1
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
2
|
Ogos M, Stary D, Bajda M. Recent Advances in the Search for Effective Anti-Alzheimer's Drugs. Int J Mol Sci 2024; 26:157. [PMID: 39796014 PMCID: PMC11720639 DOI: 10.3390/ijms26010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease, the most common form of dementia, is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to the loss of neurons and a decline in a person's memory and cognitive function. As a multifactorial disease, Alzheimer's involves multiple pathogenic mechanisms, making its treatment particularly challenging. Current drugs approved for the treatment of Alzheimer's disease only alleviate symptoms but cannot stop the progression. Moreover, these drugs typically target a single pathogenic mechanism, leaving other contributing factors unaddressed. Recent advancements in drug design have led to the development of multi-target-directed ligands (MTDLs), which have gained popularity for their ability to simultaneously target multiple pathogenic mechanisms. This paper focuses on analyzing the activity, mechanism of action, and binding properties of the anti-Alzheimer's MTDLs developed between 2020 and 2024.
Collapse
Affiliation(s)
| | | | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (M.O.); (D.S.)
| |
Collapse
|
3
|
Ciaglia T, Miranda MR, Di Micco S, Vietri M, Smaldone G, Musella S, Di Sarno V, Auriemma G, Sardo C, Moltedo O, Pepe G, Bifulco G, Ostacolo C, Campiglia P, Manfra M, Vestuto V, Bertamino A. Neuroprotective Potential of Indole-Based Compounds: A Biochemical Study on Antioxidant Properties and Amyloid Disaggregation in Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:1585. [PMID: 39765912 PMCID: PMC11673510 DOI: 10.3390/antiox13121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states. Further analysis using thioflavin T fluorescence assays, circular dichroism, and computational studies indicated that the synthesized derivatives effectively promoted the self-disaggregation of the Aβ(25-35) fragment. Taken together, these findings suggest a unique profile of neuroprotective actions for indole-phenolic derivatives, combining chelating, antioxidant, and anti-aggregation properties, which position them as promising compounds for the development of multifunctional agents in Alzheimer's disease therapy. The methods used provide reliable in vitro data, although further in vivo validation and assessment of blood-brain barrier penetration are needed to confirm therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy;
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| |
Collapse
|
4
|
Mo X, Rao DP, Kaur K, Hassan R, Abdel-Samea AS, Farhan SM, Bräse S, Hashem H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery-An Updated Review on Their Multifaceted Therapeutic Applications (2020-2024). Molecules 2024; 29:4770. [PMID: 39407697 PMCID: PMC11477627 DOI: 10.3390/molecules29194770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Indole derivatives have become an important class of compounds in medicinal chemistry, recognized for their wide-ranging biological activities and therapeutic potential. This review provides a comprehensive overview of recent advances in the evaluation of indole-based compounds in the last five years, highlighting their roles in cancer treatment, infectious disease management, anti-inflammatory therapies, metabolic disorder interventions, and neurodegenerative disease management. Indole derivatives have shown significant efficacy in targeting diverse biological pathways, making them valuable scaffolds in designing new drugs. Notably, these compounds have demonstrated the ability to combat drug-resistant cancer cells and pathogens, a significant breakthrough in the field, and offer promising therapeutic options for chronic diseases such as diabetes and hypertension. By summarizing recent key findings and exploring the underlying biological mechanisms, this review underscores the potential of indole derivatives in addressing major healthcare challenges, thereby instilling hope and optimism in the field of modern medicine.
Collapse
Affiliation(s)
- Xingyou Mo
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur 208001, Uttar Pradesh, India
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Sara Mahmoud Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Barresi E, Baglini E, Poggetti V, Castagnoli J, Giorgini D, Salerno S, Taliani S, Da Settimo F. Indole-Based Compounds in the Development of Anti-Neurodegenerative Agents. Molecules 2024; 29:2127. [PMID: 38731618 PMCID: PMC11085553 DOI: 10.3390/molecules29092127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Emma Baglini
- Institute of Clinical Physiology, National Research Council of Italy, CNR Research Area, 56124 Pisa, Italy;
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| |
Collapse
|
6
|
Abidi SMS, Shukla AK, Randhawa S, Bathla M, Acharya A. Diosgenin loaded cellulose nanoonion impedes different stages of protein aggregation induced cell death via alleviating mitochondrial dysfunction and upregulation of autophagy. Int J Biol Macromol 2024; 266:131108. [PMID: 38531523 DOI: 10.1016/j.ijbiomac.2024.131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Dawood DH, Srour AM, Omar MA, Farghaly TA, El-Shiekh RA. Synthesis and molecular docking simulation of new benzimidazole-thiazole hybrids as cholinesterase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300201. [PMID: 37937360 DOI: 10.1002/ardp.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
Dementia is a cognitive disturbance that is generally correlated with central nervous system diseases, especially Alzheimer's disease. The limited number of medications available is insufficient to improve the lifestyle of the patients suffering from this disease. Thus, new benzimidazole-thiazole hybrids (3-10) were designed and synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory agents. The in vitro evaluation displayed that the derivatives 4b, 4d, 5b, 6a, 7a, and 8b demonstrated dual inhibitory efficiency against both AChE with IC50 ranging from 4.55 to 8.62 µM and BChE with IC50 ranging from 3.50 to 8.32 µM. By analyzing the Lineweaver-Burk plot, an uncompetitive form of inhibition was determined for the highly active compound 4d, revealing its inhibition type. The human telomerase reverse transcriptase-immortalized retinal pigment epithelial cell line was used to ensure the safety of the most potent cholinesterase inhibitors. Furthermore, compounds 4b, 4d, 5b, 6a, 7a, and 8b were evaluated for their neuroprotective and antioxidant properties, as well as their ability to suppress COX-2. The results demonstrated that compounds 4d, 5b, and 8b presented significant neuroprotection efficiency against H2 O2 -induced damage in SH-SY5Y cells with % cell viability of 67.42 ± 7.90%, 62.51 ± 6.71%, and 72.61 ± 8.10%, respectively, while the tested candidates did not reveal significant antioxidant activity. Otherwise, compounds 4b, 6a, 7a, and 8b displayed outstanding COX-2 inhibition effects with IC50 ranging from 0.050 to 0.080 μM relative to celecoxib (IC50 = 0.050 µM). In addition, molecular docking was carried out for the potent benzimidazole-thiazole hybrids with the active sites of both AChE (PDB ID: 4EY7) and BChE (PDB code: 1P0P). The tested candidates fit well in the active sites of both portions, with docking scores ranging from -8.65 to -6.64 kcal/mol (for AChE) and -8.71 to -7.73 kcal/mol (for BChE). In silico results show that the synthesized benzimidazole-thiazole hybrids have good physicochemical and pharmacokinetic properties with no Lipinski rule violations. The preceding results exhibited that compound 4d could be used as a new template for developing more significant cholinesterase inhibitors in the future.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
9
|
Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2171026. [PMID: 36803484 PMCID: PMC9946335 DOI: 10.1080/14756366.2023.2171026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease (AD), a persistent neurological dysfunction, has an increasing prevalence with the aging of the world and seriously threatens the health of the elderly. Although there is currently no effective treatment for AD, researchers have not given up, and are committed to exploring the pathogenesis of AD and possible therapeutic drugs. Natural products have attracted considerable attention owing to their unique advantages. One molecule can interact with multiple AD-related targets, thus having the potential to be developed in a multi-target drug. In addition, they are amenable to structural modifications to increase interaction and decrease toxicity. Therefore, natural products and their derivatives that ameliorate pathological changes in AD should be intensively and extensively studied. This review mainly presents research on natural products and their derivatives for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong Cui
- Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China,Hong Cui Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China,CONTACT Xiaoting Li Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
10
|
Singh YP, Kumar H. Tryptamine: A privileged scaffold for the management of Alzheimer's disease. Drug Dev Res 2023; 84:1578-1594. [PMID: 37675624 DOI: 10.1002/ddr.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease associated with aging. It is characterized by the progressive loss of memory and other cognitive functions. Although the exact etiology of AD is not well explored, several factors, such as the deposition of amyloid-β (Aβ) plaques, hyperphosphorylation of tau protein, presence of low levels of acetylcholine, and generation of oxidative stress, are key mediators in the progression of AD. Currently, the clinical treatment options for AD are limited and are based on cholinesterase (ChE) inhibitors (e.g., donepezil, rivastigmine, and galantamine), N-methyl- d-aspartic acid receptor antagonists (e.g., memantine), and the recently approved Aβ modulator (e.g., aducanumab). Tryptamine (2-(1H-indol-3-yl)ethan-1-amine) is a small molecule that contains an indole nucleus and an ethylamine side chain. It is also the active metabolite of tryptophan. It possesses a wide range of biological activities related to neurodegenerative disorders, such as ChE inhibition, Aβ aggregation inhibition, antioxidant effects, monoamine-oxidase inhibition, and neuroprotection. Several tryptamine-based hybrid analogs are currently being investigated as multifunctional agents for the development of novel hybrids for AD treatment. Thus, this review article aims to provide in-depth insights into the research progress and strategies for designing multifunctional agents used in Alzheimer's therapy.
Collapse
Affiliation(s)
- Yash P Singh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Harish Kumar
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
- Department of Technical Education Vocational and Industrial Training, Sunder Nagar, Himachal Pradesh, India
| |
Collapse
|
11
|
Wang G, Du J, Ma J, Liu P, Xing S, Xia J, Dong S, Li Z. Discovery of Novel Tryptanthrin Derivatives with Benzenesulfonamide Substituents as Multi-Target-Directed Ligands for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1468. [PMID: 37895939 PMCID: PMC10610214 DOI: 10.3390/ph16101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective properties. Among them, the target compound 4h was considered as a mixed reversible dual inhibitor of acetylcholinesterase (AChE, IC50 = 0.13 ± 0.04 μM) and butyrylcholinesterase (BuChE, IC50 = 6.11 ± 0.15 μM). And it could also potentially prevent the generation of amyloid plaques by inhibiting self-induced Aβ aggregation (63.16 ± 2.33%). Molecular docking studies were used to explore the interactions of AChE, BuChE, and Aβ. Furthermore, possessing significant anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50 = 0.62 ± 0.07 μM, 1.78 ± 0.21 μM, 1.31 ± 0.28 μM, respectively) reduced ROS production, and chelated biometals were also found in compound 4h. Further studies showed that 4h had proper blood-brain barrier (BBB) permeability and suitable in vitro metabolic stability. In in vivo study, 4h effectively ameliorated the learning and memory impairment of the scopolamine-induced AD mice model. These findings suggested that 4h may be a promising compound for further development as a multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jie Ma
- Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| |
Collapse
|
12
|
Ji S, Wu Y, Zhu R, Guo D, Jiang Y, Huang L, Ma X, Yu L. Novel Phenylethanoid Glycosides Improve Hippocampal Synaptic Plasticity via the Cyclic Adenosine Monophosphate-CREB-Brain-Derived Neurotrophic Growth Factor Pathway in APP/PS1 Transgenic Mice. Gerontology 2023; 69:1065-1075. [PMID: 37285833 PMCID: PMC10568609 DOI: 10.1159/000531194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a major public health concern worldwide, but there are still no drugs available that treat it effectively. Previous studies have shown that phenylethanoid glycosides have pharmacological effects, which include anti-AD properties, but the underlying mechanisms by which they ameliorate AD symptoms remain unknown. METHODS In this study, we used an APP/PS1 AD mouse model to explore the function and mechanisms underlying savatiside A (SA) and torenoside B (TB) in the treatment of AD. SA or TB (100 mg·kg-1·d-1) was orally administered to 7-month-old APP/PS1 mice for 4 weeks. Cognitive and memory functions were measured using behavioral experiments (including the Morris water maze test and the Y-maze spontaneous alternation test). Molecular biology experiments (including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays) were used to detect any corresponding changes in signaling pathways. RESULTS The results showed that SA or TB treatment could significantly reduce cognitive impairment in APP/PS1 mice. We also showed that chronic treatment with SA/TB could prevent spine loss, synaptophysin immunoreactivity, and neuronal loss in mice, thereby improving synaptic plasticity and moderating learning and memory deficits. SA/TB administration also promoted the expression of synaptic proteins in APP/PS1 mouse brains and upregulated phosphorylation of proteins in the cyclic adenosine monophosphate (cAMP)/CREB/brain-derived neurotrophic growth factor (BDNF) pathway that are responsible for synaptic plasticity. Additionally, chronic SA/TB treatment increased the levels of BDNF and nerve growth factor (NGF) in the brains of APP/PS1 mice. Both astrocyte and microglia volumes, as well as the generation of amyloid β, were also decreased in SA/TB-treated APP/PS1 mice compared to control APP/PS1 mice. CONCLUSION In summary, SA/TB treatment was associated with activation of the cAMP/CREB/BDNF pathway and increased BDNF and NGF expression, indicating that SA/TB improves cognitive functioning via nerve regeneration. SA/TB is a promising candidate drug for the treatment of AD.
Collapse
Affiliation(s)
- Shiliang Ji
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yijie Wu
- Department of Neurology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Ruifang Zhu
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Dongkai Guo
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yiguo Jiang
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lifeng Huang
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xinwei Ma
- Department of Medical Imaging, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Azmy EM, Nassar IF, Hagras M, Fawzy IM, Hegazy M, Mokhtar MM, Yehia AM, Ismail NS, Lashin WH. New indole derivatives as multitarget anti-Alzheimer's agents: synthesis, biological evaluation and molecular dynamics. Future Med Chem 2023; 15:473-495. [PMID: 37125532 DOI: 10.4155/fmc-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Background: Alzheimer's disease is a neurological disorder that causes brain cells to shrink and die. Aim: Thirteen novel 'oxathiolanyl', 'pyrazolyl' and 'pyrimidinyl' indole derivatives were designed and synthesized as anti-Alzheimer's disease treatment. Method: In vitro enzyme assay was performed against both AChE and BChE enzymes. In addition, antioxidant assay and cytotoxicity on a normal cell line were determined. Molecular docking and dynamic simulations were conducted to confirm the binding mode in both esterases' active sites. In silico absorption, distribution, metabolism, excretion and toxicity studies were also carried out. Results & conclusion: Compounds 5, 7 and 11 exhibited superior inhibitory activity against acetylcholinesterase and butyrylcholinesterase, with IC50 values of 0.042 and 3.003 μM, 2.54 and 0.207 μM and 0.052 and 2.529 μM, respectively, compared with donepezil.
Collapse
Affiliation(s)
- Eman M Azmy
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| | - Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, 365 Ramsis Street, Abassia, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nasser Sm Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Walaa H Lashin
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| |
Collapse
|
14
|
Li T, Lv M, Wen H, Du J, Wang Z, Zhang S, Xu H. Natural products in crop protection: thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles as antifungal agents and their mechanism of action. PEST MANAGEMENT SCIENCE 2023. [PMID: 36929618 DOI: 10.1002/ps.7457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phytopathogenic fungi can cause a direct loss in economic value of agriculture. Especially Valsa mali Miyabe et Yamada, a devastating phytopathogenic disease especially threatening global apple production, is very difficult to control and manage. To discover new potential antifungal agents, a series of thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles were prepared. Their antifungal activities were first tested against six typically phytopathogenic fungi including Curvularia lunata, Valsa mali, Alternaria alternate, Fusarium graminearum, Botrytis cinerea and Fusarium solani. Then their mechanism of action against V. mali was investigated. RESULTS Derivatives displayed potent antifungal activity against V. mali. Notably, 3-acetyl-N-benzylindole thiosemicarbazone (IV-1: EC50 : 0.59 μg mL-1 ), whose activity was comparable to that of a commercial fungicide carbendazim (EC50 : 0.33 μg mL-1 ), showed greater than 98-fold antifungal activity of the precursor indole. Moreover, compound IV-1 displayed good protective and therapeutic effects on apple Valsa canker disease. By scanning electron microscope (SEM) and RNA-Seq analysis, it was demonstrated that compound IV-1 can destroy the hyphal structure and regulate the homeostasis of metabolism of V. mali via the ergosterol biosynthesis and autophagy pathways. CONCLUSION 3-Acetyl-N-(un)substituted benzylindoles thiosemicarbazones (IV-1-IV-5) can be studied as leads for further structural modification as antifungal agents against V. mali. Particularly, these ergosterol biosynthesis and autophagy pathways can be used as target receptors for design of novel green pesticides for management of congeneric phytopathogenic fungi. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiawei Du
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Suliphuldevara Mathada B, Gunavanthrao Yernale N, Basha JN. The Multi‐Pharmacological Targeted Role of Indole and its Derivatives: A review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Jeelan N. Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru- 560043 Karnataka India
| |
Collapse
|
16
|
Kumari A, Singh RK. Synthesis, Drug-Likeness Evaluation of Some Heterocyclic Moieties Fused Indole Derivatives as Potential Antioxidants. Comb Chem High Throughput Screen 2023; 26:2077-2084. [PMID: 36593539 DOI: 10.2174/1386207326666230102111810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Indole and its derivatives have a wide range of pharmacological effects, including analgesic, antimicrobial, antidepressant, anti-diabetic, anti-convulsant, anti-helminthic, and anti-inflammatory properties. They are crucial structural components of many of today's powerful antioxidant medications. OBJECTIVE Using the Schotten-Baumann reaction, the indole ring was linked to other key heterocyclic moieties such as morpholine, imidazole, piperidine, and piperazine at the active 3rd position and then tested for antioxidant activity. METHODS Synthesis of derivatives was accomplished under appropriate conditions and characterized by IR, NMR (1H and 13C), and mass spectrum. Using the Swiss ADME online application, ADME properties were also determined. The in vitro antioxidant activity was measured using DPPH and Reducing power method. RESULTS In the DPPH assay, compounds 5a (IC50=1.01±0.22 μg/mL), 5k (IC50=1.21 ± 0.07 μg/mL), whereas compounds 5a (EC50=23 ± 1.00 μg/mL), 5h (EC50=26±2.42 μg/mL) in the reducing power assay were most potent as compared with standard Ascorbic acid. Compounds 5a, 5h, and 5k demonstrated maximal potency equivalent to standard. Lipinski's rule was followed in ADME outcomes. CONCLUSION The synthesis and evaluation of indole derivatives to investigate their antioxidant action has received a lot of attention. These discoveries could lead to more effective antioxidant candidates being designed and developed.
Collapse
Affiliation(s)
- Archana Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144402, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| |
Collapse
|
17
|
Hamdy R, Hamoda AM, Al-Khalifa M, Menon V, El-Awady R, Soliman SSM. Efficient selective targeting of Candida CYP51 by oxadiazole derivatives designed from plant cuminaldehyde. RSC Med Chem 2022; 13:1322-1340. [PMID: 36439981 PMCID: PMC9667785 DOI: 10.1039/d2md00196a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 07/24/2023] Open
Abstract
Candida infection represents a global threat with associated high resistance and mortality rate. Azoles such as the triazole drug fluconazole are the frontline therapy against invasive fungal infections; however, the emerging multidrug-resistant strains limit their use. Therefore, a series of novel azole UOSO1-15 derivatives were developed based on a modified natural scaffold to combat the evolved resistance mechanism and to provide improved safety and target selectivity. The antifungal screening against C. albicans and C. auris showed that UOSO10 and 12-14 compounds were the most potent derivatives. Among them, UOSO13 exhibited superior potent activity with MIC50 values of 0.5 and 0.8 μg mL-1 against C. albicans and C. auris compared to 25 and 600 μg mL-1 for fluconazole, respectively. UOSO13 displayed significant CaCYP51 enzyme inhibition activity in a concentration-dependent manner with an IC50 10-fold that of fluconazole, while exhibiting no activity against human CYP50 enzyme or toxicity to human cells. Furthermore, UOSO13 caused a significant reduction of Candida ergosterol content by 70.3% compared to a 35.6% reduction by fluconazole. Homology modeling, molecular docking, and molecular dynamics simulations of C. auris CYP51 enzyme indicated the stability and superiority of UOSO13. ADME prediction indicated that UOSO13 fulfils the drug-likeness criteria with good physicochemical properties.
Collapse
Affiliation(s)
- Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- Faculty of Pharmacy, Zagazig University Zagazig Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Medicine, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirate
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut-71526 Egypt
| | - Mariam Al-Khalifa
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Pharmacy, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates +97165057472
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Pharmacy, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates +97165057472
| |
Collapse
|
18
|
Erdagi SI, Yildiz U. Synthesis, Structural Analysis and Antiproliferative Activity of Nitrogen‐Containing Hetero Spirostan Derivatives: Oximes, Heterocyclic Ring‐Fused and Furostanes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sevinc Ilkar Erdagi
- Department of Chemistry Kocaeli University Umuttepe campus 41380 Kocaeli Turkey
| | - Ufuk Yildiz
- Department of Chemistry Kocaeli University Umuttepe campus 41380 Kocaeli Turkey
| |
Collapse
|
19
|
George N, Jawaid Akhtar M, Al Balushi KA, Alam Khan S. Rational drug design strategies for the development of promising multi-target directed indole hybrids as Anti-Alzheimer agents. Bioorg Chem 2022; 127:105941. [PMID: 35714473 DOI: 10.1016/j.bioorg.2022.105941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder that leads to dementia i.e., progressive memory loss accompanied with worsening of thinking ability of an individual. The cause of AD is not fully understood but it progresses with age where brain cells gradually die over time. According to the World Health Organization (WHO), currently 50 million people worldwide are affected by dementia and 60-70% of the cases belong to AD. Cumulative research over the past few decades have shown that molecules that act at a single target possess limited efficacy since these investigational drugs are not able to act against complex pathologies and thus do not provide permanent cure. Designing of multi-target directed ligands (MTDLs) appears to be more beneficial and a rational approach to treat chronic complex diseases including neurodegenerative diseases. Recently, MTDLs are being extensively researched by the medicinal chemists for the development of drugs for the treatment of various multifactorial diseases. Indole is one of the privileged scaffolds which is considered as an essential mediator between the gut-brain axis because of its neuroprotective, anti-inflammatory, β-amyloid anti-aggregation and antioxidant activities. Herein, we have reviewed the potential of some indole-hybrids acting at multiple targets in the pathogenesis of AD. We have reviewed research articles from the year 2014-2021 from various scientific databases and highlighted the synthetic strategies, mechanisms of neuroprotection, toxicity, structure activity relationships and molecular docking studies of various indole-hybrid derivatives. This literature review of published data on indole derivatives indicated that developing indole hybrids have improved the pharmacokinetic profile with lower toxicity, provided synergistic effect, helped to develop more potent compounds and prevented drug-drug interactions. It is evident that this class of compounds have potential to inhibit multiple enzymes targets involved in the pathogenesis of AD and therefore indole hybrids as MTDLs may play an important role in the development of anti-AD molecules.
Collapse
Affiliation(s)
- Namy George
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Md Jawaid Akhtar
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Khalid A Al Balushi
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman.
| |
Collapse
|
20
|
Dharani S, Kalaiarasi G, Ravi M, Sathan Raj N, Lynch VM, Prabhakaran R. Diosgenin derivatives developed from Pd(II) catalysed dehydrogenative coupling exert an effect on breast cancer cells by abrogating their growth and facilitating apoptosis via regulating the AKT1 pathway. Dalton Trans 2022; 51:6766-6777. [PMID: 35420095 DOI: 10.1039/d2dt00514j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Palladium metallates containing 4-oxo-4H-chromene-3-carbaldehyde derived ONS donor Schiff bases were synthesized and their efficacy was tested in the direct amination of diosgenin - a phyto steroid. Based on the pharmacological importance of diosgenin, the obtained derivatives were exposed to study their effect on breast cancer cells where they significantly reduced the growth of cancer cells and left non-malignant breast epithelial cells unaffected. Among the derivatives, D3, D4 and D6 showed a better anti-proliferative effect and further analysis revealed that the D3, D4 and D6 derivatives markedly promoted cell cycle arrest and apoptosis by attenuation of the AKT1 signalling pathway.
Collapse
Affiliation(s)
- S Dharani
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - G Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - M Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - N Sathan Raj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - Vincent M Lynch
- Department of Chemistry, University of Texas, Austin, TX 78712-1224, USA
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
21
|
Fan R, He W, Fan Y, Xu W, Xu W, Yan G, Xu S. Recent advances in chemical synthesis, biocatalysis, and biological evaluation of diosgenin derivatives - A review. Steroids 2022; 180:108991. [PMID: 35217033 DOI: 10.1016/j.steroids.2022.108991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Extracting organic compounds from plants and developing derivatives are essential methods for drug discovery. Diosgenin, extracted from Dioscoreaceae plants, is a type of spirostan steroid with various biological effects, including anti-inflammation, neuro-protection, and apoptosis-induction. Many researchers committed their work to the chemical semi-synthesis of diosgenin derivatives to improve diosgenin's therapeutic bioavailability and expand its range of applications in disease treatment and prevention. Biotransformation, a mild whole-cell biocatalysis method, also made crucial contributions to the structural diversity of diosgenin analogs in recent years. Although the structural modification of diosgenin has made significant progress, it lacks a comprehensive review. Here, we review the chemical modification and biotransformation of diosgenin along with the biological evaluation of diosgenin derivatives to provide a reference for the structural modification strategy and pharmaceutical application of diosgenin derivatives.
Collapse
Affiliation(s)
- Ruolan Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Weishen He
- Biology Department, Boston College, Brighton, MA 02135, USA
| | - Yong Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| | - Guohong Yan
- Pharmacy Department, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, PR China.
| | - Shaohua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| |
Collapse
|
22
|
Liu T, Chen S, Du J, Xing S, Li R, Li Z. Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 227:113973. [PMID: 34752955 DOI: 10.1016/j.ejmech.2021.113973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
On the basis of our previous work, a novel series of (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives were synthesized and evaluated as multifunctional ligands for the treatment of Alzheimer's disease (AD). Biological evaluations indicated that the derivatives can be used as anti-AD drugs that have multifunctional properties, inhibit the activity of butyrylcholinesterase (BuChE), inhibit neuroinflammation, have neuroprotective properties, and inhibit the self-aggregation of Aβ. Compound f9 showed good potency in BuChE inhibition (IC50: 1.28 ± 0.18 μM), anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50: 0.67 ± 0.14, 1.61 ± 0.21, 4.15 ± 0.44 μM, respectively), and inhibited of Aβ self-aggregation (51.91 ± 3.90%). Preliminary anti-inflammatory mechanism studies indicated that the representative compound f9 blocked the activation of the NF-κB signaling pathway. Moreover, f9 exhibited 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect, and an inhibitory effect on the production of intracellular reactive oxygen species (ROS). In the bi-directional transport assay, f9 displayed proper blood-brain barrier (BBB) permeability. In addition, the title compound improved memory and cognitive functions in a mouse model induced by scopolamine. Hence, the compound f9 can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jiyu Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Siqi Xing
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Rong Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|