1
|
Huang G, Cierpicki T, Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur J Med Chem 2024; 277:116732. [PMID: 39106658 DOI: 10.1016/j.ejmech.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Thioamides, which are fascinating isosteres of amides, have garnered significant attention in drug discovery and medicinal chemistry programs, spanning peptides and small molecule compounds. This review provides an overview of the various applications of thioamides in small molecule therapeutic agents targeting a range of human diseases, including cancer, microbial infections (e.g., tuberculosis, bacteria, and fungi), viral infections, neurodegenerative conditions, analgesia, and others. Particular focus is given to design strategies of biologically active thioamide-containing compounds and their biological targets, such as kinases and histone methyltransferase ASH1L. Additionally, the review discusses the impact of the thioamide moiety on key properties, including potency, target interactions, physicochemical characteristics, and pharmacokinetics profiles. We hope that this work will offer valuable insights to inspire the future development of novel bioactive thioamide-containing compounds, facilitating their effective use in combating a wide array of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Małecki PH, Fassauer GM, Rüger N, Schulig L, Link A, Krylova O, Heinemann U, Weiss MS. Structure-based mapping of the histone-binding pocket of KDM4D using functionalized tetrazole and pyridine core compounds. Eur J Med Chem 2024; 276:116642. [PMID: 38981336 DOI: 10.1016/j.ejmech.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
KDM4 histone demethylases became an exciting target for inhibitor development as the evidence linking them directly to tumorigenesis mounts. In this study, we set out to better understand the binding cavity using an X-ray crystallographic approach to provide a detailed landscape of possible interactions within the under-investigated region of KDM4. Our design strategy was based on utilizing known KDM binding motifs, such as nicotinic acid and tetrazolylhydrazides, as core motifs that we decided to enrich with flexible tails to map the distal histone binding site. The resulting X-ray structures of the novel compounds bound to KDM4D, a representative of the KDM4 family, revealed the interaction pattern with distal residues in the histone-binding site. The most prominent protein rearrangement detected upon ligand binding is the loop movement that blocks the accessibility to the histone binding site. Apart from providing new sites that potential inhibitors can target, the novel compounds may prove helpful in exploring the capacity of ligands to bind in sites distal to the cofactor-binding site of other KDMs or 2-oxoglutarate (2OG)-dependent oxygenases. The case study proves that combining a strong small binding motif with flexible tails to probe the binding pocket will facilitate lead discovery in classical drug-discovery campaigns, given the ease of accessing X-ray quality crystals.
Collapse
Affiliation(s)
- Piotr H Małecki
- Macromolecular Structure and Interaction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany; Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany; Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego-Str. 12/14, 61-704, Poznań, Poland.
| | - Georg M Fassauer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Nicole Rüger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Oxana Krylova
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
3
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Mihalovits LM, Kollár L, Bajusz D, Knez D, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Molecular Mechanism of Labelling Functional Cysteines by Heterocyclic Thiones. Chemphyschem 2024; 25:e202300596. [PMID: 37888491 DOI: 10.1002/cphc.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Heterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.
Collapse
Affiliation(s)
- Levente M Mihalovits
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Levente Kollár
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Damijan Knez
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Krištof Bozovičar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tímea Imre
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- MS Metabolomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Stanislav Gobec
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
5
|
Gobec M, Obreza A, Jukič M, Baumgartner A, Mihelčič N, Potočnik Š, Virant J, Mlinarič I, Stanislav R, Sosič GI. Design and synthesis of amino-substituted N-arylpiperidinyl-based inhibitors of the (immuno)proteasome. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:441-456. [PMID: 37708963 DOI: 10.2478/acph-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 09/16/2023]
Abstract
The constitutive proteasome and the immunoproteasome represent validated targets for pharmacological intervention in the context of various diseases, such as cancer, inflammation, and autoimmune diseases. The development of novel chemical scaffolds of non-peptidic nature, capable of inhibiting different catalytically active subunits of both isoforms, is a viable approach against these diseases. Such compounds are also useful as leads for the development of biochemical probes that enable the studies of the roles of both isoforms in various biological contexts. Here, we present a ligand-based computational design of (immuno)proteasome inhibitors, which resulted in the amino-substituted N-arylpiperidine-based compounds that can inhibit different subunits of the (immuno)proteasome in the low micromolar range. The compounds represent a useful starting point for further structure-activity relationship studies that will, hopefully, lead to non-peptidic compounds that could be used in pharmacological and biochemical studies of both proteasomes.
Collapse
Affiliation(s)
- Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Aleš Obreza
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Marko Jukič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
- Current address: University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, 2000 Maribor Slovenia
| | - Ana Baumgartner
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Nja Mihelčič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Špela Potočnik
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Julija Virant
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Raščan Stanislav
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
6
|
Ielo L, Patamia V, Citarella A, Schirmeister T, Stagno C, Rescifina A, Micale N, Pace V. Selective noncovalent proteasome inhibiting activity of trifluoromethyl-containing gem-quaternary aziridines. Arch Pharm (Weinheim) 2023:e2300174. [PMID: 37119396 DOI: 10.1002/ardp.202300174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.
Collapse
Affiliation(s)
- Laura Ielo
- Department of Chemistry, University of Turin, Torino, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Torino, Italy
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
8
|
Proj M, Knez D, Sosič I, Gobec S. Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds. Drug Discov Today 2022; 27:1733-1742. [PMID: 35301150 DOI: 10.1016/j.drudis.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity are routinely encountered in assays at various stages of drug discovery. We observed that assays for the investigation of thiol-reactive and redox-active compounds have not been collected in a comprehensive review. Here, we review these assays and subject them to experimental optimization to improve their reliability. We demonstrate the usefulness of our assay cascade by assaying a library of bioactive compounds, chemical probes, and a set of approved drugs. These high-throughput assays should complement the array of wet-lab and in silico assays during the initial stages of hit discovery campaigns to pursue only hit compounds with tractable mechanisms of action. Teaser: We provide an overview of assays to detect redox active and thiol reactive compounds and the robust protocols for identification of nuisance compounds during early stages of drug discovery programs.
Collapse
Affiliation(s)
- Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Cao Y, Tu Y, Fu L, Yu Q, Gao L, Zhang M, Zeng L, Zhang C, Shao J, Zhu H, Zhou Y, Li J, Zhang J. Metabolism guided optimization of peptidomimetics as non-covalent proteasome inhibitors for cancer treatment. Eur J Med Chem 2022; 233:114211. [PMID: 35218994 DOI: 10.1016/j.ejmech.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
A series of novel non-covalent peptidomimetic proteasome inhibitors possessing bulky group at the C-terminus and N-alkylation at the N-terminus were designed with the aim to increase metabolic stabilities in vivo. All the target compounds were screened for their inhibitory activities against human 20S proteasome, and most analogs exhibited notable potency compared with the positive control bortezomib with IC50 values lower than 10 nM, which also displayed potent cytotoxic activities against multiple myeloma (MM) cell lines and human acute myeloid leukemia (AML) cells. Furthermore, whole blood stability and in vivo proteasome inhibitory activity experiments of selected compounds were conducted for further evaluation, and the representative compound 43 (IC50 = 8.39 ± 2.32 nM, RPMI-8226: IC50 = 15.290 ± 2.281 nM, MM-1S: IC50 = 9.067 ± 3.103 nM, MV-4-11: IC50 = 2.464 ± 0.713 nM) revealed a half-life extension of greater than 9-fold (329.21 min VS 36.79 min) and potent proteasome inhibitory activity in vivo. The positive results confirmed the reliability of the metabolism guided optimization strategy, and the analogs discovered are potential leads for exploring new anti-MM drugs.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, 312000, China
| | - Qian Yu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|
10
|
Schulte B, König M, Escher BI, Wittenburg S, Proj M, Wolf V, Lemke C, Schnakenburg G, Sosič I, Streeck H, Müller CE, Gütschow M, Steinebach C. Andrographolide Derivatives Target the KEAP1/NRF2 Axis and Possess Potent Anti-SARS-CoV-2 Activity. ChemMedChem 2022; 17:e202100732. [PMID: 35099120 PMCID: PMC9015489 DOI: 10.1002/cmdc.202100732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Indexed: 01/08/2023]
Abstract
Naturally occurring compounds represent a vast pool of pharmacologically active entities. One of such compounds is andrographolide, which is endowed with many beneficial properties, including the activity against severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2). To initiate a drug repurposing or hit optimization campaign, it is imperative to unravel the primary mechanism(s) of the antiviral action of andrographolide. Here, we showed by means of a reporter gene assay that andrographolide exerts its anti‐SARS‐CoV‐2 effects by inhibiting the interaction between Kelch‐like ECH‐associated protein 1 (KEAP1) and nuclear factor erythroid 2‐related factor 2 (NRF2) causing NRF2 upregulation. Moreover, we demonstrated that subtle structural modifications of andrographolide could lead to derivatives with stronger on‐target activities and improved physicochemical properties. Our results indicate that further optimization of this structural class is warranted to develop novel COVID‐19 therapies.
Collapse
Affiliation(s)
- Bianca Schulte
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Maria König
- Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.,Center for Applied Geoscience, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sophie Wittenburg
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Valentina Wolf
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Carina Lemke
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Christa E Müller
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
11
|
Kollár L, Gobec M, Proj M, Smrdel L, Knez D, Imre T, Gömöry Á, Petri L, Ábrányi-Balogh P, Csányi D, Ferenczy GG, Gobec S, Sosič I, Keserű GM. Fragment-Sized and Bidentate (Immuno)Proteasome Inhibitors Derived from Cysteine and Threonine Targeting Warheads. Cells 2021; 10:3431. [PMID: 34943940 PMCID: PMC8700061 DOI: 10.3390/cells10123431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the β5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and β5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the β5, β5i, β1, and β1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either β5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Lara Smrdel
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - Ágnes Gömöry
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Dorottya Csányi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| |
Collapse
|