1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Beer M, Oliveira ASF, Tooke CL, Hinchliffe P, Tsz Yan Li A, Balega B, Spencer J, Mulholland AJ. Dynamical responses predict a distal site that modulates activity in an antibiotic resistance enzyme. Chem Sci 2024; 15:d4sc03295k. [PMID: 39364073 PMCID: PMC11443494 DOI: 10.1039/d4sc03295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
β-Lactamases, which hydrolyse β-lactam antibiotics, are key determinants of antibiotic resistance. Predicting the sites and effects of distal mutations in enzymes is challenging. For β-lactamases, the ability to make such predictions would contribute to understanding activity against, and development of, antibiotics and inhibitors to combat resistance. Here, using dynamical non-equilibrium molecular dynamics (D-NEMD) simulations combined with experiments, we demonstrate that intramolecular communication networks differ in three class A SulpHydryl Variant (SHV)-type β-lactamases. Differences in network architecture and correlated motions link to catalytic efficiency and β-lactam substrate spectrum. Further, the simulations identify a distal residue at position 89 in the clinically important Klebsiella pneumoniae carbapenemase 2 (KPC-2), as a participant in similar networks, suggesting that mutation at this position would modulate enzyme activity. Experimental kinetic, biophysical and structural characterisation of the naturally occurring, but previously biochemically uncharacterised, KPC-2G89D mutant with several antibiotics and inhibitors reveals significant changes in hydrolytic spectrum, specifically reducing activity towards carbapenems without effecting major structural or stability changes. These results show that D-NEMD simulations can predict distal sites where mutation affects enzyme activity. This approach could have broad application in understanding enzyme evolution, and in engineering of natural and de novo enzymes.
Collapse
Affiliation(s)
- Michael Beer
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| | - Ana Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| | - Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Angie Tsz Yan Li
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Balazs Balega
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| |
Collapse
|
3
|
Villamil V, Rossi MA, Mojica MF, Hinchliffe P, Martínez V, Castillo V, Saiz C, Banchio C, Macías MA, Spencer J, Bonomo RA, Vila A, Moreno DM, Mahler G. Rational Design of Benzobisheterocycle Metallo-β-Lactamase Inhibitors: A Tricyclic Scaffold Enhances Potency against Target Enzymes. J Med Chem 2024; 67:3795-3812. [PMID: 38373290 PMCID: PMC11447740 DOI: 10.1021/acs.jmedchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Antimicrobial resistance is a global public health threat. Metallo-β-lactamases (MBLs) inactivate β-lactam antibiotics, including carbapenems, are disseminating among Gram-negative bacteria, and lack clinically useful inhibitors. The evolving bisthiazolidine (BTZ) scaffold inhibits all three MBL subclasses (B1-B3). We report design, synthesis, and evaluation of BTZ analogues. Structure-activity relationships identified the BTZ thiol as essential, while carboxylate is replaceable, with its removal enhancing potency by facilitating hydrophobic interactions within the MBL active site. While the introduction of a flexible aromatic ring is neutral or detrimental for inhibition, a rigid (fused) ring generated nM benzobisheterocycle (BBH) inhibitors that potentiated carbapenems against MBL-producing strains. Crystallography of BBH:MBL complexes identified hydrophobic interactions as the basis of potency toward B1 MBLs. These data underscore BTZs as versatile, potent broad-spectrum MBL inhibitors (with activity extending to enzymes refractory to other inhibitors) and provide a rational approach to further improve the tricyclic BBH scaffold.
Collapse
Affiliation(s)
- Valentina Villamil
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
| | - Maria F. Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, UK
| | - Verónica Martínez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Valerie Castillo
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Cecilia Saiz
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
| | - Mario A. Macías
- Crystallography and Chemistry of Materials, CrisQuimMat, Department of Chemistry, Universidad de los Andes, 111711, Bogotá, Colombia
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, UK
| | - Robert A. Bonomo
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 44106, Cleveland, OH, USA
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), 44106, Cleveland, OH, USA
| | - Alejandro Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| |
Collapse
|
4
|
Au SX, Mohd Padzil A, Muhd Noor ND, Matsumura H, Raja Abdul Rahman RNZ, Normi YM. Probing the substrate binding modes and catalytic mechanisms of BLEG-1, a promiscuous B3 metallo-β-lactamase with glyoxalase II properties. PLoS One 2023; 18:e0291012. [PMID: 37672512 PMCID: PMC10482274 DOI: 10.1371/journal.pone.0291012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
BLEG-1 from Bacillus lehensis G1 is an evolutionary divergent B3 metallo-β-lactamase (MBL) that exhibited both β-lactamase and glyoxalase II (GLXII) activities. Sequence, phylogeny, biochemical and structural relatedness of BLEG-1 to B3 MBL and GLXII suggested BLEG-1 might be an intermediate in the evolutionary path of B3 MBL from GLXII. The unique active site cavity of BLEG-1 that recognizes both β-lactam antibiotics and S-D-lactoylglutathione (SLG) had been postulated as the key factor for its dual activity. In this study, dynamic ensembles of BLEG-1 and its substrate complexes divulged conformational plasticity and binding modes of structurally distinct substrates to the enzyme, providing better insights into its structure-to-function relationship and enzymatic promiscuity. Our results highlight the flexible nature of the active site pocket of BLEG-1, which is governed by concerted loop motions involving loop7+α3+loop8 and loop12 around the catalytic core, thereby moulding the binding pocket and facilitate interactions of BLEG-1 with both ampicillin and SLG. The distribution of (i) predominantly hydrophobic amino acids in the N-terminal domain, and (ii) flexible amino acids with polar and/or charged side chains in both N- and C-termini provide additional advantages to BLEG-1 in confining the aromatic group of ampicillin, and polar groups of SLG, respectively. The importance of these residues for substrates binding was further confirmed by the reduction in MBL and GLXII activities upon alanine substitutions of Ile-10, Phe-57, Arg-94, Leu-95, and Arg-159. Based on molecular dynamics simulation, mutational, and biochemical data presented herein, the catalytic mechanisms of BLEG-1 toward the hydrolysis of β-lactams and SLG were proposed.
Collapse
Affiliation(s)
- Shaw Xian Au
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azyyati Mohd Padzil
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu, Japan
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M. Normi
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Hinchliffe P, Calvopiña K, Rabe P, Mojica MF, Schofield CJ, Dmitrienko GI, Bonomo RA, Vila AJ, Spencer J. Interactions of hydrolyzed β-lactams with the L1 metallo-β-lactamase: Crystallography supports stereoselective binding of cephem/carbapenem products. J Biol Chem 2023; 299:104606. [PMID: 36924941 PMCID: PMC10148155 DOI: 10.1016/j.jbc.2023.104606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
L1 is a dizinc subclass B3 metallo-β-lactamase (MBL) that hydrolyzes most β-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed β-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the β-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1β-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1β-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1β-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (β) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and β-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Maria F Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Gary I Dmitrienko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Robert A Bonomo
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alejandro J Vila
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
| |
Collapse
|
6
|
Tooke C, Hinchliffe P, Beer M, Zinovjev K, Colenso CK, Schofield CJ, Mulholland AJ, Spencer J. Tautomer-Specific Deacylation and Ω-Loop Flexibility Explain the Carbapenem-Hydrolyzing Broad-Spectrum Activity of the KPC-2 β-Lactamase. J Am Chem Soc 2023; 145:7166-7180. [PMID: 36972204 PMCID: PMC10080687 DOI: 10.1021/jacs.2c12123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 03/29/2023]
Abstract
KPC-2 (Klebsiella pneumoniae carbapenemase-2) is a globally disseminated serine-β-lactamase (SBL) responsible for extensive β-lactam antibiotic resistance in Gram-negative pathogens. SBLs inactivate β-lactams via a mechanism involving a hydrolytically labile covalent acyl-enzyme intermediate. Carbapenems, the most potent β-lactams, evade the activity of many SBLs by forming long-lived inhibitory acyl-enzymes; however, carbapenemases such as KPC-2 efficiently deacylate carbapenem acyl-enzymes. We present high-resolution (1.25-1.4 Å) crystal structures of KPC-2 acyl-enzymes with representative penicillins (ampicillin), cephalosporins (cefalothin), and carbapenems (imipenem, meropenem, and ertapenem) obtained utilizing an isosteric deacylation-deficient mutant (E166Q). The mobility of the Ω-loop (residues 165-170) negatively correlates with antibiotic turnover rates (kcat), highlighting the role of this region in positioning catalytic residues for efficient hydrolysis of different β-lactams. Carbapenem-derived acyl-enzyme structures reveal the predominance of the Δ1-(2R) imine rather than the Δ2 enamine tautomer. Quantum mechanics/molecular mechanics molecular dynamics simulations of KPC-2:meropenem acyl-enzyme deacylation used an adaptive string method to differentiate the reactivity of the two isomers. These identify the Δ1-(2R) isomer as having a significantly (7 kcal/mol) higher barrier than the Δ2 tautomer for the (rate-determining) formation of the tetrahedral deacylation intermediate. Deacylation is therefore likely to proceed predominantly from the Δ2, rather than the Δ1-(2R) acyl-enzyme, facilitated by tautomer-specific differences in hydrogen-bonding networks involving the carbapenem C-3 carboxylate and the deacylating water and stabilization by protonated N-4, accumulating a negative charge on the Δ2 enamine-derived oxyanion. Taken together, our data show how the flexible Ω-loop helps confer broad-spectrum activity upon KPC-2, while carbapenemase activity stems from efficient deacylation of the Δ2-enamine acyl-enzyme tautomer.
Collapse
Affiliation(s)
- Catherine
L. Tooke
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Michael Beer
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kirill Zinovjev
- School
of Biochemistry, Biomedical Sciences Building, University
Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Departamento
de Química Física, Universitat
de València, Burjassot 46100, Comunitat Valenciana, Spain
| | - Charlotte K. Colenso
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, Mansfield Road, University of Oxford, Oxford OX1 3TA United
Kingdom
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
7
|
Krivitskaya AV, Khrenova MG. Interplay between the Enamine and Imine Forms of the Hydrolyzed Imipenem in the Active Sites of Metallo-β-lactamases and in Water Solution. J Chem Inf Model 2022; 62:6519-6529. [PMID: 35758922 DOI: 10.1021/acs.jcim.2c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Deactivation of the β-lactam antibiotics in the active sites of the β-lactamases is among the main mechanisms of bacterial antibiotic resistance. As drugs of last resort, carbapenems are efficiently hydrolyzed by metallo-β-lactamases, presenting a serious threat to human health. Our study reveals mechanistic aspects of the imipenem hydrolysis by bizinc metallo-β-lactamases, NDM-1 and L1, belonging to the B1 and the B3 subclasses, respectively. The results of QM(PBE0-D3/6-31G**)/MM simulations show that the enamine product with the protonated nitrogen atom is formed as the major product in NDM-1 and as the only product in the L1 active site. In NDM-1, there is also another reaction pathway that leads to the formation of the (S)-enantiomer of the imine form of the hydrolyzed imipenem; this process occurs with the higher energy barriers. The absence of the second pathway in L1 is due to the different amino acid composition of the active site loop. In L1, the hydrophobic Pro226 residue is located above the pyrroline ring of imipenem that blocks protonation of the carbon atom. Electron density analysis is performed at the stationary points to compare reaction pathways in L1 and NDM-1. Tautomerization from the enamine to the imine form likely happens in solution after the dissociation of the hydrolyzed imipenem from the active site of the enzyme. Classical molecular dynamics simulations of the hydrolyzed imipenem in solution, both with the neutral enamine and the negatively charged N-C2-C3 fragment, demonstrate a huge diversity of conformations. The vast majority of conformations blocks the C3-atom from the side required for the (S)-imine formation upon tautomerization. Thus, according to our calculations, formation of the (R)-imine is more likely. QM(PBE0-D3/6-31G**)/MM molecular dynamics simulations of the hydrolyzed imipenem with the negatively charged N-C2-C3 fragment followed by the Laplacian bond order analysis demonstrate that the N═C2-C3- resonance structure is the most pronounced that facilitates formation of the imine form. The proposed mechanism of the enzymatic enamine formation and its subsequent tautomerization to the imine form in solution is in agreement with the recent spectroscopic and NMR studies.
Collapse
Affiliation(s)
- Alexandra V Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia.,Department of Chemistry, Interdisciplinary Scientific and Educational School of Moscow University "Brain, Cognitive Systems, Artificial Intelligence", Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Legru A, Verdirosa F, Vo-Hoang Y, Tassone G, Vascon F, Thomas CA, Sannio F, Corsica G, Benvenuti M, Feller G, Coulon R, Marcoccia F, Devente SR, Bouajila E, Piveteau C, Leroux F, Deprez-Poulain R, Deprez B, Licznar-Fajardo P, Crowder MW, Cendron L, Pozzi C, Mangani S, Docquier JD, Hernandez JF, Gavara L. Optimization of 1,2,4-Triazole-3-thiones toward Broad-Spectrum Metallo-β-lactamase Inhibitors Showing Potent Synergistic Activity on VIM- and NDM-1-Producing Clinical Isolates. J Med Chem 2022; 65:16392-16419. [PMID: 36450011 DOI: 10.1021/acs.jmedchem.2c01257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metallo-β-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.
Collapse
Affiliation(s)
- Alice Legru
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| | - Federica Verdirosa
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Yen Vo-Hoang
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| | - Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Filippo Vascon
- Laboratory of Structural Biology, Department of Biology, University of Padua, 35121 Padova, Italy
| | - Caitlyn A Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Giuseppina Corsica
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Manuela Benvenuti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Georges Feller
- Laboratoire de Biochimie, Centre d'Ingénierie des Protéines-InBioS, Université de Liège, Allée du 6 août B6, Sart-Tilman, B-4000 Liège, Belgium
| | - Rémi Coulon
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| | - Francesca Marcoccia
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | | | | | - Catherine Piveteau
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Florence Leroux
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Rebecca Deprez-Poulain
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Benoît Deprez
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Patricia Licznar-Fajardo
- HydroSciences Montpellier, UMR5151, Univ Montpellier, CNRS, IRD, CHU Montpellier, 34000 Montpellier, France
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Laura Cendron
- Laboratory of Structural Biology, Department of Biology, University of Padua, 35121 Padova, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy.,Centre d'Ingénierie des Protéines-InBioS, Université de Liège, B-4000 Liège, Belgium
| | | | - Laurent Gavara
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| |
Collapse
|
9
|
Gonzalo X, Drobniewski F. Are the Newer Carbapenems of Any Value against Tuberculosis. Antibiotics (Basel) 2022; 11:antibiotics11081070. [PMID: 36009939 PMCID: PMC9404707 DOI: 10.3390/antibiotics11081070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Our aim was to assess whether newer carbapenems with a better administration profile than meropenem (ertapenem, faropenem and tebipenem) were more effective against Mycobacterium tuberculosis including M/XDRTB and determine if there was a synergistic/antagonistic effect with amoxicillin or clavulanate (inhibitor of beta-lactamases that MTB possesses) in vitro. Whilst meropenem is given three times a day intravenously, ertapenem, though given parenterally, is given once a day, faropenem and tebipenem are given orally. Eighty-two clinical drug-sensitive and -resistant MTB strains and a laboratory strain, H37Rv, were assessed by a microdilution methodology against ertapenem, faropenem, tebipenem and meropenem with and without amoxicillin or clavulanic acid. Ertapenem showed a limited activity. The addition of amoxicillin and clavulanate did not translate into significant improvements in susceptibility. Sixty-two isolates (75.6%) exhibited susceptibility to faropenem; the addition of amoxicillin and clavulanate further reduced the MIC in some isolates. Faropenem showed a limited activity (MIC of 8 mg/L or lower) in 21 strains completely resistant to meropenem (MIC of 16 mg/L or higher). Fifteen of the meropenem-resistant strains were susceptible to tebipenem. Carbapenems' activity has been reported extensively. However, there remains uncertainty as to which of them is most active against TB and what the testing methodology should be.
Collapse
|
10
|
Dubey V, Devnath K, Gupta VK, Kalyan G, Singh M, Kothari A, Omar BJ, Pathania R. Disulfiram enhances meropenem activity against NDM- and IMP-producing carbapenem-resistant Acinetobacter baumannii infections. J Antimicrob Chemother 2022; 77:1313-1323. [PMID: 35199158 DOI: 10.1093/jac/dkac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/02/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To evaluate the in vitro and in vivo efficacy of the FDA-approved drug disulfiram in combination with meropenem against MBL-expressing carbapenem-resistant Acinetobacter baumannii. METHODS Chequerboard and antibiotic resistance reversal analysis were performed using 25 clinical isolates producing different MBLs. Three representative strains harbouring NDM, IMP or non-MBL genes were subjected to a time-kill assay to further evaluate this synergistic interaction. Dose-dependent inhibition by disulfiram was assessed to determine IC50 for NDM-1, IMP-7, VIM-2 and KPC-2. Further, to test the efficacy of meropenem monotherapy and meropenem in combination with disulfiram against NDM- and IMP-harbouring A. baumannii, an experimental model of systemic infection and pneumonia was developed using BALB/c female mice. RESULTS Chequerboard and antibiotic reversal assay displayed a synergistic interaction against MBL-expressing A. baumannii strains with 4- to 32-fold reduction in MICs of meropenem. In time-kill analysis, meropenem and disulfiram exhibited synergy against NDM- and IMP-producing carbapenem-resistant A. baumannii (CRAb) isolates. In vitro dose-dependent inhibition analysis showed that disulfiram inhibits NDM-1 and IMP-7 with IC50 values of 1.5 ± 0.6 and 16.25 ± 1.6 μM, respectively, with slight or no inhibition of VIM-2 (<20%) and KPC-2. The combination performed better in the clearance of bacterial load from the liver and spleen of mice infected with IMP-expressing CRAb. In the pneumonia model, the combination significantly decreased the bacterial burden of NDM producers compared with monotherapy. CONCLUSIONS These results strongly suggest that the combination of disulfiram and meropenem represents an effective treatment option for NDM- and IMP-associated CRAb infections.
Collapse
Affiliation(s)
- Vineet Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek K Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Gazal Kalyan
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences Rishikesh, Rishikesh 249201, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences Rishikesh, Rishikesh 249201, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
11
|
Lucic A, Malla TR, Calvopiña K, Tooke CL, Brem J, McDonough MA, Spencer J, Schofield CJ. Studies on the Reactions of Biapenem with VIM Metallo β-Lactamases and the Serine β-Lactamase KPC-2. Antibiotics (Basel) 2022; 11:396. [PMID: 35326858 PMCID: PMC8944426 DOI: 10.3390/antibiotics11030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Carbapenems are important antibacterials and are both substrates and inhibitors of some β-lactamases. We report studies on the reaction of the unusual carbapenem biapenem, with the subclass B1 metallo-β-lactamases VIM-1 and VIM-2 and the class A serine-β-lactamase KPC-2. X-ray diffraction studies with VIM-2 crystals treated with biapenem reveal the opening of the β-lactam ring to form a mixture of the (2S)-imine and enamine complexed at the active site. NMR studies on the reactions of biapenem with VIM-1, VIM-2, and KPC-2 reveal the formation of hydrolysed enamine and (2R)- and (2S)-imine products. The combined results support the proposal that SBL/MBL-mediated carbapenem hydrolysis results in a mixture of tautomerizing enamine and (2R)- and (2S)-imine products, with the thermodynamically favoured (2S)-imine being the major observed species over a relatively long-time scale. The results suggest that prolonging the lifetimes of β-lactamase carbapenem complexes by optimising tautomerisation of the nascently formed enamine to the (2R)-imine and likely more stable (2S)-imine tautomer is of interest in developing improved carbapenems.
Collapse
Affiliation(s)
- Anka Lucic
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Tika R. Malla
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Karina Calvopiña
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Catherine L. Tooke
- Biomedical Sciences Building, School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; (C.L.T.); (J.S.)
| | - Jürgen Brem
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Michael A. McDonough
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - James Spencer
- Biomedical Sciences Building, School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; (C.L.T.); (J.S.)
| | - Christopher J. Schofield
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| |
Collapse
|
12
|
Twidale RM, Hinchliffe P, Spencer J, Mulholland AJ. Crystallography and QM/MM Simulations Identify Preferential Binding of Hydrolyzed Carbapenem and Penem Antibiotics to the L1 Metallo-β-Lactamase in the Imine Form. J Chem Inf Model 2021; 61:5988-5999. [PMID: 34637298 DOI: 10.1021/acs.jcim.1c00663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread bacterial resistance to carbapenem antibiotics is an increasing global health concern. Resistance has emerged due to carbapenem-hydrolyzing enzymes, including metallo-β-lactamases (MβLs), but despite their prevalence and clinical importance, MβL mechanisms are still not fully understood. Carbapenem hydrolysis by MβLs can yield alternative product tautomers with the potential to access different binding modes. Here, we show that a combined approach employing crystallography and quantum mechanics/molecular mechanics (QM/MM) simulations allow tautomer assignment in MβL:hydrolyzed antibiotic complexes. Molecular simulations also examine (meta)stable species of alternative protonation and tautomeric states, providing mechanistic insights into β-lactam hydrolysis. We report the crystal structure of the hydrolyzed carbapenem ertapenem bound to the L1 MβL from Stenotrophomonas maltophilia and model alternative tautomeric and protonation states of both hydrolyzed ertapenem and faropenem (a related penem antibiotic), which display different binding modes with L1. We show how the structures of both complexed β-lactams are best described as the (2S)-imine tautomer with the carboxylate formed after β-lactam ring cleavage deprotonated. Simulations show that enamine tautomer complexes are significantly less stable (e.g., showing partial loss of interactions with the L1 binuclear zinc center) and not consistent with experimental data. Strong interactions of Tyr32 and one zinc ion (Zn1) with ertapenem prevent a C6 group rotation, explaining the different binding modes of the two β-lactams. Our findings establish the relative stability of different hydrolyzed (carba)penem forms in the L1 active site and identify interactions important to stable complex formation, information that should assist inhibitor design for this important antibiotic resistance determinant.
Collapse
Affiliation(s)
- Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
13
|
Yang Z, Twidale RM, Gervasoni S, Suardíaz R, Colenso CK, Lang EJM, Spencer J, Mulholland AJ. Multiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteins. J Chem Inf Model 2021; 61:5658-5672. [PMID: 34748329 DOI: 10.1021/acs.jcim.1c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc metalloproteins are ubiquitous, with protein zinc centers of structural and functional importance, involved in interactions with ligands and substrates and often of pharmacological interest. Biomolecular simulations are increasingly prominent in investigations of protein structure, dynamics, ligand interactions, and catalysis, but zinc poses a particular challenge, in part because of its versatile, flexible coordination. A computational workflow generating reliable models of ligand complexes of biological zinc centers would find broad application. Here, we evaluate the ability of alternative treatments, using (nonbonded) molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) at semiempirical (DFTB3) and density functional theory (DFT) levels of theory, to describe the zinc centers of ligand complexes of six metalloenzyme systems differing in coordination geometries, zinc stoichiometries (mono- and dinuclear), and the nature of interacting groups (specifically the presence of zinc-sulfur interactions). MM molecular dynamics (MD) simulations can overfavor octahedral geometries, introducing additional water molecules to the zinc coordination shell, but this can be rectified by subsequent semiempirical (DFTB3) QM/MM MD simulations. B3LYP/MM geometry optimization further improved the accuracy of the description of coordination distances, with the overall effectiveness of the approach depending upon factors, including the presence of zinc-sulfur interactions that are less well described by semiempirical methods. We describe a workflow comprising QM/MM MD using DFTB3 followed by QM/MM geometry optimization using DFT (e.g., B3LYP) that well describes our set of zinc metalloenzyme complexes and is likely to be suitable for creating accurate models of zinc protein complexes when structural information is more limited.
Collapse
Affiliation(s)
- Zongfan Yang
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - Silvia Gervasoni
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Reynier Suardíaz
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - Charlotte K Colenso
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Eric J M Lang
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| |
Collapse
|