in a bidirectional loop. Inflammation is usually treated using synthetic anti-inflammatory drugs which are associated with several adverse effects hence are not safe for long-term use. Therefore, there is need for anti-inflammatory drugs which are not only effective but also safe. Several researchers have devoted to the research and development of effective anti-inflammatory drugs with little or no side effects. In this review, we studied some small molecules with reported anti-inflammatory activities and hence potential sources of anti-inflammatory agents. The information was retrieved from relevant studies published between January 2019 and May, 2021 for review. This review study was aimed to provide relevant information towards the design and development of effective and safe anti-inflammation agents.
Collapse
Affiliation(s)
- Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Qian-Qian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yun Wu
- First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Gong Guo-Hua
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China.,First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
26
|
Yao H, Guo Q, Wang M, Wang R, Xu Z. Discovery of pyrazole N-aryl sulfonate: A novel and highly potent cyclooxygenase-2 (COX-2) selective inhibitors. Bioorg Med Chem 2021; 46:116344. [PMID: 34438337 DOI: 10.1016/j.bmc.2021.116344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022]
Abstract
Based on a new pyrazole sulfonate synthetic method, a novel class of molecules with a basic structure of pyrazole N-aryl sulfonate have been designed and synthesized. The interest in conducting intensive research stems from quite evident anti-inflammatory effects exhibited by the compounds in preliminary animal experiments. A series of compounds were synthesized by different substitutions of the R1, R2, and R3 groups. Within the series, 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and phenyl 5-methyl-3-(4-(trifluoromethyl) phenyl)-1H-pyrazole-1-sulfonate exhibited excellent anti-inflammatory activity (% inhibition of auricular edemas = 27.0 and 35.9, respectively); the in vivo analgesic activity of phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate was confirmed to be effective (inhibition ratio of writhing = 50.7% and 48.5% separately), and compounds phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate , 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate were identified as selective COX-2 inhibitors (SI = 455, 10,497 and >189 severally). In Acute Oral Toxicity assays conducted in vivo, the lethal dose 50 (LD50) of 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate to mice was >2000 mg/kg BW.
Collapse
Affiliation(s)
- Haiyan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| | - Quanping Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| | - Mengran Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China..
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China..
| |
Collapse
|
27
|
Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, Synthesis and Biological Evaluation of New N-Acyl Hydrazones with a Methyl Sulfonyl Moiety as Selective COX-2 Inhibitors. Chem Biodivers 2021; 18:e2100521. [PMID: 34411436 DOI: 10.1002/cbdv.202100521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
The mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) is inhibition of specific prostaglandin (PG) synthesis by inhibition of cyclooxygenase (COX) enzymes. The two COX isoenzymes show 60 % similarity. It is known that the nonspecific side effects of conventional NSAIDs are physiologically caused by inhibition of the COX-1 enzyme. Therefore, the use of COX-2 selective inhibitors is seen to be a more beneficial approach in reducing these negative effects. However, some of the existing COX-2 selective inhibitors show cardiovascular side effects. Therefore, studies on the development of new selective COX-2 inhibitors remain necessary. It is important to develop new COX-2 inhibitors in the field of medicinal chemistry. Accordingly, novel N-acyl hydrazone derivatives were synthesized as new COX-2 inhibitors in this study. The hydrazone structure, also known for its COX activity, is important in terms of many biological activities and was preferred as the main structure in the design of these compounds. A methyl sulfonyl pharmacophore was added to the structure in order to increase the affinity for the polar side pocket present in the COX-2 enzyme. It is known that methyl sulfonyl groups are suitable for polar side pockets. The synthesis of the compounds (3a-3j) was characterized by spectroscopic methods. Evaluation of in vitro COX-1/COX-2 enzyme inhibition was performed by fluorometric method. According to the enzyme inhibition results, the obtained compounds displayed the predicted selectivity for COX-2 enzyme inhibition. Compound 3j showed important COX-2 inhibition with a value of IC50 =0.143 uM. Interaction modes between the COX-2 enzyme and compound 3j were investigated by docking studies.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| |
Collapse
|
28
|
Horishny VY, Zadorozhnii PV, Horishnia IV, Matiychuk VS. Synthesis, Anti-Inflammatory Activity and Molecular Docking Studies of 1,4,5,6-Tetrahydropyrimidine-2-Carboxamides. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world. The widespread use of NSAIDs is associated with a number of serious side effects and complications observed for both selective and non-selective COX inhibitors. Therefore, the search for new COX inhibitors, which along with their effectiveness will have minimal side effects, is a very important and urgent task. Methods: This work studied the synthesis of new 1,4,5,6-tetrahydropyrimidine-2-carboxamides based on the reaction of 2-morpholin-4-yl-N-(het)aryl-2-thioxoacetamides with 1,3-diaminopropane. All obtained compounds were tested for anti-inflammatory activity in vitro and in silico conditions. All synthesized 1,4,5,6-tetrahydropyrimidine-2-carboxamides were tested for influence on the course of the exudative phase of the inflammatory process based on the carrageenan model of paw edema of laboratory nonlinear heterosexual white rats weighing 220-250 g, using Diclofenac as a reference. Optimization of the geometry of the studied structures and molecular docking was carried out using the ArgusLab 4.0.1 software package. Results: The target products were obtained with yields of 71-98% and easily isolated from the reaction mixture. The best anti-inflammatory activity was found in N-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide and in N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide, suppression of the inflammatory response was 46.7 and 46.4%, respectively. The results of molecular docking with COX-1 and COX-2 enzymes were in good agreement with the experimental data, R2 ˃ 0.92 and R2 ˃ 0.83, respectively. Conclusion: The compounds under study were shown to be promising as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Volodymyr Ya. Horishny
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Pavlo V. Zadorozhnii
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| | - Ivanna V. Horishnia
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Vasyl S. Matiychuk
- Department of Organic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla і Mefodia, Lviv, 79005, Ukraine
| |
Collapse
|