1
|
Zhong X, Wu J, Du N, Zhou S, Ma C, Xue T, Wei M, Gong J, Wang B, Liu M, Wang A, Lv K, Lu Y. Design, synthesis and antimycobacterial activity of novel benzothiazinones with improved water solubility. Eur J Med Chem 2024; 279:116829. [PMID: 39243457 DOI: 10.1016/j.ejmech.2024.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Nitrobenzothiazinones (BTZs) represent a novel type of antitubercular agents targeting DprE1. Two clinical candidates BTZ043 and PBTZ169, as well as many other BTZs showed potent anti-TB activity, but they are all highly lipophilic and their poor aqueous solubility is still a serious issue need to be addressed. Here, we designed and synthesized a series of new BTZ derivatives, wherein a hydrophilic COOH or NH2 group is directly attached to the oxime moiety of TZY-5-84 discovered in our lab, through various linkers. Two compounds 1a and 3 were first reported to possess excellent activity against MTB H37Rv and MDR-MTB strains (MIC: <0.029-0.095 μM), low toxicity and acceptable oral PK profiles, as well as significantly improved water solubility (1200 and > 2000 μg/mL, respectively), suggesting they may serve as promising hydrophilic BTZs for further antitubercular drug discovery.
Collapse
Affiliation(s)
- Xijun Zhong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jizhou Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Na Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Sheng Zhou
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Chao Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; MindRank AI Ltd., Hangzhou, 310000, China
| | - Tiezheng Xue
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Meng Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqi Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing, 100149, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing, 100149, China.
| |
Collapse
|
2
|
Zhi XY, Liu Y, Liang J, Yuan X, Shi HC, Duan JQ, He MT, Wang Y, Cao H, Yang C. Novel Pesticide Candidates Inspired by Natural Neolignan: Preparation and Insecticidal Investigation of Honokiol Analogs Containing 2-Aminobenzoxazole-Fused Core Scaffold. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20805-20815. [PMID: 39263791 DOI: 10.1021/acs.jafc.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As a continuation of our efforts to develop new agrochemicals with typical architecture and efficient bioactivity from plant natural products, natural neolignan honokiol was used as a lead compound to prepare novel analogs bearing the core 2-aminobenzoxazole scaffold. Their insecticidal potency against two representative agricultural pests, Plutella xylostella Linnaeus and Mythimna separata (Walker), were evaluated in vivo. The pesticide bioassay results revealed that compounds 7″a, 9, 10d, and 10j exhibited prominent larvicidal activity against the larvae of P. xylostella (LC50 = 7.95, 11.85, 15.51, and 12.06 μg/mL, respectively), superior to the precursor honokiol (LC50 = 43.35 μg/mL) and two botanical insecticides, toosendanin (LC50 = 26.20 μg/mL) and rotenone (LC50 = 23.65 μg/mL). Compounds 7d, 10d, and 10j displayed a more pronounced nonchoice antifeedant effect (AFC50 = 9.48, 9.14, and 12.41 μg/mL, respectively) than honokiol (AFC50 = 54.81 μg/mL) on P. xylostella. Moreover, compounds 7b, 7″a, 9, 10d, 10f, and 10j showed better growth inhibitory activity against M. separata (LC50 = 0.36, 0.34, 0.28, 0.16, 0.26, and 0.11 mg/mL, respectively) than honokiol, toosendanin, and rotenone (LC50 = 1.48, 0.53, and 0.46 mg/mL, respectively). A potted plant assay under greenhouse conditions illustrated that compounds 10d and 10j continued to provide good control efficacy against P. xylostella and an apparent protective effect on plants. Further cytotoxicity assay revealed that the aforementioned potent compounds showed relatively moderate toxicity and a good safety profile for non-target mammalian cells. Overall, the current work provides valuable insight into the agrochemical innovation of honokiol-derived analogs for use as natural-inspired pesticides in agricultural pest management.
Collapse
Affiliation(s)
- Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Jing Liang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Xin Yuan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Hong-Cheng Shi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Jin-Qiu Duan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Ming-Tao He
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Yi Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| |
Collapse
|
3
|
Shaikh J, Patel S, Nagani A, Shah M, Ugharatdar S, Patel A, Shah D, Patel D. Pharmacophore mapping, 3D QSAR, molecular docking, and ADME prediction studies of novel Benzothiazinone derivatives. In Silico Pharmacol 2024; 12:79. [PMID: 39220602 PMCID: PMC11362452 DOI: 10.1007/s40203-024-00255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
In the quest to combat tuberculosis, DprE1, a challenging target for novel anti-tubercular agents due to its small size and membrane location, has been a focus of research. DprE1 catalyzes the transformation of DPR into Ketoribose DPX, with Benzothiazinone emerging as a potent pharmacophore for inhibiting DprE1. Clinical trial drugs such as BTZ043, BTZ038, PBTZ169, and TMC-207 have shown promising results as DprE1 inhibitors. This study employed pharmacophore mapping of Pyrazolopyridine, Dinitrobenzamide, and Benzothiazinone derivatives to identify crucial features for eliciting a biological response. Benzothiazinone (Ligand code: 73) emerged as a reference ligand with a fitness score of 3.000. ROC analysis validated the pharmacophore with an excellent score of 0.71. To build a 3D QSAR model, a series of Benzothiazinone congeneric derivatives were explored. The model exhibited strong performance, with a standard deviation of 0.1531, a correlation coefficient for the training set (R2) value of 0.9754, and a correlation coefficient for test set Q2 value of 0.7632, indicating robust predictive capabilities. Contour maps guided the design of novel benzothiazinone derivatives, emphasizing steric, electrostatic, hydrophobic, H-bond acceptor, and H-bond donor groups for structure-activity relationships. Docking studies against PDB ID: 4NCR demonstrated favorable scores, with interactions aligning well with the in-built ligand 26 J. Docking validation via RMSD values supported the reliability of the docking results. This comprehensive approach aids in the design of novel benzothiazinone derivatives with potential anti-tubercular properties, contributing to the development of novel anti-tubercular agents which can be pivotal in the eradication of tuberculosis.
Collapse
Affiliation(s)
- Jahaan Shaikh
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat India
| | - Salman Patel
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat India
| | - Afzal Nagani
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat India
- Research and Development Cell, Parul University, Vadodara, Gujarat India
| | - Moksh Shah
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat India
| | - Siddik Ugharatdar
- Department of Pharmaceutical Chemistry, Laxminarayandev College of Pharmacy, Bholav, Bharuch, Gujarat India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat India
| |
Collapse
|
4
|
Dash S, Rathi E, Kumar A, Chawla K, Joseph A, Kini SG. Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review. J Biomol Struct Dyn 2024; 42:6472-6522. [PMID: 37395797 DOI: 10.1080/07391102.2023.2230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Emerging threats of multi-drug resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) tuberculosis led to the discovery of a novel target which was entitled Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) enzyme. DprE1 is composed of two isoforms, decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-D-2-keto erythro pentose reductase (DprE2). The enzymes, DprE1 and DprE2, regulate the two-step epimerization process to form DPA (Decaprenylphosphoryl arabinose) from DPX (Decaprenylphosphoryl-D-ribose), which is the sole precursor in the cell wall synthesis of arabinogalactan (AG) and lipoarabinomannan (LAM). Target-based and whole-cell-based screening played an imperative role in the identification of the druggable target, DprE1, whereas the druggability of the DprE2 enzyme is not proved yet. To date, diverse scaffolds of heterocyclic and aromatic ring systems have been reported as DprE1 inhibitors based on their interaction mode, i.e. covalent, and non-covalent inhibitors. This review describes the structure-activity relationship (SAR) of reported covalent and non-covalent inhibitors to enlighten about the crucial pharmacophoric features required for DprE1 inhibition, along with in-silico studies which characterize the amino acid residues responsible for covalent and non-covalent interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Swagatika Dash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Khetmalis YM, Shobha S, Nandikolla A, Chandu A, Murugesan S, Kumar MMK, Chandra Sekhar KVG. Design, synthesis, and anti-mycobacterial evaluation of 1,8-naphthyridine-3-carbonitrile analogues. RSC Adv 2024; 14:22676-22689. [PMID: 39027042 PMCID: PMC11255784 DOI: 10.1039/d4ra04262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Twenty-eight compounds, viz., 1,8-naphthyridine-3-carbonitrile (ANC and ANA) derivatives, were designed and synthesized through a molecular hybridization approach. The structures of these compounds were analyzed and confirmed using 1H NMR, 13C NMR, LCMS, and elemental analyses. The synthesized compounds were evaluated by in vitro testing for their effectiveness against tuberculosis using the MABA assay, targeting the Mycobacterium tuberculosis H37Rv strain. Their minimum inhibitory concentration (MIC) was determined, showing that the tested compounds' MIC values ranged from 6.25 to ≤50 μg mL-1. Among the derivatives studied, ANA-12 demonstrated prominent anti-tuberculosis activity with a MIC of 6.25 μg mL-1. Compounds ANC-2, ANA-1, ANA 6-8, and ANA-10 displayed moderate to good anti-tuberculosis activity with MIC values of 12.5 μg mL-1. Compounds with MIC ≤ 12.5 μg mL-1 were screened against human embryonic kidney cells to assess their potential cytotoxicity. Interestingly, these compounds showed less toxicity towards normal cells, with a selectivity index value ≥ 11. To further evaluate the binding pattern in the active site of enoyl-ACP reductase (InhA) from Mtb (PDB-4TZK), a molecular docking analysis of compound ANA-12 was performed using the glide module of Schrodinger software. The stability, confirmation, and intermolecular interactions of the cocrystal ligand and the highly active compound ANA-12 on the chosen target protein were investigated through molecular dynamics simulations lasting 100 ns. In silico predictions were utilized to assess the ADMET properties of the final compounds. A suitable single crystal was developed and analyzed for compound ANA-5 to gain a deeper understanding of the compounds' structures.
Collapse
Affiliation(s)
- Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 Telangana India +91 40 66303527
| | - Singarapalle Shobha
- College of Pharmaceutical Sciences, Andhra University Visakhapatnam Andhra Pradesh - 530 003 India
| | - Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 Telangana India +91 40 66303527
| | - Ala Chandu
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani 333031 India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani 333031 India
| | | | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 Telangana India +91 40 66303527
| |
Collapse
|
6
|
Faizan M, Kumar R, Mazumder A, Salahuddin, Kukreti N, Kumar A, Chaitanya MVNL. The medicinal chemistry of piperazines: A review. Chem Biol Drug Des 2024; 103:e14537. [PMID: 38888058 DOI: 10.1111/cbdd.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs has also been highlighted to provide a good understanding to researchers for future research on piperazines.
Collapse
Affiliation(s)
- Md Faizan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Arvind Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - M V N L Chaitanya
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, India
| |
Collapse
|
7
|
Zhang S, Zhang Y, Wang Z, Qing L, Fu S, Xu J, Li Y, Fang H, He H. Exploring the structural-activity relationship of hexahydropyrazino[1,2-d]pyrido[3,2-b][1,4]oxazine derivatives as potent and orally-bioavailable PARP7 inhibitors. Eur J Med Chem 2023; 261:115836. [PMID: 37826932 DOI: 10.1016/j.ejmech.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
PARP7 has emerged as a promising anti-tumor target due to its crucial roles in nucleic acid sensing and immune regulation. Herein, we explored the structural-activity relationship of tricyclic PARP7 inhibitors containing a hexahydropyrazino[1,2-d]pyrido[3,2-b][1,4]oxazine motif. The effects of the chirality of the fused rings, the group conjugated to the fused rings, and the size of the linker on PARP7 inhibition were fully investigated. Our work leads to the discovery of an extremely potent and orally-bioavailable PARP7 inhibitor, namely 18 (PARP7 inhibition IC50 = 0.56 nM), for efficacious treatment of lung cancer in vivo. Notably, 18 showed acceptable bioavailability in ICR mice (F = 33.9%) and Beagle dogs (F = 45.2%). Further investigation of ADME-T properties suggested that 18 has the potential to be developed as a candidate drug molecule for PARP7-sensitive tumors.
Collapse
Affiliation(s)
- Silong Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China; Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan, 430200, PR China
| | - Yu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Ziwei Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Luolong Qing
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Shaojuan Fu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China
| | - Juan Xu
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China; Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan, 430200, PR China
| | - Yuanyuan Li
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan, 430200, PR China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China.
| | - Huaxiang Fang
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan, 430200, PR China.
| | - Huan He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China; Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan, 430200, PR China.
| |
Collapse
|
8
|
Sahoo S, Rao MA, Pal S. An Aldehyde-Driven, Fe(0)-Mediated, One-Pot Reductive Cyclization: Direct Access to 5,6-Dihydro-quinazolino[4,3- b]quinazolin-8-ones and Photophysical Study. J Org Chem 2023. [PMID: 37471271 DOI: 10.1021/acs.joc.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A short, proficient, and regioselective synthesis of biheterocyclic 5,6-dihydro-quinazolino[4,3-b]quinazolin-8-ones has been revealed via an Fe(0)-powder-mediated, one-pot reductive cyclization protocol. Mechanistic investigation proved that water acts as a source of hydrogen for the reduction of the nitro group and the reaction rate was accelerated by an aldehyde. The designed transformation works under aerobic conditions, providing a series of bio-inspired molecular scaffolds. In addition, the photophysical study showed blue fluorescence emission with a good fluorescence quantum yield.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Manthri Atchuta Rao
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
9
|
Wang A, Du N, Song H, Zhang Y, Zhong X, Wu J, Xue T, Liu M, Wang B, Lv K, Lu Y. Design, synthesis and antitubercular activity of novel N-(amino)piperazinyl benzothiazinones with improved safety. Eur J Med Chem 2023; 258:115545. [PMID: 37300914 DOI: 10.1016/j.ejmech.2023.115545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains a major global health problem and new therapeutic antitubercular agents are urgent needed. Among the novel antituberculosis drugs in the pipeline, Benzothiazinones (BTZs) are among the most potent antituberculosis agents against both drug-susceptible and multidrug-resistant (MDR) tuberculosis. Our group has focused on structural modifications of the side chain at C-2 position of the BTZ core and WAP-2101/2102 with excellent in vitro activity were discovered in our lab. However, the severe in vivo toxicity was observed during subsequent acute toxicity evaluation. Herein, a series of novel N-(amino)piperazinyl benzothiazinone derivatives were designed and synthesized as new anti-TB agents to reduce the in vivo toxicity. Our results show that majority of them exhibit the same potent or comparable activity against both MTB H37Rv and MDR-MTB strains (MIC: 4.00 - <1 ng/mL) as PBTZ169. Especially, compound 2c with low cardiac toxicity, low cell cytotoxicity and acceptable oral pharmacokinetic (PK) profiles have low acute toxicity in mice (LD50 > 500 mg/kg), suggesting it may serve as a promising lead compound for further antitubercular drug discovery.
Collapse
Affiliation(s)
- Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Na Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huijuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuehao Zhang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Xijun Zhong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jizhou Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tiezheng Xue
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing, 100149, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing, 100149, China.
| |
Collapse
|
10
|
Design, synthesis and anti-TB and anti-bacterial activity of Ciprofloxacin derivatives containing N-(amino)piperazine moieties. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Amado PM, Woodley C, Cristiano MLS, O’Neill PM. Recent Advances of DprE1 Inhibitors against Mycobacterium tuberculosis: Computational Analysis of Physicochemical and ADMET Properties. ACS OMEGA 2022; 7:40659-40681. [PMID: 36406587 PMCID: PMC9670723 DOI: 10.1021/acsomega.2c05307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) is a critical flavoenzyme in Mycobacterium tuberculosis, catalyzing a vital step in the production of lipoarabinomannan and arabinogalactan, both of which are essential for cell wall biosynthesis. Due to its periplasmic localization, DprE1 is a susceptible target, and several compounds with diverse scaffolds have been discovered that inhibit this enzyme, covalently or noncovalently. We evaluated a total of ∼1519 DprE1 inhibitors disclosed in the literature from 2009 to April 2022 by performing an in-depth analysis of physicochemical descriptors and absorption, distribution, metabolism, excretion, and toxicity (ADMET), to gain new insights into these properties in DprE1 inhibitors. Several molecular properties that should facilitate the design and optimization of future DprE1 inhibitors are described, allowing for the development of improved analogues targeting M. tuberculosis.
Collapse
Affiliation(s)
- Patrícia
S. M. Amado
- Center
of Marine Sciences - CCMAR, University of
Algarve, P-8005-039 Faro, Portugal
- Department
of Chemistry and Pharmacy, FCT, University
of Algarve, P-8005-039 Faro, Portugal
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Christopher Woodley
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Maria L. S. Cristiano
- Center
of Marine Sciences - CCMAR, University of
Algarve, P-8005-039 Faro, Portugal
- Department
of Chemistry and Pharmacy, FCT, University
of Algarve, P-8005-039 Faro, Portugal
- Email
for M.L.S.C.:
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Email for P.M.O.:
| |
Collapse
|
12
|
Sahoo SK, Gajula SNR, Ahmad MN, Kaul G, Nanduri S, Sonti R, Dasgupta A, Chopra S, Yaddanapudi VM. Bioevaluation of quinoline-4-carbonyl derivatives of piperazinyl-benzothiazinones as promising antimycobacterial agents. Arch Pharm (Weinheim) 2022; 355:e2200168. [PMID: 35876343 DOI: 10.1002/ardp.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
The quinoline moiety remains a privileged antitubercular (anti-TB) pharmacophore, whereas 8-nitrobenzothiazinones are emerging potent antimycobacterial agents with two investigational candidates in the clinical pipeline. Herein, we report the synthesis and bioevaluation of 30 piperazinyl-benzothiazinone-based quinoline hybrids as prospective anti-TB agents. Preliminary evaluation revealed 24/30 compounds exhibiting substantial activity (minimum inhibitory concentration [MIC] = 0.06-1 µg/ml) against Mycobacterium tuberculosis (Mtb) H37Rv. Cytotoxicity analysis against Vero cells found these to be devoid of any significant toxicity, with the majority displaying a selectivity index of >80. Furthermore, potent nontoxic compounds, when screened against clinical isolates of drug-resistant Mtb strains, demonstrated equipotent inhibition with MIC values of 0.03-0.25 µg/ml. A time-kill study identified a lead compound exhibiting concentration-dependent bactericidal activity, with 10× MIC completely eliminating Mtb bacilli within 7 days. Along with acceptable aqueous solubility and microsomal stability, the optimum active compounds of the series manifested all desirable traits of a promising antimycobacterial candidate.
Collapse
Affiliation(s)
- Santosh K Sahoo
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Siva N R Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohammad N Ahmad
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Venkata M Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
13
|
Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov 2022; 17:969-984. [PMID: 35848922 DOI: 10.1080/17460441.2022.2103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Piperazine is a structural element present in drugs belonging to various chemical classes and used for numerous different therapeutic applications; it has been considered a privileged scaffold for drug design. AREAS COVERED The authors have searched examples of piperazine-containing compounds among drugs recently approved by the FDA, and in some research fields (nicotinic receptor modulators, compounds acting against cancer and bacterial multi-drug resistance), looking in particular to the design behind the insertion of this moiety. EXPERT OPINION Piperazine is widely used due to its peculiar characteristics, such as solubility, basicity, chemical reactivity, and conformational properties. This moiety has represented an important tool to modulate pharmacokinetic and pharmacodynamic properties of drugs.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Gabellini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Schieferdecker S, Bernal FA, Wojtas KP, Keiff F, Li Y, Dahse HM, Kloss F. Development of Predictive Classification Models for Whole Cell Antimycobacterial Activity of Benzothiazinones. J Med Chem 2022; 65:6748-6763. [PMID: 35502994 DOI: 10.1021/acs.jmedchem.2c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitrobenzothiazinones (BTZs) are a very potent class of antibiotics against Mycobacterium tuberculosis. However, relationships between their structural properties and whole cell activity remain poorly predictable. Herein, we present the synthesis and antimycobacterial evaluation of a diverse set of BTZs. High potency was predominantly achieved by piperidine and piperazine substitutions, whereupon three compounds were identified as promising candidates, showing preferable metabolic stability. Lack of correlation between potency and calculated binding energies suggested that target inhibition is not the only requirement to obtain suitable antimycobacterial agents. In contrast, prediction of whole cell activity class was successfully accomplished by extensively validated machine learning models. The performance of the superior model was further verified by >70% correct class predictions for a large set of reported BTZs. Our generated model is thus a key prerequisite to streamline lead optimization endeavors, particularly regarding the improvement of overall hit rates in whole cell antimycobacterial assays.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Freddy A Bernal
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - K Philip Wojtas
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - François Keiff
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Yan Li
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Florian Kloss
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
15
|
Wang A, Xu S, Chai Y, Xia G, Wang B, Lv K, Wang D, Qin X, Jiang B, Wu W, Liu M, Lu Y. Design, synthesis and biological evaluation of nitrofuran-1,3,4-oxadiazole hybrids as new antitubercular agents. Bioorg Med Chem 2022; 53:116529. [PMID: 34861474 DOI: 10.1016/j.bmc.2021.116529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
Three series of novel nitrofuran-1,3,4-oxadiazole hybrids were designed and synthesized as new anti-TB agents. The structure activity relationship study indicated that the linkers and the substituents on the oxadiazole moiety greatly influence the activity, and the substituted benzenes are more favoured than the cycloalkyl or heterocyclic groups. Besides, the optimal compound in series 2 was active against both MTB H37Rv strain and MDR-MTB 16883 clinical isolate and also displayed low cytotoxicity, low inhibition of hERG and good oral PK, indicating its promising potential to be a lead for further structural modifications.
Collapse
Affiliation(s)
- Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shijie Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun Chai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing 100149, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Qin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bin Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hebei Medical University, Shijiazhuang 050017, China
| | - Wenhao Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hebei Medical University, Shijiazhuang 050017, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing 100149, China.
| |
Collapse
|
16
|
Al-Ghorbani M, Gouda MA, Baashen M, Ranganatha V. L. Pyrimidine-Piperazine Hybrids; Recent Synthesis and Biological Activities. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Education, Thamar University, Thamar, Yemen
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohammed Baashen
- Department of Chemistry, Science and Humanities College, Shaqra University, Shaqraa, Saudi Arabia
| | - Lakshmi Ranganatha V.
- Department of Chemistry, The National Institute of Engineering, Mysore, Karnataka, India
| |
Collapse
|