1
|
Xu Z, Ye C, Wang X, Kong R, Chen Z, Shi J, Chen X, Liu S. Design and synthesis of triazolopyridine derivatives as potent JAK/HDAC dual inhibitors with broad-spectrum antiproliferative activity. J Enzyme Inhib Med Chem 2024; 39:2409771. [PMID: 39377432 PMCID: PMC11463018 DOI: 10.1080/14756366.2024.2409771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
A series of triazolopyridine-based dual JAK/HDAC inhibitors were rationally designed and synthesised by merging different pharmacophores into one molecule. All triazolopyridine derivatives exhibited potent inhibitory activities against both targets and the best compound 4-(((5-(benzo[d][1, 3]dioxol-5-yl)-[1, 2, 4]triazolo[1, 5-a]pyridin-2-yl)amino)methyl)-N-hydroxybenzamide (19) was dug out. 19 was proved to be a pan-HDAC and JAK1/2 dual inhibitor and displayed high cytotoxicity against two cancer cell lines MDA-MB-231 and RPMI-8226 with IC50 values in submicromolar range. Docking simulation revealed that 19 fitted well into the active sites of HDAC and JAK proteins. Moreover, 19 exhibited better metabolic stability in vitro than SAHA. Our study demonstrated that compound 19 was a promising candidate for further preclinical studies.
Collapse
Affiliation(s)
- Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Key Laboratory of Surgery Critical Care and Life Support, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jing Shi
- Department of Respiratory and Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Key Laboratory of Surgery Critical Care and Life Support, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
2
|
Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, Shamsuddin S, Safuan S, Wathoni N. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther 2024; 18:4723-4748. [PMID: 39469723 PMCID: PMC11514645 DOI: 10.2147/dddt.s478388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Muchtaridi Muchtaridi
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sabreena Safuan
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
3
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Zhang L, Guan L, Wang Y, Niu MM, Yan J. Discovery of a dual-target DYRK2 and HDAC8 inhibitor for the treatment of hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116839. [PMID: 38889633 DOI: 10.1016/j.biopha.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) and histone deacetylase 8 (HDAC8) have been shown to be associated with the development of several cancers. Here, we identified a dual-target DYRK2/HDAC8 inhibitor (DYC-1) through a combined virtual screening protocol. DYC-1 exhibited nanomolar inhibitory activity against both DYRK2 (IC50 = 5.27 ± 0.13 nM) and HDAC8 (IC50 = 8.06 ± 0.47 nM). Molecular dynamics simulations showed that DYC-1 had positive binding stability with DYRK2 and HDAC8. Importantly, the cytotoxicity assay indicated that DYC-1 exhibited superior antiproliferative activity against human liver cancer, especially SK-HEP-1 cells, and had no significant inhibition on normal liver cells. Moreover, DYC-1 showed a strong inhibitory effect on the growth of SK-HEP-1 xenograft tumors with no significant side effects. These data suggest that DYC-1 is a high-efficacy and low-toxic antitumor agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Changzhi People's Hospital, Changzhi Medical College, Changzhi 046000, China.
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhu Yan
- Department of Pain Treatment, Changzhi Hospital of Traditional Chinese Medicine, Changzhi 046000, China.
| |
Collapse
|
5
|
Lu F, Jiang X, Lin K, Zheng P, Wu S, Zeng G, Wei D. Oncogenic Gene CNOT7 Promotes Progression and Induces Poor Prognosis of Glioma. Mol Biotechnol 2024:10.1007/s12033-024-01223-5. [PMID: 38985240 DOI: 10.1007/s12033-024-01223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Glioma is the most common malignant brain tumor in the central nervous system with the poor prognosis of patients. The CNOT7 (CCR4-NOT Transcription Complex Subunit 7) is an important functional subunit of CCR4-NOT protein complex that has not been reported in glioma. In this study, we aimed to explore the function of CNOT7 in glioma. The TCGA (The Cancer Genome Atlas) and CGGA (Chinese Glioma Genome Atlas) databases were used for investigating the expression and survival condition of CNOT7 in glioma. The cellular function experiments of qRT-PCR, CCK-8 assays, wound healing assays, and Transwell assays were conducted to verify the function of knockdown CNOT7 in the glioma cell lines DBTRG and U251. Enrichment analysis was used to explore the molecular mechanism of CONT7 in glioma. What is more, the upstream regulation transcription factors of CNOT7 were analyzed based on the ChIP-Atlas and cBioportal (provisional) databases, and verified by the qRT-PCR and luciferase reporter assay. The CNOT7 was highly expressed in glioma and presented the poorer prognosis. The knockdown of CNOT7 inhibited the proliferation, migration, and invasion of glioma cell line, compared to control group. The enrichment analysis revealed that the CNOT7 participated in the development of glioma via G2M checkpoint, E2F targets, IL6-JAK-STAT3, and TNF-α signaling pathways via NF-κB. Besides, it was found that the HDAC2 (Human histone deacetylase-2) contributes to increased CNOT7 expression in glioma. The high-expressed CNOT7 is an oncogene with poor prognosis and participate the progression of glioma.
Collapse
Affiliation(s)
- Feng Lu
- Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Xiulong Jiang
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Kun Lin
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Pengfeng Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Shizhong Wu
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Guangming Zeng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - De Wei
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China.
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China.
| |
Collapse
|
6
|
Yang J, Xiao Y, Zhao N, Pei G, Sun Y, Sun X, Yu K, Miao C, Liu R, Lv J, Chu H, Zhou L, Wang B, Yao Z, Wang Q. PIM1-HDAC2 axis modulates intestinal homeostasis through epigenetic modification. Acta Pharm Sin B 2024; 14:3049-3067. [PMID: 39027246 PMCID: PMC11252454 DOI: 10.1016/j.apsb.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The mucosal barrier is crucial for intestinal homeostasis, and goblet cells are essential for maintaining the mucosal barrier integrity. The proviral integration site for Moloney murine leukemia virus-1 (PIM1) kinase regulates multiple cellular functions, but its role in intestinal homeostasis during colitis is unknown. Here, we demonstrate that PIM1 is prominently elevated in the colonic epithelia of both ulcerative colitis patients and murine models, in the presence of intestinal microbiota. Epithelial PIM1 leads to decreased goblet cells, thus impairing resistance to colitis and colitis-associated colorectal cancer (CAC) in mice. Mechanistically, PIM1 modulates goblet cell differentiation through the Wnt and Notch signaling pathways. Interestingly, PIM1 interacts with histone deacetylase 2 (HDAC2) and downregulates its level via phosphorylation, thereby altering the epigenetic profiles of Wnt signaling pathway genes. Collectively, these findings investigate the unknown function of the PIM1-HDAC2 axis in goblet cell differentiation and ulcerative colitis/CAC pathogenesis, which points to the potential for PIM1-targeted therapies of ulcerative colitis and CAC.
Collapse
Affiliation(s)
- Jianming Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yawen Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ningning Zhao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Geng Pei
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Xinyu Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Kaiyuan Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chunhui Miao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ran Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Junqiang Lv
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Hongyu Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
7
|
Guardigni M, Greco G, Poeta E, Santini A, Tassinari E, Bergamini C, Zalambani C, De Simone A, Andrisano V, Uliassi E, Monti B, Bolognesi ML, Fimognari C, Milelli A. Integrating a quinone substructure into histone deacetylase inhibitors to cope with Alzheimer's disease and cancer. RSC Med Chem 2024; 15:2045-2062. [PMID: 38911150 PMCID: PMC11187553 DOI: 10.1039/d4md00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 μM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.
Collapse
Affiliation(s)
- Melissa Guardigni
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Giulia Greco
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna 40129 Bologna Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Alan Santini
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin 10125 Turin Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| |
Collapse
|
8
|
Kubat Oktem E. Biomarkers of Alzheimer's Disease Associated with Programmed Cell Death Reveal Four Repurposed Drugs. J Mol Neurosci 2024; 74:51. [PMID: 38700745 DOI: 10.1007/s12031-024-02228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/21/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia. Programmed cell death (PCD) is mainly characterized by unique morphological features and energy-dependent biochemical processes. The predominant pathway leading to cell death in AD has not been thoroughly analyzed, although there is evidence of neuron loss in AD and numerous pathways of PCD have been associated with this process. A better understanding of the systems biology underlying the relationship between AD and PCD could lead to the development of new therapeutic approaches. To this end, publicly available transcriptome data were examined using bioinformatic methods such as differential gene expression and weighted gene coexpression network analysis (WGCNA) to find PCD-related AD biomarkers. The diagnostic significance of these biomarkers was evaluated using a logistic regression-based predictive model. Using these biomarkers, a multifactorial regulatory network was developed. Last, a drug repositioning study was conducted to propose new drugs for the treatment of AD targeting PCD. The development of 3PM (predictive, preventive, and personalized) drugs for the treatment of AD would be enabled by additional research on the effects of these drugs on this disease.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, North Campus, Istanbul, 34700, Turkey.
| |
Collapse
|
9
|
Wen W, Hu J, Wang C, Yang R, Zhang Y, Huang B, Qiao T, Wang J, Chen X. Re-exploration of tetrahydro-β-carboline scaffold: Discovery of selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting and neuroprotective activities. Bioorg Med Chem Lett 2024; 102:129670. [PMID: 38387692 DOI: 10.1016/j.bmcl.2024.129670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-β-carboline (THβC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.
Collapse
Affiliation(s)
- Wen Wen
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China.
| | - Chenxi Wang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Rui Yang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Yabo Zhang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Baibei Huang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Tingting Qiao
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Jiayun Wang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
10
|
Itoh Y, Zhan P, Tojo T, Jaikhan P, Ota Y, Suzuki M, Li Y, Hui Z, Moriyama Y, Takada Y, Yamashita Y, Oba M, Uchida S, Masuda M, Ito S, Sowa Y, Sakai T, Suzuki T. Discovery of Selective Histone Deacetylase 1 and 2 Inhibitors: Screening of a Focused Library Constructed by Click Chemistry, Kinetic Binding Analysis, and Biological Evaluation. J Med Chem 2023; 66:15171-15188. [PMID: 37847303 DOI: 10.1021/acs.jmedchem.3c01095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone deacetylase 1 and 2 (HDAC1/2) inhibitors are potentially useful as tools for probing the biological functions of the isoforms and as therapeutic agents for cancer and neurodegenerative disorders. To discover potent and selective inhibitors, we screened a focused library synthesized by using click chemistry and obtained KPZ560 as an HDAC1/2-selective inhibitor. Kinetic binding analysis revealed that KPZ560 inhibits HDAC2 through a two-step slow-binding mechanism. In cellular assays, KPZ560 induced a dose- and time-dependent increase of histone acetylation and showed potent breast cancer cell growth-inhibitory activity. In addition, gene expression analyses suggested that the two-step slow-binding inhibition by KPZ560 regulated the expression of genes associated with cell proliferation and DNA damage. KPZ560 also induced neurite outgrowth of Neuro-2a cells and an increase in the spine density of granule neuron dendrites of mice. The unique two-step slow-binding character of o-aminoanilides such as KPZ560 makes them interesting candidates as therapeutic agents.
Collapse
Affiliation(s)
- Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Peng Zhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Toshifumi Tojo
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Pattaporn Jaikhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yosuke Ota
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Miki Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Ying Li
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Zi Hui
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukiko Moriyama
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | - Makoto Oba
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsuharu Masuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
11
|
Moi D, Bonanni D, Belluti S, Linciano P, Citarella A, Franchini S, Sorbi C, Imbriano C, Pinzi L, Rastelli G. Discovery of potent pyrrolo-pyrimidine and purine HDAC inhibitors for the treatment of advanced prostate cancer. Eur J Med Chem 2023; 260:115730. [PMID: 37633202 DOI: 10.1016/j.ejmech.2023.115730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
The development of drugs for the treatment of advanced prostate cancer (PCA) remains a challenging task. In this study we have designed, synthesized and tested twenty-nine novel HDAC inhibitors based on three different zinc binding groups (trifluoromethyloxadiazole, hydroxamic acid, and 2-mercaptoacetamide). These warheads were conveniently tethered to variously substituted phenyl linkers and decorated with differently substituted pyrrolo-pyrimidine and purine cap groups. Remarkably, most of the compounds showed nanomolar inhibitory activity against HDAC6. To provide structural insights into the Structure-Activity Relationships (SAR) of the investigated compounds, docking of representative inhibitors and molecular dynamics of HDAC6-inhibitor complexes were performed. Compounds of the trifluoromethyloxadiazole and hydroxamic acid series exhibited promising anti-proliferative activities, HDAC6 targeting in PCA cells, and in vitro tumor selectivity. Representative compounds of the two series were tested for solubility, cell permeability and metabolic stability, demonstrating favorable in vitro drug-like properties. The more interesting compounds were subjected to migration assays, which revealed that compound 13 and, to a lesser extent, compound 15 inhibited the invasive behaviour of androgen-sensitive and -insensitive advanced prostate cancer cells. Compound 13 was profiled against all HDACs and found to inhibit all members of class II HDACs (except for HDAC10) and to be selective with respect to class I and class IV HDACs. Overall, compound 13 combines potent inhibitory activity and class II selectivity with favorable drug-like properties, an excellent anti-proliferative activity and marked anti-migration properties on PCA cells, making it an excellent lead candidate for further optimization.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Davide Bonanni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Andrea Citarella
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.
| |
Collapse
|
12
|
Khadempar S, Lotfi M, Haghiralsadat F, Saidijam M, Ghasemi N, Afshar S. Lansoprazole as a potent HDAC2 inhibitor for treatment of colorectal cancer: An in-silico analysis and experimental validation. Comput Biol Med 2023; 166:107518. [PMID: 37806058 DOI: 10.1016/j.compbiomed.2023.107518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Histone deacetylase 2 (HDAC2), belonging to the class I HDAC family, holds significant therapeutic potential as a crucial target for diverse cancer types. As key players in the realm of epigenetic regulatory enzymes, histone deacetylases (HDACs) are intricately involved in the onset and progression of cancer. Consequently, pursuing isoform-specific inhibitors targeting histone deacetylases (HDACs) has garnered substantial interest in both biological and medical circles. The objective of the present investigation was to employ a drug repurposing approach to discover novel and potent HDAC2 inhibitors. MATERIALS AND METHODS In this study, our protocol is presented on virtual screening to identify novel potential HDAC2 inhibitors through 3D-QSAR, molecular docking, pharmacophore modeling, and molecular dynamics (MD) simulation. Afterward, In-vitro assays were employed to evaluate the cytotoxicity, apoptosis, and migration of HCT-116 cell lines under treatment of hit compound and valproic acid as a control inhibitor. The expression levels of HDAC2, TP53, BCL2, and BAX were evaluated by QRT-PCR. RESULTS RMSD, RMSF, H-bond, and DSSP analysis results confirmed that among bioinformatically selected compounds, lansoprazole exhibited the highest HDAC2 inhibitory potential. Experimental validation revealed that lansoprazole displayed significant antiproliferative activity. The determined IC50 value was 400 ± 2.36 μM. Furthermore, the apoptotic cells ratio concentration-dependently increased under Lansoprazole treatment. Results of the Scratch assay indicated that lansoprazole led to decreasing the migration of CRC cells. Finally, under Lansoprazole treatment the expression level of BCL2 and HDAC2 decreased and BAX and TP53 increased. CONCLUSION Taking together the results of the current study indicated that Lansoprazole as a novel HDAC2 inhibitor, could be used as a potential therapeutic agent for the treatment of CRC. Although, further experimental studies should be performed before using this compound in the clinic.
Collapse
Affiliation(s)
- Saedeh Khadempar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Marzieh Lotfi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Fatemeh Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ghasemi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Saeid Afshar
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
13
|
Kubat Oktem E. BMP4, SGSH, and SLC11A2 are Predicted to Be Biomarkers of Aging Associated with Programmed Cell Death. J Mol Neurosci 2023; 73:713-723. [PMID: 37632651 DOI: 10.1007/s12031-023-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
Most neurodegenerative diseases are exacerbated by aging, with symptoms often worsening over time. Programmed cell death (PCD) is a controlled cell suicide mechanism that is essential for the stability, growth, and homeostasis of organisms. Understanding the effects of aging at the level of systems biology could lead to new therapeutic approaches for a broad spectrum of neurodegenerative diseases. In the absence of comprehensive functional studies on the relationship between PCD and aging of the prefrontal cortex, this study provides prefrontal brain biomarkers of aging associated with PCD that could open the way for improved therapeutic techniques for age-related neurodegenerative diseases. To this end, publicly available transcriptome data were subjected to bioinformatic analyses such as differential gene expression, functional enrichment, and the weighted gene coexpression network analysis (WGCNA). The diagnostic utility of the biomarkers was tested using a logistic regression-based prediction model. Three genes, namely BMP4, SGSH, and SLC11A2, were found to be aging biomarkers associated with PCD. Finally, a multifactorial regulatory network with interacting proteins, transcription factors (TFs), competing endogenous RNAs (ceRNAs), and microRNAs (miRNAs) was constructed around these biomarkers. The elements of this multifactorial regulatory network were mainly enriched in BMP signaling. Further exploration of these three biomarkers and their regulatory elements would enable the development of 3PM (predictive, preventive, and personalized) medicine for the treatment of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Kuzey Yerleşkesi H Blok, Ünalan Mah. Ünalan Sk. D100 Karayolu Yanyol 34700, Üsküdar, Istanbul, Turkey.
| |
Collapse
|
14
|
Rexach JE, Cheng Y, Chen L, Polioudakis D, Lin LC, Mitri V, Elkins A, Yin A, Calini D, Kawaguchi R, Ou J, Huang J, Williams C, Robinson J, Gaus SE, Spina S, Lee EB, Grinberg LT, Vinters H, Trojanowski JQ, Seeley WW, Malhotra D, Geschwind DH. Disease-specific selective vulnerability and neuroimmune pathways in dementia revealed by single cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560245. [PMID: 37808727 PMCID: PMC10557766 DOI: 10.1101/2023.09.29.560245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden. We identify 35 shared disease-associated cell types and 14 that are disease-specific, replicating those previously identified in AD. Disease - specific cell states represent molecular features of disease-specific glial-immune mechanisms and neuronal vulnerability in each disorder, layer 4/5 intra-telencephalic neurons in AD, layer 2/3 intra-telencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We infer intrinsic disease-associated gene regulatory networks, which we empirically validate by chromatin footprinting. We find that causal genetic risk acts in specific neuronal and glial cells that differ across disorders, primarily non-neuronal cells in AD and specific neuronal subtypes in FTD and PSP. These data illustrate the heterogeneous spectrum of glial and neuronal composition and gene expression alterations in different dementias and identify new therapeutic targets by revealing shared and disease-specific cell states.
Collapse
|
15
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
16
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
18
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
19
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
20
|
Singh T, Kaur P, Singh P, Singh S, Munshi A. Differential molecular mechanistic behavior of HDACs in cancer progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:171. [PMID: 35972597 DOI: 10.1007/s12032-022-01770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs' role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
21
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
22
|
Li G, Li D, Rao H, Liu X. Potential neurotoxicity, immunotoxicity, and carcinogenicity induced by metribuzin and tebuconazole exposure in earthworms (Eisenia fetida) revealed by transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150760. [PMID: 34619195 DOI: 10.1016/j.scitotenv.2021.150760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Metribuzin and tebuconazole have been widely used in agriculture for several decades. Apart from endocrine disruption, little is known about their toxicological effects on organisms without thyroid organs, at the transcriptional level. To explore this toxicity, model earthworm species Eisenia fetida, hatched from the same cocoon and cultured under identical environmental conditions, were independently exposed to the two chemicals at non-lethal concentrations in OECD artificial soil for 48 h after exposure. RNA-seq technology was used to analyze and compare the gene expression profiles of earthworms exposed to metribuzin and tebuconazole. The functions of differentially expressed genes and their standard response patterns of upregulated and downregulated expression for both pesticides were verified. The findings demonstrated that metribuzin and tebuconazole are both potentially toxic to earthworms. Toxicological effects mainly involved the nervous system, immune system, and tumors, at the transcriptional level, as well as the induction of cytochrome P450-dependent detoxification and oxidative stress. In addition, the mitogen-activated protein kinase kinase kinase gene was identified as a biomarker, and the mitogen-activated protein kinase signaling pathway was verified to be a part of the adverse outcome pathway of metribuzin and tebuconazole and their structural analogs.
Collapse
Affiliation(s)
- Gang Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Dongxue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Huixian Rao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Xinjǚ Liu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China.
| |
Collapse
|
23
|
Samuelov L, Bochner R, Magal L, Malovitski K, Sagiv N, Nousbeck J, Keren A, Fuchs-Telem D, Sarig O, Gilhar A, Sprecher E. Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Exp Dermatol 2021; 31:567-576. [PMID: 34787924 DOI: 10.1111/exd.14502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psoriasis is characterized by aberrant activation of several pro-inflammatory circuits as well as abnormal hyperproliferation and dysregulated apoptosis of keratinocytes (KCs). Most currently available therapeutic options primarily target psoriasis-associated immunological defects rather than epidermal abnormalities. OBJECTIVE To investigate the efficacy of the histone deacetylase (HDAC) inhibitor, Vorinostat, in targeting hyperproliferation and impaired apoptosis in psoriatic skin. METHODS Vorinostat effect was investigated in primary KCs cell cultures using cell cycle analysis by flow cytometry, apoptosis assays (Annexin V-FICH and caspase-3/7) and antibody arrays, qRT-PCR and immunohistochemistry. Vorinostat impact on clinical manifestations of psoriasis was investigated in a chimeric mouse model. RESULTS Vorinostat was found to inhibit KCs proliferation and to induce their differentiation and apoptosis. Using a chimeric mouse model, vorinostat was found to result in marked attenuation of a psoriasiform phenotype with a significant decrease in epidermal thickness and inhibition of epidermal proliferation. CONCLUSIONS Our results support the notion that vorinostat, a prototypic HDAC inhibitor, may be of potential use in the treatment of psoriasis and other hyperproliferative skin disorders.
Collapse
Affiliation(s)
- Liat Samuelov
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Bochner
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lee Magal
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nadav Sagiv
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Janna Nousbeck
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dana Fuchs-Telem
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
24
|
Sabnis RW. Novel HDAC1 and HDAC2 Inhibitors for Treating Diseases. ACS Med Chem Lett 2021; 12:1532-1533. [PMID: 34676033 DOI: 10.1021/acsmedchemlett.1c00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia30309, United States
| |
Collapse
|
25
|
Wawruszak A, Halasa M, Okon E, Kukula-Koch W, Stepulak A. Valproic Acid and Breast Cancer: State of the Art in 2021. Cancers (Basel) 2021; 13:3409. [PMID: 34298623 PMCID: PMC8306563 DOI: 10.3390/cancers13143409] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Valproic acid (2-propylpentanoic acid, VPA) is a short-chain fatty acid, a member of the group of histone deacetylase inhibitors (HDIs). VPA has been successfully used in the treatment of epilepsy, bipolar disorders, and schizophrenia for over 50 years. Numerous in vitro and in vivo pre-clinical studies suggest that this well-known anticonvulsant drug significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. Breast cancer (BC) is the most common malignancy affecting women worldwide. Despite significant progress in the treatment of BC, serious adverse effects, high toxicity to normal cells, and the occurrence of multi-drug resistance (MDR) still limit the effective therapy of BC patients. Thus, new agents which improve the effectiveness of currently used methods, decrease the emergence of MDR, and increase disease-free survival are highly needed. This review focuses on in vitro and in vivo experimental data on VPA, applied individually or in combination with other anti-cancer agents, in the treatment of different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| |
Collapse
|
26
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|