1
|
Bhatnagar A, Pemawat G. Anticancer and Antibacterial Activeness of Fused Pyrimidines: Newfangled Updates. Bioorg Chem 2024; 153:107780. [PMID: 39260159 DOI: 10.1016/j.bioorg.2024.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Pyrimidine-based heterocyclic compounds are garnering substantial interest due to their essential role as a class of natural and synthetic molecules. These compounds show a diverse array of biologically relevant activities, making them highly prospective candidates for clinical translation as therapeutic agents in combating various diseases. Pyrimidine derivatives and their fused analogues, such as thienopyrimidines, pyrazolopyrimidines, pyridopyrimidines, and pyrimidopyrimidines, hold immense possibility in both anticancer and antibacterial research. These compounds exhibit notable efficacy by targeting protein kinases, which are crucial enzymes regulating fundamental cellular processes like metabolism, migration, division, and growth. Through enzyme inhibition, these derivatives disrupt key cellular signaling pathways, thereby affecting critical cellular functions and viability. The advantage lies in the ubiquity of the pyrimidine structure across various natural compounds, enabling interactions with enzymes, genetic material, and cellular components pivotal for chemical and biological processes. This interaction plays a central role in modulating vital biological activities, making pyrimidine-containing compounds indispensable in drug discovery. In the realm of anticancer therapy, these compounds strategically target key proteins like EGFR, important for aberrant cell growth. Fused pyrimidine motifs, exemplified by various drugs, are designed to inhibit EGFR, thereby impeding tumor progression. Moreover, these compounds influence potent antibacterial activity, interfering with microbial growth through mechanisms ranging from DNA replication inhibition to other vital cellular functions. This dual activity, targeting both cancer cells and microbial pathogens, underscores the versatility and potential of pyrimidine derivatives in medical applications. This review provides insights into the structural characteristics, synthesis methods, and significant medicinal applications of fused pyrimidine derivatives, highlighting their double role in combating cancer and bacterial infections.
Collapse
Affiliation(s)
- Ayushi Bhatnagar
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India 313001
| | - Gangotri Pemawat
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India 313001.
| |
Collapse
|
2
|
Hunt HL, Goncalves BG, Biggs MA, Rico MI, Murray ME, Lebedenko CG, Banerjee IA. Design and investigation of interactions of novel peptide conjugates of purine and pyrimidine derivatives with EGFR and its mutant T790M/L858R: an in silico and laboratory study. Mol Divers 2024; 28:3683-3711. [PMID: 38240950 DOI: 10.1007/s11030-023-10772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
Peptide-based therapeutics have been gaining attention due to their ability to actively target tumor cells. Additionally, several varieties of nucleotide derivatives have been developed to reduce cell proliferation and induce apoptosis of tumor cells. In this work, we have developed novel peptide conjugates with newly designed purine analogs and pyrimidine derivatives and explored the binding interactions with the kinase domain of wild-type EGFR and its mutant EGFR [L858R/ T790M] which are known to be over-expressed in tumor cells. The peptides explored included WNWKV (derived from sea cucumber) and LARFFS, which in previous work was predicted to bind to Domain I of EGFR. Computational studies conducted to explore binding interactions include molecular docking studies, molecular dynamics simulations and MMGBSA to investigate the binding abilities and stability of the complexes. The results indicate that conjugation enhanced binding capabilities, particularly for the WNWKV conjugates. MMGBSA analysis revealed nearly twofold higher binding toward the T790M/L858R double mutant receptor. Several conjugates were shown to have strong and stable binding with both wild-type and mutant EGFR. As a proof of concept, we synthesized pyrimidine conjugates with both peptides and determined the KD values using SPR analysis. The results corroborated with the computational analyses. Additionally, cell viability and apoptosis studies with lung cancer cells expressing the wild-type and double mutant proteins revealed that the WNWKV conjugate showed greater potency than the LARFFS conjugate, while LARFFS peptide alone showed poor binding to the kinase domain. Thus, we have designed peptide conjugates that show potential for further laboratory studies for developing therapeutics for targeting the EGFR receptor and its mutant T790M/L858R.
Collapse
Affiliation(s)
- Hannah L Hunt
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mia I Rico
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Molly E Murray
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Charlotta G Lebedenko
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
3
|
Pal R, Teli G, Sengupta S, Maji L, Purawarga Matada GS. An outlook of docking analysis and structure-activity relationship of pyrimidine-based analogues as EGFR inhibitors against non-small cell lung cancer (NSCLC). J Biomol Struct Dyn 2024; 42:9795-9811. [PMID: 37642992 DOI: 10.1080/07391102.2023.2252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Almost 80% of lung cancer diagnoses each year correspond to non-small cell lung cancer (NSCLC). The percentage of NSCLC with EGFR overexpression ranges from 40% to 89%, with squamous tumors showing the greatest rates (89%) and adenocarcinomas showing the lowest rates (41%). Therefore, in NSCLC therapy, blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR has exhibited significant improvement. In this view, several small molecules particularly pyrimidine/fused pyrimidine scaffolds were intended for molecular hybridization to develop EGFR-TK inhibitors. However, the associated limitation such as resistance and genetic mutation along with adverse effects, constrained the long-term treatment and effectiveness of such medication. Therefore, in recent years, pyrimidine derivatives were uncovered as potential EGFR TKIs. The present review summarised the research progress of EGFR TKIs to dazed structure-activity relationship, biological evaluation, and comparative docking studies of pyrimidine compounds. We have added the comparative docking analysis followed by the molecular simulation study against the four different PDBs of EGFR to strengthen the already existing research. Docking analysis unfolded that compound 14 resulted as noticeable with all different PDB and managed to interact with some of the crucial amino acid residues. From a future perspective, researchers must develop a more selective inhibitor, that can selectively target the mutation. Our review will support medicinal chemists in the direction of the development of novel pyrimidine-based EGFR TKIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
4
|
Ryad N, Elmaaty AA, Selim S, Almuhayawi MS, Al Jaouni SK, Abdel-Aziz MS, Alqahtani AS, Zaki I, Abdel Ghany LMA. Design and synthesis of novel 2-(2-(4-bromophenyl)quinolin-4-yl)-1,3,4-oxadiazole derivatives as anticancer and antimicrobial candidates: in vitro and in silico studies. RSC Adv 2024; 14:34005-34026. [PMID: 39463483 PMCID: PMC11505673 DOI: 10.1039/d4ra06712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is the second leading cause of death globally, surpassed only by heart disease. Moreover, bacterial infections remain a significant global health burden, contributing substantially to morbidity and mortality, especially among hospitalized patients. EGFR has emerged as a prime therapeutic target due to its pivotal role in driving uncontrolled cell growth and survival across numerous cancer types. In addition, DNA gyrase represents a promising target for the development of novel antimicrobial agents. Therefore, we aimed to design and synthesize new multi-target quinoline hybrids (7-17e) capable of acting as anti-proliferative and antimicrobial agents by inhibiting EGFR and microbial DNA gyrase, respectively. The inhibitory potential of the synthesized compounds was determined using in vitro and in silico approaches. The antiproliferative activity of the synthesized quinoline-oxadiazole derivatives 7-17e was assessed against two cancer cell lines, namely, hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7). The assessed compounds 7-17e showed considerable cytotoxic activity activities against HepG2 and MCF-7 with IC50 values of 0.137-0.332 and 0.164-0.583 μg mL-1, respectively, in comparison to erlotinib as the positive control, which showed an IC50 value of 0.308 and 0.512 μg mL-1, respectively. Moreover, an EGFR tyrosine kinase inhibition assay was conducted on the most prominent candidates. The results showed good IC50 values of 0.14 and 0.18 μM for compounds 8c and 12d, respectively, compared to lapatinib (IC50 value of 0.12 μM). Furthermore, the minimum antimicrobial inhibitory concentration was evaluated for the most prominent candidates with S. aureus, E. coli, and C. albicans. Compounds 17b, 17d and 17e displayed the most potent inhibitory activity, exhibiting 4-, 16- and 8-fold more activity, respectively, than the reference neomycin. Hence, we can conclude that the afforded compounds can be used as lead dual anticancer and antimicrobial candidates for future optimization.
Collapse
Affiliation(s)
- Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology 6th of October City, P.O. Box 77 Giza Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre Cairo Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box, 90950 Riyadh 11623 Saudi Arabia
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Pharmaceutical Organic Chemistry Department, Clinical Pharmacy Program, East Port Said National University Port Said 42526 Egypt
| | - Lina M A Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology 6th of October City, P.O. Box 77 Giza Egypt
| |
Collapse
|
5
|
Díaz I, Salido S, Nogueras M, Cobo J. Synthesis of Ethyl Pyrimidine-Quinolincarboxylates Selected from Virtual Screening as Enhanced Lactate Dehydrogenase (LDH) Inhibitors. Int J Mol Sci 2024; 25:9744. [PMID: 39273691 PMCID: PMC11396203 DOI: 10.3390/ijms25179744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The inhibition of the hLDHA (human lactate dehydrogenase A) enzyme has been demonstrated to be of great importance in the treatment of cancer and other diseases, such as primary hyperoxalurias. In that regard, we have designed, using virtual docking screening, a novel family of ethyl pyrimidine-quinolinecarboxylate derivatives (13-18)(a-d) as enhanced hLDHA inhibitors. These inhibitors were synthesised through a convergent pathway by coupling the key ethyl 2-aminophenylquinoline-4-carboxylate scaffolds (7-12), which were prepared by Pfitzinger synthesis followed by a further esterification, to the different 4-aryl-2-chloropyrimidines (VIII(a-d)) under microwave irradiation at 150-170 °C in a green solvent. The values obtained from the hLDHA inhibition were in line with the preliminary of the preliminary docking results, the most potent ones being those with U-shaped disposition. Thirteen of them showed IC50 values lower than 5 μM, and for four of them (16a, 18b, 18c and 18d), IC50 ≈ 1 μM. Additionally, all compounds with IC50 < 10 μM were also tested against the hLDHB isoenzyme, resulting in three of them (15c, 15d and 16d) being selective to the A isoform, with their hLDHB IC50 > 100 μM, and the other thirteen behaving as double inhibitors.
Collapse
Affiliation(s)
| | | | | | - Justo Cobo
- Facultad de Ciencias Experimentales, Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, E-23071 Jaén, Spain; (I.D.); (S.S.); (M.N.)
| |
Collapse
|
6
|
Kang X, Li R, Li X, Xu X. EGFR mutations and abnormal trafficking in cancers. Mol Biol Rep 2024; 51:924. [PMID: 39167290 DOI: 10.1007/s11033-024-09865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor and a member of the ErbB receptor family. As a significant cancer driver, EGFR undergoes mutations such as gene amplification or overexpression in a wide range of malignant tumors and is closely associated with tumorigenesis. This review examines the aberrant expression of EGFR in several common cancers and summarizes the current therapeutic strategies developed for this receptor. Additionally, this review compares the differences in EGFR activation, internalization, endocytosis, and sorting in normal and cancer cells, and highlights some regulatory factors that influence its trafficking process.Kindly check and confirm the edit made in the title.Yes, correctAs per journal instructions structured abstract is mandatory kindly provideThe abstract format does not apply to Review articles.
Collapse
Affiliation(s)
- Xiang Kang
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rendong Li
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaolei Li
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China
| | - Xinping Xu
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China.
| |
Collapse
|
7
|
Farag MA, Kandeel MM, Kassab AE, Faggal SI. Medicinal attributes of thienopyrimidine scaffolds incorporating the aryl urea motif as potential anticancer candidates via VEGFR inhibition. Arch Pharm (Weinheim) 2024; 357:e2400125. [PMID: 38738795 DOI: 10.1002/ardp.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Worldwide, cancer is a major public health concern. It is a well-acknowledged life-threatening disease. Despite numerous advances in the understanding of the genetic basis of cancer growth and progression, therapeutic challenges remain high. Human tumors exhibited mutation or overexpression of several tyrosine kinases (TK). The vascular endothelial growth factor receptor (VEGFR) is a TK family member and is well known for tumor growth and progression. Therefore, VEGF/VEGFR pathway inhibition is an appealing approach for cancer drug discovery. This review will discuss the structure-based optimization of thienopyrimidines incorporating the aryl urea moiety to develop scaffolds of potent anticancer activity via VEGFR inhibition published between 2013 and 2023. Increasing knowledge of probable scaffolds that can act as VEGFR inhibitors might spur the hunt for novel anticancer medications that are safer, more effective, or both.
Collapse
Affiliation(s)
- Myrna A Farag
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manal M Kandeel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar I Faggal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Luís JM, Files R, Cardoso C, Pimenta J, Maia G, Silva F, Queiroga FL, Prada J, Pires I. Immunohistochemical Expression Levels of Epidermal Growth Factor Receptor, Cyclooxygenase-2, and Ki-67 in Canine Cutaneous Squamous Cell Carcinomas. Curr Issues Mol Biol 2024; 46:4951-4967. [PMID: 38785565 PMCID: PMC11119584 DOI: 10.3390/cimb46050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Squamous cell carcinoma (SCC) stands as the second most prevalent skin cancer in dogs, primarily attributed to UV radiation exposure. Affected areas typically include regions with sparse hair and pale or depigmented skin. The significance of spontaneous canine cutaneous SCC as a model for its human counterpart is underscored by its resemblance. This study assesses the expression of key markers-Epidermal Growth Factor Receptor (EGFR), Cyclooxygenase-2 (Cox-2), and Ki-67-in canine cutaneous SCC. Our objective is to investigate the association between their expression levels and classical clinicopathological parameters, unraveling the intricate relationships among these molecular markers. In our retrospective analysis of 37 cases, EGFR overexpression manifested in 43.2% of cases, while Cox-2 exhibited overexpression in 97.3%. The EGFR, Cox-2 overexpression, and Ki-67 proliferation indices, estimated through immunohistochemistry, displayed a significant association with the histological grade, but only EGFR labeling is associated with the presence of lymphovascular emboli. The Ki-67 labeling index expression exhibited an association with EGFR and Cox-2. These findings propose that EGFR, Cox-2, and Ki-67 hold promise as valuable markers in canine SCC. EGFR, Cox-2, and Ki-67 may serve as indicators of disease progression, offering insights into the malignancy of a lesion. The implications extend to the potential therapeutic targeting of EGFR and Cox-2 in managing canine SCC. Further exploration of these insights is warranted due to their translational relevance and the development of targeted interventions in the context of canine SCC.
Collapse
Affiliation(s)
- João Miguel Luís
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Cláudia Cardoso
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - José Pimenta
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- CIVG—Vasco da Gama Research Center/EUVG, Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Gabriela Maia
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Felisbina L. Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, 4099-002 Porto, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
9
|
Ryad N, Elmaaty AA, M Ibrahim I, Ahmed Maghrabi AH, Yahya Alahdal MA, Saleem RM, Zaki I, Ghany LM. Harnessing molecular hybridization approach to discover novel quinoline EGFR-TK inhibitors for cancer treatment. Future Med Chem 2024; 16:1087-1107. [PMID: 38722235 PMCID: PMC11216632 DOI: 10.1080/17568919.2024.2342201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: Using molecular hybridization approach, novel 18 quinoline derivatives (6a-11) were designed and synthesized as EGFR-TK inhibitors. Materials & methods: The antiproliferative activity was assessed against breast (MCF-7), leukemia (HL-60) and lung (A549) cancer cell lines. Moreover, the most active quinoline derivatives (6d and 8b) were further investigated for their potential as EGFR-TK inhibitors. In addition, cell cycle analysis and apoptosis induction activity were conducted. Results: A considerable cytotoxic activity was attained with IC50 values spanning from 0.06 to 1.12 μM. Besides, the quinoline derivatives 6d and 8b displayed potent inhibitory activity against EFGR with IC50 values of 0.18 and 0.08 μM, respectively. Conclusion: Accordingly, the afforded quinoline derivatives can be used as promising lead anticancer candidates for future optimization.
Collapse
Affiliation(s)
- Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| | - Ibrahim M Ibrahim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Hassan Ahmed Maghrabi
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | | | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 65431, Saudi Arabia
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| | - Lina M A Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Egypt
| |
Collapse
|
10
|
Chung CY, Li SM, Zeng WZ, Uramaru N, Huang GJ, Juang SH, Wong FF. Synthesis, design, and antiproliferative evaluation of 6-(N-Substituted-methyl)pyrazolo[3,4-d]pyrimidines as the potent anti-leukemia agents. Bioorg Chem 2024; 148:107424. [PMID: 38728908 DOI: 10.1016/j.bioorg.2024.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Pyrazolopyrimidine derivatives, including pyrazolopyrimidines, 6-aminopyrazolopyrimidines, 6-[(formyloxy)methyl]pyrazolopyrimidines, 6-(hydroxymethyl)pyrazolopyrimidine, and 6-(aminomethyl)pyrazolopyrimidines have been successfully prepared and tested against NCI-H226, NPC-TW01, and Jurkat cancer cell lines. Among the tested pyrazolopyrimidine compounds, we found 6-aminopyrazolopyrimidines and 6-(aminomethyl)pyrazolopyrimidines with essential o-ClPh or p-ClPh substituted moieties on N-1 pyrazole ring exhibited the best IC50 inhibition activity for Jurkat cells. Furthermore, optimization of the SAR study on the C-6 position of pyrazolopyrimidine ring demonstrated that 6-(N-substituted-methyl)pyrazolopyrimidines 17b, 17d, and 19d possessed the significant IC50 inhibitory activity for the different leukemia cell lines, especially for Jurkat, K-562, and HL-60. On the other hand, further SAR inhibition and docking model studies revealed that compound 19d, which has a 3-(1H-imidazol-1-yl)propan-1-amino side-chain on the C-6 position, was able to form four hydrogen bonds with residues Ala226, Leu152, and Glu194 and specifically extended into the P1 pocket subsite with Aurora A, resulting in improved inhibitory activity almost similar to SNS-314. To explore the anti-cancer mechanism, compound 19d was measured by Western blot analysis in Jurkat T-cells, however, it showed non-responsibility to Aurora B. For the further structural modifications on the lateral chain of compound 19d, compounds 24 with longer lateral chain were designed and synthesized for testing leukemia cell lines. However, compounds 24 was significantly decrease inhibition potency against leukemia cell lines. Based on the in-vitro results, compounds 17b and 19d could be considered to be the best potential lead drug in our study for the development of new and effective therapies for leukemia treatment. On the other hand, the DHFR inhibition results indicated compound 19d possessed good inhibitory activity and better than the reported naphthalene derivative. Through further comparisons of the model superposition of three-dimensional (3D) conformations in DHFR, compound 19d presented a similar structural alignment to Methotrexate and the reported naphthalene derivative and led to similar drug-like functional relationships. As a results, compound 19d would be a potential DHFR inhibitor for anti-leukemia drug candidate.
Collapse
Affiliation(s)
- Cheng-Yen Chung
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Sin-Min Li
- Institute of Translation Medicine and New Drug Development, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Wei-Zheng Zeng
- Institute of Nutrition, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Naoto Uramaru
- Department of Environmental Science, Nihon Pharmaceutical University, Komuro Inamachi Kita-adachi-gun, Saitama-ken 10281, Japan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan; Department of Food Nutrition and Healthy Biotechnology, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung 406040, Taiwan.
| |
Collapse
|
11
|
Duan L, Chu C, Huang X, Yao H, Wen J, Chen R, Wang C, Tu Y, Lv Q, Pan Q, Xu S. Rational design and synthesis of 2,4-dichloro-6-methyl pyrimidine derivatives as potential selective EGFR T790M/L858R inhibitors for the treatment of non-small cell lung cancer. Arch Pharm (Weinheim) 2024; 357:e2300736. [PMID: 38381049 DOI: 10.1002/ardp.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Many patients with non-small cell lung cancer (NSCLC) initially benefit from epidermal growth factor receptor (EGFR) targeted therapy. Unfortunately, varying degrees of resistance or side effects eventually develop. Overcoming and preventing the resistance and side effects of EGFR inhibitors has become a hot topic of research today. Based on the previous studies on AZD-9291, we designed and synthesized two series of 2,4-dichloro-6-methylpyrimidine derivatives, 19 compounds in total, as potential inhibitors of the EGFR kinase. The most promising compound, L-18, showed better inhibitory activity (81.9%) and selectivity against EGFRT790M/L858R kinase. In addition, L-18 showed strong antiproliferative activity against H1975 cells with an IC50 value of 0.65 ± 0.06 μM and no toxicity to normal cells (LO-2). L-18 was able to dose-dependently induce the apoptosis of H1975 cells and produced a cell-cycle-blocking effect, and it can also dose-dependently inhibit the migration and invasion of H1975 cells. L-18 also showed in vivo anticancer efficacy in H1975 cells xenograft mice. We also performed a series of in vivo and in vitro toxicological evaluations of compound L-18, which did not cause obvious injury in mice during administration. These results suggest that L-18 may be a promising drug candidate that warrants further investigation.
Collapse
Affiliation(s)
- Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Cilong Chu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Xiaoling Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Huizhi Yao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Jie Wen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Rui Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Caolin Wang
- School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Yuanbiao Tu
- Cancer Research Center, Jangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Zhang P, Shi C, Dong T, Song J, Du G. The anticancer therapeutic potential of pyrimidine-sulfonamide hybrids. Future Med Chem 2024; 16:905-924. [PMID: 38624011 PMCID: PMC11249161 DOI: 10.4155/fmc-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Peng Zhang
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Congcong Shi
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Tongbao Dong
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Juntao Song
- Hematology & Oncology Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Gang Du
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| |
Collapse
|
13
|
Masoudinia S, Samadizadeh M, Safavi M, Bijanzadeh HR, Foroumadi A. Novel quinazolines bearing 1,3,4-thiadiazole-aryl urea derivative as anticancer agents: design, synthesis, molecular docking, DFT and bioactivity evaluations. BMC Chem 2024; 18:30. [PMID: 38347613 PMCID: PMC10863284 DOI: 10.1186/s13065-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
A novel series of 1-(5-((6-nitroquinazoline-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-phenylurea derivatives 8 were designed and synthesized to evaluate their cytotoxic potencies. The structures of these obtained compounds were thoroughly characterized by IR, 1H, and 13C NMR, MASS spectroscopy and elemental analysis methods. Additionally, their in vitro anticancer activities were investigated using the MTT assay against A549 (human lung cancer), MDA-MB231 (human triple-negative breast cancer), and MCF7 (human hormone-dependent breast cancer). Etoposide was used as a reference marketed drug for comparison. Among the compounds tested, compounds 8b and 8c demonstrated acceptable antiproliferative activity, particularly against MCF7 cells. Considering the potential VEGFR-2 inhibitor potency of these compounds, a molecular docking study was performed for the most potent compound, 8c, to determine its probable interactions. Furthermore, computational investigations, including molecular dynamics, frontier molecular orbital analysis, Fukui reactivity descriptor, electrostatic potential surface, and in silico ADME evaluation for all compounds were performed to illustrate the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Sara Masoudinia
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Marjaneh Samadizadeh
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hamid Reza Bijanzadeh
- Department of Environment, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zuo Y, Long Z, Li R, Le Y, Zhang S, He H, Yan L. Design, synthesis and antitumor activity of 4-arylamine substituted pyrimidine derivatives as noncovalent EGFR inhibitors overcoming C797S mutation. Eur J Med Chem 2024; 265:116106. [PMID: 38169271 DOI: 10.1016/j.ejmech.2023.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Clinical researches have shown that epidermal growth factor receptor (EGFR) is a key target for treatment of non-small cell lung cancer (NSCLC). Many EGFR inhibitors were successfully developed as ani-tumor drugs to treat NSCLC patients. Unfortunately, drug resistances were found in clinic. To overcome C797S mutation in EGFR, a novel series of 4-arylamine substituted pyrimidine derivatives were designed and synthesized under the principle of structure-based drug design. Interestingly, compounds 6e and 9i demonstrated the best anti-proliferative activity against A549, NCI-H1975, and HCC827 cells. In particular, the IC50 values against HCC827 cells reached to 24.6 nM and 31.6 nM, which were much lower than human normal cells 2BS and LO2. Furthermore, compounds 6e and 9i showed extraordinary activity against EGFR19del/T790M/C797S (IC50 = 16.06 nM and 37.95 nM) and EGFRL858R/T790M/C797S (IC50 = 11.81 nM and 26.68 nM), which were potent than Osimertinib (IC50 = 52.28 nM and 157.60 nM). Further studies have shown that compounds 6e and 9i could pertain inhibition of HCC827 colony formation, and arrest HCC827 cells at G2/M phase. Moreover, the most promising compound 6e could inhibit the migration of HCC827 cells, induce HCC827 cells apoptosis, and significantly inhibit the phosphorylation of EGFR, AKT and Erk1/2. In vivo xenograft mouse model with HCC827 cells, compound 6e resulted in remarkable tumor regression without obvious toxicity. In addition, molecular docking studies suggested that compound 6e could firmly combine with T790M-mutant, T790 M/C797S-mutant, and L858R/T790 M/C797S-mutant EGFR kinases as ATP-competitive inhibitor.
Collapse
Affiliation(s)
- Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhiwu Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Rongrong Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Silong Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Huan He
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
15
|
Mathada BS, Basha NJ, Javeed M, Karunakar P, Venkatesulu A, Erappa K, Varsha A. Novel pyrimidines as COX-2 selective inhibitors: synthesis, DFT analysis, molecular docking and dynamic simulation studies. J Biomol Struct Dyn 2024; 42:1751-1764. [PMID: 37102863 DOI: 10.1080/07391102.2023.2202248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Pyrimidine and its derivatives are associated with varieties of biological properties. Therefore, we herein reported the synthesis of four novel pyrimidines (2, 3, and 4a, b) derivatives. The structure of these molecules is confirmed by spectroscopic methods such as IR, NMR, and Mass analysis. The electronic behavior of synthesized compounds 4a, b and in silico drug design 4 c, d was explained by Density Functional Theory estimations at the DFT/B3LYP level via 6-31 G++ (d, p) replicates the structure and geometry. All the synthesized compounds were screened for their in vitro COX-1 and COX-2 inhibitory activity compared to standards Celecoxib and Ibuprofen. Compounds 3 and 4a afforded excellent COX-1 and COX-2 inhibitory activities at IC50 = 5.50 and 5.05 μM against COX-1, 0.85 and 0.65 μM against COX-2, respectively. The standard drugs Celecoxib and Ibuprofen showed inhibitory activity at IC50 = 6.34 and 3.1 μM against COX-1, 0.56 and 1.2 μM against COX-2, respectively. Further, these compounds showed high potential docking with SARS-CoV-2 Omicron protease & COX-2 and predicted drug-likeness for the pyrimidine analogs by using Molinspiration. The protein stability, fluctuations of APO-protein, protein-ligand complexes were investigated through Molecular Dynamics simulations studies using Desmond Maestro 11.3 and potential lead molecules were identified.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - Mohammad Javeed
- P. G. Department and Research Studies in Chemistry, Nrupatunga University, Bengaluru, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Adavala Venkatesulu
- Department of Post Graduate Studies & Research Centre in Physics, Govt. First Grade College, Hoskote, Karnataka, India
| | - Krishnakanth Erappa
- Department of Post Graduate Studies & Research Centre in Physics, Govt. First Grade College, Hoskote, Karnataka, India
| | - A Varsha
- Department of Biotechnology, PES University, Bengaluru, Karnataka, India
| |
Collapse
|
16
|
Torabi M, Yasami-Khiabani S, Sardari S, Golkar M, Pérez-Sánchez H, Ghasemi F. Identification of new potential candidates to inhibit EGF via machine learning algorithm. Eur J Pharmacol 2024; 963:176176. [PMID: 38000720 DOI: 10.1016/j.ejphar.2023.176176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
One of the cost-effective alternative methods to find new inhibitors has been the repositioning approach of existing drugs. The advantage of computational drug repositioning method is saving time and cost to remove the pre-clinical step and accelerate the drug discovery process. Hence, an ensemble computational-experimental approach, consisting of three steps, a machine learning model, simulation of drug-target interaction and experimental characterization, was developed. The machine learning type used here was a different tree classification method, which is one of the best randomize machine learning model to identify potential inhibitors from weak inhibitors. This model was trained more than one-hundred times, and forty top trained models were extracted for the drug repositioning step. The machine learning step aimed to discover the approved drugs with the highest possible success rate in the experimental step. Therefore, among all the identified molecules with more than 0.9 probability in more than 70% of the models, nine compounds, were selected. Besides, out of the nine chosen drugs, seven compounds have been confirmed to inhibit EGF in the published articles since 2019. Hence, two identified compounds, in addition to gefitinib, as a positive control, five weak-inhibitors and one neutral, were considered via molecular docking study. Finally, the eight proposed drugs, including gefitinib, were investigated using MTT assay and In-Cell ELISA to characterize the drugs' effect on A431 cell growth and EGF-signaling. From our experiments, we could conclude that salicylic acid and piperazine could play an EGF-inhibitor role like gefitinib.
Collapse
Affiliation(s)
- Mohammadreza Torabi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | | | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Reseach Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, E30107, Spain
| | - Fahimeh Ghasemi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Nammalwar B, Bunce RA. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals (Basel) 2024; 17:104. [PMID: 38256937 PMCID: PMC10820437 DOI: 10.3390/ph17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrimidines have become an increasingly important core structure in many drug molecules over the past 60 years. This article surveys recent areas in which pyrimidines have had a major impact in drug discovery therapeutics, including anti-infectives, anticancer, immunology, immuno-oncology, neurological disorders, chronic pain, and diabetes mellitus. The article presents the synthesis of the medicinal agents and highlights the role of the biological target with respect to the disease model. Additionally, the biological potency, ADME properties and pharmacokinetics/pharmacodynamics (if available) are discussed. This survey attempts to demonstrate the versatility of pyrimidine-based drugs, not only for their potency and affinity but also for the improved medicinal chemistry properties of pyrimidine as a bioisostere for phenyl and other aromatic π systems. It is hoped that this article will provide insight to researchers considering the pyrimidine scaffold as a chemotype in future drug candidates in order to counteract medical conditions previously deemed untreatable.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA;
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
18
|
Mishra S, Sahu A, Kaur A, Kaur M, Kumar J, Wal P. Recent Development in the Search for Epidermal Growth Factor Receptor (EGFR) Inhibitors based on the Indole Pharmacophore. Curr Top Med Chem 2024; 24:581-613. [PMID: 37909440 DOI: 10.2174/0115680266264206231020111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 11/03/2023]
Abstract
The signal transduction and cell proliferation are regulated by the epidermal growth factor receptor. The proliferation of tumor cells, apoptosis, invasion, and angiogenesis is inhibited by the epidermal growth factor receptor. Thus, breast cancer, non-small cell lung cancer, cervical cancer, glioma, and bladder cancer can be treated by targeting the epidermal growth factor receptor. Although third-generation epidermal growth factor receptor inhibitors are potent drugs, patients exhibit drug resistance after treatment. Thus, the search for new drugs is being continued. Among the different potent epidermal growth factor receptor inhibitors, we have reviewed the indole-based inhibitors. We have discussed the structure-activity relationship of the compounds with the active sites of the epidermal growth factor receptor receptors, their synthesis, and molecular docking studies.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar, 473003, Madhya Pradesh, India
- Amity Institute of Pharmacy, Amity University Rajasthan, NH11C Kant Kanwar Jaipur, 300202, India
| | - Avneet Kaur
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | | | - Jayendra Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, UP, 201204, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, UP, India
| |
Collapse
|
19
|
Wang C, Zhang Y, Zhang T, Xu J, Yan S, Liang B, Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253:127440. [PMID: 37839594 DOI: 10.1016/j.ijbiomac.2023.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years. Drug resistance caused by EGFR mutations has posed a significant challenge to the large-scale clinical application of EGFR single-target inhibitors and the discovery of novel EGFR inhibitors. Therapeutic methods for overcoming multipoint EGFR mutations are still needed in medicine. EGFR dual-target inhibitors are more promising than single-target inhibitors as they have a lower risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events. EGFR dual-target inhibitors have been developed sequentially to date, providing new options for remission in patients with previously untreatable malignancies and laying the groundwork for a future generation of compounds. This paper introduces the EGFR family proteins and their synergistic effects with other anticancer targets, and provides a comprehensive review of the development of EGFR dual-target inhibitors in cancer, as well as the opportunities and challenges associated with those fields.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Mahnashi M, Alshahrani MM, Al Ali A, Asiri A, Abou-Salim MA. Novel Glu-based pyrazolo[3,4-d]pyrimidine analogues: design, synthesis and biological evaluation as DHFR and TS dual inhibitors. J Enzyme Inhib Med Chem 2023; 38:2203879. [PMID: 37080777 PMCID: PMC10120551 DOI: 10.1080/14756366.2023.2203879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
A novel series of multifunctional pyrazolo[3,4-d]pyrimidine-based glutamate analogs (6a-l and 7a,b) have been designed and synthesized as antifolate anticancer agents. Among the tested compounds, 6i exhibited the most potent anti-proliferative activity towards NSCLC, CNS, Ovarian, Prostate, Colon, Melanoma, Breast, and Renal cancers with good to weak cytostatic activity and non-lethal actions. 6i demonstrated higher selectivity for cancer than normal cells. 6i could significantly increase the accumulation of S-phase cells during the cell cycle distribution of cancer cells with high potency in the induction of apoptosis. The results unveiled that 6i probably acts through dual inhibition of DHFR and TS enzymes (IC50 = 2.41 and 8.88 µM, correspondingly). Docking studies of 6i displayed that N1-p-bromophenyl and C3-Methyl groups participate in substantial hydrophobic interactions. The drug-likeness features inferred that 6i met the acceptance criteria of Pfizer. Taking together, 6i could be a promising prototype for further optimization as an effective anticancer drug.
Collapse
Affiliation(s)
- Mater Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Abdulaziz Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mahrous A Abou-Salim
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
21
|
Qiao L, Dong C, Jia W, Ma B. NAA20 recruits Rin2 and promotes triple-negative breast cancer progression by regulating Rab5A-mediated activation of EGFR signaling. Cell Signal 2023; 112:110922. [PMID: 37827343 DOI: 10.1016/j.cellsig.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with poor prognosis and high mortality. To improve the prognosis and survival of TNBC patients, it is necessary to explore new targets and signaling pathways to develop novel therapies for TNBC treatment. N-α-acetyltransferase 20 (NAA20) is one of the catalytic subunits of N-terminal acetyltransferase (NatB). It has been reported that NAA20 played a critical role in cancer progression. In this study, we found that NAA20 expression was markedly higher in TNBC tissues than in paracancerous normal tissues using The Cancer Genome Atlas (TCGA) analysis. This result was further confirmed by qRT-PCR and immunohistochemistry (IHC). Knockdown of NAA20 significantly inhibited TNBC cell viability by CCK8 and colony formation assays and cell migration and invasion by Transwell assays. Additionally, NAA20 knockdown decreased the expression of EGFR in TNBC cells. Upon stimulation with EGF and knockdown of NAA20, EGFR internalization and degradation were observed by confocal microscopy. The western blot results showed that NAA20 knockdown down-regulated PI3K, AKT, and mTOR phosphorylation. Next, we further explored the underlying molecular mechanisms of NAA20 by co-immunoprecipitation (Co-IP). The results suggested that there was an interacting relationship between NAA20 and Rab5A. Over-expression of NAA20 could potentiate the expression of Rab5A. Furthermore, the knockdown of Rab5A inhibited EGFR expression and the phosphorylation of downstream signaling targets. NAA20 over-expression offset the knockdown effect of Rab5A and activated EGFR signaling. Finally, we constructed a xenograft mouse model transfected TNBC cells to investigate the role of NAA20 in vivo. NAA20 knockdown markedly suppressed tumor growth and decreased tumor volume and weight. In conclusion, our study demonstrated that NAA20, a novel target of TNBC, could promote TNBC progression by regulating Rab5A-mediated activation of EGFR signaling.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Wenlei Jia
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| |
Collapse
|
22
|
Yang T, Tian S, Zhao J, Pei M, Zhao M, Yang X. LncRNA ABHD11-AS1 activates EGFR signaling to promote cervical cancer progression by preventing FUS-mediated degradation of ABHD11 mRNA. Cell Cycle 2023; 22:2538-2551. [PMID: 38146687 PMCID: PMC10936639 DOI: 10.1080/15384101.2023.2297591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023] Open
Abstract
Cervical cancer is one of the most common gynecological cancers with high metastasis, poor prognosis and conventional chemotherapy. The long non-coding RNA (lncRNA) ABHD11 antisense RNA 1 (ABHD11-AS1) plays a vital role in tumorigenesis and is involved in cell proliferation, differentiation, and apoptosis. Especially for cervical cancer, the functions and mechanisms of ABHD11-AS1 are still undetermined. In this study, we explored the role and underlying mechanism of ABHD11-AS1 in cervical cancer. We found that ABHD11-AS1 is highly expressed in cervical cancer tissue. The roles of ABHD11-AS1 and EGFR have investigated the loss of function analysis and cell movability in SiHa and Hela cells. Knockdown of ABHD11-AS1 and EGFR significantly inhibited the proliferation, migration, and invasion and promoted apoptosis of SiHa and Hela cells by up-regulating p21 and Bax and down-regulating cyclin D1, Bcl2, MMP9, and Vimentin. ABHD11-AS1 knockdown could decrease the expression of EGFR. In addition, ABHD11-AS1 could regulate the EGFR signaling pathway, including p-EGFR, p-AKT, and p-ERK. Spearman's correlation analysis and cell experiments demonstrated that ABHD11 was highly expressed in tumor tissue and partially offset the effect of shABHD11-AS1 on the proliferation, migration, and invasion of SiHa and Hela cells. Then, RNA pulldown was used to ascertain the mechanisms of ABHD11-AS1 and FUS. ABHD11-AS1 inhibited ABHD11 mRNA degradation by bounding to FUS. A subcutaneous xenograft of SiHa cells was established to investigate the effect of ABHD11-AS1 in tumor tissue. Knockdown of ABDH11-AS1 inhibited tumor growth and decreased the tumor volume. ABHD11-AS1 knockdown inhibited the expression of Ki67 and Vimentin and up-regulated the expression of Tunel. Our data indicated that ABHD11-AS1 promoted cervical cancer progression by activating EGFR signaling, preventing FUS-mediated degradation of ABHD11 mRNA. Our findings provide novel insights into the potential role of lncRNA in cervical cancer therapy.
Collapse
Affiliation(s)
- Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Sijuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Meili Pei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Minyi Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | | |
Collapse
|
23
|
Barghi Lish A, Foroumadi A, Kolvari E, Safari F. Synthesis and Biological Evaluation of 12-Aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3- d]pyridazine-8(9 H)-one Derivatives as Potential Cytotoxic Agents. ACS OMEGA 2023; 8:42212-42224. [PMID: 38024677 PMCID: PMC10653054 DOI: 10.1021/acsomega.3c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-a:2',1'-c]pyrazine-2,3-dicarboxylates (5a-s), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-8(9H)-ones (7a-q). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the in vitro cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay. Among the compounds, the 3-nitrophenyl derivative (7m) from the second series showed the best antiproliferative activity against all tested cell lines, particularly against Panc-1 cell line, (IC50 = 12.54 μM), being nearly twice as potent as the standard drug etoposide. The induction of apoptosis and sub-G1 cell cycle arrest in Panc-1 cancer cells by compound 7m was confirmed through further assessment. Moreover, the inhibition of kinases and the induction of cellular apoptosis by compound 7m in Panc-1 cancer cells were validated using the Western blotting assay.
Collapse
Affiliation(s)
- Azam Barghi Lish
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran1417614411, Iran
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences (TIPS), Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Eskandar Kolvari
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Fatemeh Safari
- Department
of Biology, Faculty of Science, University
of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
24
|
Peng K, Zou Z, Li J, Xie Y, Ming Z, Jiang T, Luo W, Hu X, Nie Y, Chen L, Luo T, Peng T, Ma D, Liu S, Luo ZY. Spinosyn A and Its Derivative Inhibit Colorectal Cancer Cell Growth via the EGFR Pathway. JOURNAL OF NATURAL PRODUCTS 2023; 86:2111-2121. [PMID: 37682035 DOI: 10.1021/acs.jnatprod.3c00276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Spinosyn A (SPA), derived from a soil microorganism, Saccharopolyspora spinosa, and its derivative, LM2I, has potential inhibitory effects on a variety of cancer cells. However, the effects of SPA and LM2I in inhibiting the growth of human colorectal cancer cells and the molecular mechanisms underlying these effects are not fully understood. Cell viability was tested by using a 3-(4,5-dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide (MTT) assay and a colony formation assay. On the basis of the IC50 values of SPA and LM2I in seven colorectal cancer (CRC) cell lines, sensitive (HT29 and SW480) and insensitive (SW620 and RKO) cell lines were screened. The GSE2509 and GSE10843 data sets were used to identify 69 differentially expressed genes (DEGs) between sensitive and insensitive cell lines. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interactions (PPI) were performed to elucidate the molecular mechanisms of the DEGs. The hub gene of the DEGs was detected by Western blot analysis and verified using the CRISPR/Cas9 system. Our data indicate that SPA and its derivative LM2I have significant antiproliferative activity in seven colorectal cancer cell lines and colorectal xenograft tumors. On the basis of bioinformatics analysis, it was demonstrated that epidermal growth factor receptor (EGFR) was the hub gene of the DEGs and was associated with the inhibitory effects of SPA and LM2I in CRC cell lines. The study also revealed that SPA and LM2I inhibited the EGFR pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Kunjian Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Zizheng Zou
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
- Department of Science and Education, Yiyang Central Hospital, Yiyang, 413099 Hunan, China
| | - Jijia Li
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan, China
| | - Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Zhengnan Ming
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Wensong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Yuan Nie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Ling Chen
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan, China
| | - Ting Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| | - Dayou Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan, China
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan, China
| | - Zhi-Yong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
25
|
Li W, Yang Z, Ding L, Wang Y, Zhao X, Chu JJ, Ji Q, Yao M, Wang J. A novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative inhibits cell proliferation by suppressing the MEK/ERK signaling pathway in colorectal cancer. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:489-502. [PMID: 37708962 DOI: 10.2478/acph-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 09/16/2023]
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant cancers worldwide. Although molecularly targeted therapies have significantly improved treatment outcomes, most of these target inhibitors are resistant. Novel inhibitors as potential anticancer drug candidates are still needed to be discovered. Therefore, in the present study, we synthesized a novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative (compound 4) using fragment- and structure-based techniques and then investigated the anticancer effect and underlying mechanism of anti-CRC. The results revealed that compound 4 significantly inhibited HCT116 cell proliferation with IC 50 values of 8.04 ± 0.94 µmol L-1 after 48 h and 5.52 ± 0.42 µmol L-1 after 72 h, respectively. Compound 4 also inhibited colony formation, migration, and invasion of HCT116 cells in a dose-dependent manner, as well as inducing cell apoptosis and arresting the cell cycle in the G2/M phase. In addition, compound 4 was able to inhibit the activation of the MEK/ERK signaling in HCT116 cells. And compound 4 yielded the same effects as the MEK inhibitor U0126 on cell apoptosis and MEK/ERK-related proteins. These findings suggested that compound 4 inhi bited cell proliferation and growth, and induced cell apoptosis, indicating its use as a novel and potent anticancer agent against CRC via the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Ying Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710032, China
| | - Xian Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Jian Jie Chu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Qing Ji
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| |
Collapse
|
26
|
Seydimemet M, Yang Y, Lv Y, Liu J, Yan Z, Zhao Y, Wang X, Lu X. Design, Construction, and Screening of Diversified Pyrimidine-Focused DNA-Encoded Libraries. ACS Med Chem Lett 2023; 14:1073-1078. [PMID: 37583819 PMCID: PMC10424316 DOI: 10.1021/acsmedchemlett.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Pyrimidine is a ubiquitous component in natural products and approved drugs, providing an ideal modular scaffold for generating libraries with drug-like properties. DNA-encoded library technology introduces a novel library modality where each small molecule is covalently linked to a unique oligo tag. This technology offers the advantages of rapidly generating and interrogating large-scale libraries containing billions of members, substantially reducing the entry barrier to their use in both academia and the pharmaceutical industry. In this Letter, we describe the synthesis of three DNA-encoded libraries based on different functionalized pyrimidine cores featuring diversified chemoselectivity and regioselectivity. Preliminary screening of these DNA-encoded libraries against BRD4 identified compounds with nanomolar inhibition activities.
Collapse
Affiliation(s)
- Mengnisa Seydimemet
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Yixuan Yang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Yuhan Lv
- School
of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong P.R. China
| | - Jiaxiang Liu
- Alphama
Biotechnology Suzhou Co., Ltd., 108 Yuxin Road, Suzhou City, Jiangsu Province 215123, China
| | - Ziqin Yan
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Yujun Zhao
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuan Wang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
27
|
Li X, Gong P, Zhou X, Wang S, Liu Y, Zhang Y, Nguyen LV, Warren-Smith SC, Zhao Y. In-situ detection scheme for EGFR gene with temperature and pH compensation using a triple-channel optical fiber biosensor. Anal Chim Acta 2023; 1263:341286. [PMID: 37225344 DOI: 10.1016/j.aca.2023.341286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
An advanced multi-parameter optical fiber sensing technology for EGFR gene detection based on DNA hybridization technology is demonstrated in this paper. For traditional DNA hybridization detection methods, temperature and pH compensation can not be realized or need multiple sensor probes. However, the multi-parameter detection technology we proposed can simultaneously detect complementary DNA, temperature and pH based on a single optical fiber probe. In this scheme, three optical signals including dual surface plasmon resonance signal (SPR) and Mach-Zehnder interference signal (MZI) are excited by binding the probe DNA sequence and pH-sensitive material with the optical fiber sensor. The paper proposes the first research to achieve simultaneous excitation of dual SPR signal and Mach-Zehnder interference signal in a single fiber and used for three-parameter detection. Three optical signals have different sensitivities to the three variables. From a mathematical point of view, the unique solutions of exon-20 concentration, temperature and pH can be obtained by analyzing the three optical signals. The experimental results show that the exon-20 sensitivity of the sensor can reach 0.07 nm nM-1, and the limit of detection is 3.27 nM. The designed sensor gives a fast response, high sensitivity, and low detection limit, which is important for the field of DNA hybridization research and for solving the problems of biosensor susceptibility to temperature and pH.
Collapse
Affiliation(s)
- Xuegang Li
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Pengqi Gong
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Xue Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Shankun Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yingxuan Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yanan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Linh V Nguyen
- Institute for Photonics and Advanced Sensing and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Stephen C Warren-Smith
- Institute for Photonics and Advanced Sensing and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Yong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China
| |
Collapse
|
28
|
Wang C, Zhang Y, Chen W, Wang Y, Xing D. Epidermal growth factor receptor PROTACs as an effective strategy for cancer therapy: A review. Biochim Biophys Acta Rev Cancer 2023; 1878:188927. [PMID: 37245798 DOI: 10.1016/j.bbcan.2023.188927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein that mediates cellular signaling pathways involved in cell proliferation, angiogenesis, apoptosis, and metastatic spread, is an important oncogenic drug target. Targeting the intracellular and extracellular domains of the EGFR has been authorized for a number of small-molecule TKIs and mAbs, respectively. However, their clinical application is limited by EGFR catalytic structural domain alterations, cancer heterogeneity, and persistent drug resistance. To bypass these limitations, protease-targeted chimeras (PROTACs) are emerging as an emerging and promising anti-EGFR therapy. PROTACs compensate for the limitations of traditional occupancy-driven small molecules by exploiting intracellular protein destruction processes. Recently, a mushrooming number of heterobifunctional EGFR PROTACs have been created using wild-type (WT) and mutated EGFR TKIs. PROTACs outperformed EGFR TKIs in terms of cellular inhibition, potency, toxicity profiles, and anti-drug resistance. Herein, we present a comprehensive overview of the development of PROTACs targeting EGFR for cancer therapy, while also highlighting the challenges and opportunities associated with the field.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
30
|
Yang F, Liu F, Min Y, Shi L, Liu M, Wang K, Ke S, Gong Y, Yang Z. Novel Steroidal[17,16-d]pyrimidines Derived from Epiandrosterone and Androsterone: Synthesis, Characterization and Configuration-Activity Relationships. Molecules 2023; 28:molecules28062691. [PMID: 36985662 PMCID: PMC10054084 DOI: 10.3390/molecules28062691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Two series of novel steroidal[17,16-d]pyrimidines derived from natural epiandrosterone and androsterone were designed and synthesized, and these compounds were screened for their potential anticancer activities. The preliminary bioassay indicated that some of these prepared compounds exhibited significantly good cytotoxic activities against human gastric cancer (SGC-7901), lung cancer (A549), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), epiandrosterone, and androsterone. Especially the respective pairs from epiandrosterone and androsterone showed significantly different inhibitory activities, and the possible configuration-activity relationships have also been summarized and discussed based on kinase assay and molecular docking, which indicated that the inhibition activities of these steroidal[17,16-d]pyrimidines might obviously be affected by the configuration of the hydroxyl group in the part of the steroidal scaffold.
Collapse
Affiliation(s)
- Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Yan Gong
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Ziwen Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| |
Collapse
|
31
|
Kang Y, Pei Y, Qin J, Zhang Y, Duan Y, Yang H, Yao Y, Sun M. Design, synthesis, and biological activity evaluation of novel tubulin polymerization inhibitors based on pyrimidine ring skeletons. Bioorg Med Chem Lett 2023; 84:129195. [PMID: 36828299 DOI: 10.1016/j.bmcl.2023.129195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
A library of new pyrimidine analogs was designed and synthesized of these, compound K10 bearing a 1,4‑benzodioxane moiety and 3,4,5‑trimethoxyphenyl group, exhibiting the most potent activity, with IC50 values of 0.07-0.80 μM against four cancer cell lines. Cellular-based mechanism studies elucidated that K10 inhibited microtubule polymerization, blocked the cell cycle at the G2/M phase, and eventually induced apoptosis of HepG2 cells. Additionally, K10 inhibited the migration and invasion of HepG2 cells in a dose-dependent manner. Overall, our work indicates that the tubulin polymerization inhibitor incorporating pyrimidine and the 3,4,5‑trimethoxyphenyl ring may deserve consideration for cancer therapy.
Collapse
Affiliation(s)
- Yingying Kang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuanyuan Pei
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jinling Qin
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Hua Yang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Moran Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
32
|
Acar Çevik U, Celik I, Işık A, Ahmad I, Patel H, Özkay Y, Kaplancıklı ZA. Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. J Biomol Struct Dyn 2023; 41:1944-1958. [PMID: 35037830 DOI: 10.1080/07391102.2022.2025906] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer is the most frequent female cancer and second cause of cancer-related deaths among women around the world. Two thirds of breast cancer patients have hormone-dependent tumors, which is very likely be treated with hormonal therapy. Aromatase is involved in the biosynthesis of estrogen thus a critical target for breast cancer. In this study, in order to identify new aromatase enzyme inhibitors, a series of benzimidazole-1,3,4-oxadiazole derivatives were synthesized and characterized by 1H NMR, 13C NMR, and MS spectra analyses. In the in vitro anticancer assay, all the compounds tested anticancer activities using MTT-based assay against five cancer cell lines (MCF-7, A549, HeLa, C6, and HepG2). Among them, compound 5a exhibited the most potent activity with IC50 values of 5.165 ± 0.211 μM and 5.995 ± 0.264 μM against MCF-7 and HepG2 cell lines. Compound 5a was included in the BrdU test to determine the DNA synthesis inhibition effects for both cell types. Furthermore, compound 5c was also found to be more effective than doxorubicin on the HeLa cell line. The selectivity of anticancer activity was evaluated in NIH3T3 cell line. In vitro, enzymatic inhibition assays of aromatase enzyme were performed for compound 5a acting on the MCF-7 cell line. For compound 5a, in silico molecular docking and dynamics simulations against aromatase enzyme was performed to determine possible protein-ligand interactions and stability. DFT study was performed to evaluate the quantum mechanical and electronic properties of compound 5a. Finally, the theoretical ADME properties of the potential aromatase inhibitor compound 5a were analyzed by calculations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
33
|
Li MC, Coumar MS, Lin SY, Lin YS, Huang GL, Chen CH, Lien TW, Wu YW, Chen YT, Chen CP, Huang YC, Yeh KC, Yang CM, Kalita B, Pan SL, Hsu TA, Yeh TK, Chen CT, Hsieh HP. Development of Furanopyrimidine-Based Orally Active Third-Generation EGFR Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2023; 66:2566-2588. [PMID: 36749735 PMCID: PMC9969398 DOI: 10.1021/acs.jmedchem.2c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.
Collapse
Affiliation(s)
- Mu-Chun Li
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shu-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yih-Shyan Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Guan-Lin Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Tzu-Wen Lien
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yi-Wen Wu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Yen-Ting Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Ching-Ping Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yu-Chen Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Kai-Chia Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chen-Ming Yang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Bikashita Kalita
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shiow-Lin Pan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Tsu-An Hsu
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan, ROC
- , . Phone: +886-37-206-166
| |
Collapse
|
34
|
Design, Synthesis, Biological Evaluation, and Molecular Dynamics Studies of Novel Lapatinib Derivatives. Pharmaceuticals (Basel) 2022; 16:ph16010043. [PMID: 36678540 PMCID: PMC9862743 DOI: 10.3390/ph16010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Co-expression of the epidermal growth factor receptor (EGFR, also known as ErbB1) and human epidermal growth factor receptor 2 (HER2) has been identified as a diagnostic or prognostic sign in various tumors. Despite the fact that lapatinib (EGFR/HER2 dual inhibitor) has shown to be successful, many patients do not respond to it or develop resistance for a variety of reasons that are still unclear. As a result, new approaches and inhibitory small molecules are still needed for EGFR/HER2 inhibition. Herein, novel lapatinib derivatives possessing 4-anilinoquinazoline and imidazole scaffolds (6a-l) were developed and screened as EGFR/HER2 dual inhibitors. In vitro and in silico investigations revealed that compound 6j has a high affinity for the ATP-binding regions of EGFR and HER2. All of the designed candidates were predicted to not penetrate the BBB, raising the expectation for the absence of CNS side effects. At 10 µM, derivatives possessing 3-chloro-4-(pyridin-2-ylmethoxy)aniline moiety (6i-l) demonstrated outstanding ranges of percentage inhibition against EGFR (97.65-99.03%) and HER2 (87.16-96.73%). Compound 6j showed nanomolar IC50 values over both kinases (1.8 nM over EGFR and 87.8 nM over HER2). Over EGFR, compound 6j was found to be 50-fold more potent than staurosporine and 6-fold more potent than lapatinib. A kinase selectivity panel of compound 6j showed poor to weak inhibitory activity over CDK2/cyclin A, c-MET, FGFR1, KDR/VEGFR2, and P38a/MAPK14, respectively. Structure-activity relationship (SAR) that were obtained with different substitutions were justified. Additionally, molecular docking and molecular dynamics studies revealed insights into the binding mode of the target compounds. Thus, compound 6j was identified as a highly effective and dual EGFR/HER2 inhibitor worthy of further investigation.
Collapse
|
35
|
Jaragh-Alhadad L, Behbehani H, Karnik S. Cancer targeted drug delivery using active low-density lipoprotein nanoparticles encapsulated pyrimidines heterocyclic anticancer agents as microtubule inhibitors. Drug Deliv 2022; 29:2759-2772. [PMID: 36029014 PMCID: PMC9427048 DOI: 10.1080/10717544.2022.2117435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, nanomedicine had the potential to increase the delivery of active compounds to specific cell sites. Nano-LDL particles are recognized as an excellent active nano-platform for cancer-targeted delivery. Loading of therapeutic agents into nano-LDL particles achieved by surface loading, core loading, and apolipoprotein-B100 interaction. Therefore, loading nano-LDL particles’ core with pyrimidine heterocyclic anticancer agents will increase cancer cytotoxic activity targeting tubulin protein. First, by mimicking the native LDL particle's metabolic pathway, and second the agent’s chemical functional groups like the native amino acids cytosine and thymine structures will not be recognized as a foreign entity from the cell’s immune system. Nano-LDL particles will internalize through LDL-receptors endocytosis and transport the anticancer agent into the middle of the cancer cell, reducing its side effects on other healthy cells. Generally, the data revealed that pyrimidine heterocyclic anticancer agents’ size is at the nano level. Agents’ morphological examination showed nanofibers, thin sheets, clusters, and rod-like structures. LDL particles’ size became bigger after loading with pyrimidine heterocyclic anticancer agents and ranged between 121.6 and 1045 nm. Then, particles were tested for their cytotoxicity against breast (MDA468) and prostate (DU145) cancer cell lines as surrogate models with dose-response study 10, 5, 1 µM. The IC50 values of the agents against DU145 and MDA468 possessed cell growth inhibition even at the 1 µM concentration ranges of 3.88 ± 1.05 µM and 3.39 ± 0.97 µM, respectively. In sum, nano-LDL particles proved their efficiency as active drug delivery vehicles to target tubulin in cancer cells.
Collapse
Affiliation(s)
- Laila Jaragh-Alhadad
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait.,Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Sadashiva Karnik
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.,Cleveland Clinic Learner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
El-Emam AA, Al-Wahaibi LH, Blacque O, Tiekink ERT. Crystal structure of 4-ethyl-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, C 14H 12N 4O 3S. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C14H12N4O3S, monoclinic, P21/n (no. 14), a = 12.2777(3) Å, b = 9.4312(2) Å, c = 12.9412(2) Å, β = 107.945(2)°, V = 1425.61(5) Å3, Z = 4, R
gt
(F) = 0.0305, wR
ref
(F
2) = 0.0837, T = 160 K.
Collapse
Affiliation(s)
- Ali A. El-Emam
- Department of Medicinal Chemistry , Faculty of Pharmacy, Mansoura University , Mansoura 35516 , Egypt
| | - Lamya H. Al-Wahaibi
- Department of Chemistry , College of Sciences, Princess Nourah bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Olivier Blacque
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190, 8057 Zurich , Switzerland
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University , 47500 Bandar Sunway , Selangor Darul Ehsan , Malaysia
| |
Collapse
|
37
|
Alharbi KS, Javed Shaikh MA, Afzal O, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Singh SK, Dua K, Gupta G. An overview of epithelial growth factor receptor (EGFR) inhibitors in cancer therapy. Chem Biol Interact 2022; 366:110108. [PMID: 36027944 DOI: 10.1016/j.cbi.2022.110108] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/28/2022]
Abstract
Epithelial growth factor receptor (EGFR), a transmembrane receptor on the cell surface, carries extracellular messages into the cell and alters the activity of the nucleus through tyrosine signalling. EGFR-targeted treatments have influenced the new era of precision oncology throughout the last few decades. Despite significant progress, long-term remission from solid tumours is still a distant goal for many oncologists. There are several methods by which tumour cells alter the activity of this protein in solid tumours. EGFR-related oncogenic pathways, resistance mechanisms, and novel avenues to suppress tumour development and metastatic spread were discovered in clinical specimens using preclinical models (cell cultures, xenografts, mouse models), which were then validated in those specimens. EGFR has been implicated in the onset and advancement of a variety of cancers, according to research. An overview of EGFR's structural anatomy and physiology, its role in cancers, and clinical studies that target EGFR in various tumours are included in this review.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
38
|
Anandu KR, Jayan AP, Aneesh TP, Saiprabha VN. Pyrimidine derivatives as EGFR tyrosine kinase inhibitors in NSCLC: - A comprehensive review. Chem Biol Drug Des 2022; 100:599-621. [PMID: 35883248 DOI: 10.1111/cbdd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
EGFR positive NSCLC due to primary mutation (EGFR DEL19 & L858R) has been recognized as a crucial mediator of tumor progression. This led to the development and approval of EGFR tyrosine kinase inhibitors which addresses EGFR mediated NSCLC but fail to show potency after initial months of therapy due to acquired resistance (EGFR T790M, EGFR C797S). Extensive research allowed identification of drugs for EGFR positive NSCLC, wherein the majority of compounds have a pyrimidine substructure offering marked therapeutic benefits compared to chemotherapy. This current review outlines the diverse pyrimidine derivatives with amino-linked and fused pyrimidine scaffolds such as furo-pyrimidine, pyrimido-pyrimidine, thieno-pyrimidine, highlighting pyrimidine EGFR TK inhibitors reported in research emphasizing structural aspects, design approaches, inhibition potential. selectivity profile towards mutant EGFR conveyed through biological evaluation studies. Furthermore, mentioning the in-silico interaction profile of synthesized compounds for evaluating the binding affinity with key amino acids. The epilogue of review focuses on the recent research that drives forward to aid in the discovery and development of substituted amino and fused scaffolds of pyrimidine that can counteract the mutations and effectively manage EGFR positive NSCLC.
Collapse
Affiliation(s)
- K R Anandu
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ajay P Jayan
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - V N Saiprabha
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
39
|
Jakubkiene V, Valiulis GE, Schweipert M, Zubriene A, Matulis D, Meyer-Almes FJ, Tumkevicius S. Synthesis and HDAC inhibitory activity of pyrimidine-based hydroxamic acids. Beilstein J Org Chem 2022; 18:837-844. [PMID: 35923158 PMCID: PMC9296983 DOI: 10.3762/bjoc.18.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylases (HDACs) play an essential role in the transcriptional regulation of cells through the deacetylation of nuclear histone and non-histone proteins and are promising therapeutic targets for the treatment of various diseases. Here, the synthesis of new compounds in which a hydroxamic acid residue is attached to differently substituted pyrimidine rings via a methylene group bridge of varying length as potential HDAC inhibitors is described. The target compounds were obtained by alkylation of 2-(alkylthio)pyrimidin-4(3H)-ones with ethyl 2-bromoethanoate, ethyl 4-bromobutanoate, or methyl 6-bromohexanoate followed by aminolysis of the obtained esters with hydroxylamine. Oxidation of the 2-methylthio group to the methylsulfonyl group and following treatment with amines resulted in the formation of the corresponding 2-amino-substituted derivatives, the ester group of which reacted with hydroxylamine to give the corresponding hydroxamic acids. The synthesized hydroxamic acids were tested as inhibitors of the HDAC4 and HDAC8 isoforms. Among the synthesized pyrimidine-based hydroxamic acids N-hydroxy-6-[6-methyl-2-(methylthio)-5-propylpyrimidin-4-yloxy]hexanamide was found to be the most potent inhibitor of both the HDAC4 and HDAC8 isoforms, with an IC50 of 16.6 µM and 1.2 µM, respectively.
Collapse
Affiliation(s)
- Virginija Jakubkiene
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Gabrielius Ernis Valiulis
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Stephanstr. 7, 64295 Darmstadt, Germany
| | - Asta Zubriene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257 Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257 Vilnius, Lithuania
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Stephanstr. 7, 64295 Darmstadt, Germany
| | - Sigitas Tumkevicius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
40
|
Díaz I, Salido S, Nogueras M, Cobo J. Design and Synthesis of New Pyrimidine-Quinolone Hybrids as Novel hLDHA Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15070792. [PMID: 35890090 PMCID: PMC9322123 DOI: 10.3390/ph15070792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
A battery of novel pyrimidine-quinolone hybrids was designed by docking scaffold replacement as lactate dehydrogenase A (hLDHA) inhibitors. Structures with different linkers between the pyrimidine and quinolone scaffolds (10-21 and 24−31) were studied in silico, and those with the 2-aminophenylsulfide (U-shaped) and 4-aminophenylsulfide linkers (24−31) were finally selected. These new pyrimidine-quinolone hybrids (24−31)(a−c) were easily synthesized in good to excellent yields by a green catalyst-free microwave-assisted aromatic nucleophilic substitution reaction between 3-(((2/4-aminophenyl)thio)methyl)quinolin-2(1H)-ones 22/23(a−c) and 4-aryl-2-chloropyrimidines (1−4). The inhibitory activity against hLDHA of the synthesized hybrids was evaluated, resulting IC50 values of the U-shaped hybrids 24−27(a−c) much better than the ones of the 1,4-linked hybrids 28−31(a−c). From these results, a preliminary structure−activity relationship (SAR) was established, which enabled the design of novel 1,3-linked pyrimidine-quinolone hybrids (33−36)(a−c). Compounds 35(a−c), the most promising ones, were synthesized and evaluated, fitting the experimental results with the predictions from docking analysis. In this way, we obtained novel pyrimidine-quinolone hybrids (25a, 25b, and 35a) with good IC50 values (<20 μM) and developed a preliminary SAR.
Collapse
|
41
|
Hong D, Zhou B, Zhang B, Ren H, Zhu L, Zheng G, Ge M, Ge J. Recent advances in the development of EGFR degraders: PROTACs and LYTACs. Eur J Med Chem 2022; 239:114533. [PMID: 35728507 DOI: 10.1016/j.ejmech.2022.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Epidermal Growth Factor Receptor (EGFR), a transmembrane tyrosine kinase receptor, belongs to the ErbB receptor family, also known as HER1 or ErbB1. Its abnormal expression and activation contribute to tumor development, especially in non-small cell lung cancer (NCSCL). The first-to fourth-generation inhibitors of EGFR were developed to solve mutations at different sites, but the problem of resistance has not been fundamentally addressed. Targeted protein degradation (TPD) technologies, including PROteolysis Targeting Chimeras (PROTACs) and LYsosome Targeting Chimeras (LYTACs), take advantages of protein destruction mechanism in cells, which make up for shortcomings of traditional small molecular occupancy-driven inhibitors. PROTACs based heterobifunctional EGFR degraders were recently developed by making use of wild-type (WT) and mutated EGFR inhibitors. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the inhibitors that have been developed against WT/mutated EGFR, and then mainly focuses on the recent advances of EGFR-targeting degraders along with its limitations and unlimited prospects.
Collapse
Affiliation(s)
- Dawei Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bizhong Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Ren
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guowan Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
42
|
Motahari R, Boshagh MA, Moghimi S, Peytam F, Hasanvand Z, Oghabi Bakhshaiesh T, Foroumadi R, Bijanzadeh H, Firoozpour L, Khalaj A, Esmaeili R, Foroumadi A. Design, synthesis and evaluation of novel tetrahydropyridothienopyrimidin-ureas as cytotoxic and anti-angiogenic agents. Sci Rep 2022; 12:9683. [PMID: 35690595 PMCID: PMC9188586 DOI: 10.1038/s41598-022-13515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
The novel derivatives of tetrahydropyridothienopyrimidine-based compounds have been designed and efficiently synthesized with good yields through seven steps reaction. The anticancer activity of compounds 11a-y has been evaluated against MCF-7, PC-3, HEPG-2, SW-480, and HUVEC cell lines by MTT assay. The target compounds showed IC50 values between 2.81–29.6 μg/mL and were compared with sorafenib as a reference drug. Among them, compound 11n showed high cytotoxic activity against four out of five examined cell lines and was 14 times more selective against MRC5. The flow cytometric analysis confirmed the induction of apoptotic cell death by this compound against HUVEC and MCF-7 cells. In addition, 11n caused sub-G1 phase arrest in the cell cycle arrest. Besides, this compound induced anti-angiogenesis in CAM assay and increased the level of caspase-3 by 5.2 fold. The western-blot analysis of the most active compound, 11n, revealed the inhibition of VEGFR-2 phosphorylation. Molecular docking study also showed the important interactions for compound 11n.
Collapse
Affiliation(s)
- Rasoul Motahari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Boshagh
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khalaj
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
The Incidence-Based Mortality and Survival Trends in Patients with Gastric Signet Ring Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3308801. [PMID: 35669239 PMCID: PMC9167140 DOI: 10.1155/2022/3308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Background and Aim. Gastric signet ring cell carcinoma (SRC) is a distinct subtype of gastric cancer. This study aims to analyze the incidence-based mortality and survival trends in patients with gastric SRC over the past decades. Materials and Methods. The patients from the Surveillance, Epidemiology, and End Results (SEER) database were recruited to explore the incidence-based mortality and survival trends from 2000 to 2017. We further analyzed the differences in mortality and survival trends in these patients by sex and stage. We also used joinpoint software to evaluate the trends in annual percentage change (APC) for statistical significance. Results. 14916 patients were collected, including 7801 (52.3%) male and 7115 (47.7%) female. We identified a single joinpoint at 2002. The overall incidence-based mortality of gastric SRC declined in America after 2002 (APC = −1.21,
). In stratified analysis by sex and stage, the incidence-based mortality rate was higher in males than females. After 2002, the mortality rate decreased significantly in male (APC = −1.68,
) and M0-stage patients (APC = −1.75,
). In survival trend analysis, the 2-year relative survival improved in M0-stage gastric SRC, especially for males (APC = 1.14,
). As for M1-stage patients, the 2-year relative survival significantly elevated in both male (APC = 3.87,
) and female (APC = 5.63,
) patients. Conclusions. The incidence-based mortality of gastric SRC has declined, and survival has improved in America over time. These optimistic trends may be attributed to cancer screening implementation and advances in novel treatments in the past decades.
Collapse
|
44
|
Yang W, Xuan B, Li X, Si H, Chen A. Therapeutic potential of 1,2,3-triazole hybrids for leukemia treatment. Arch Pharm (Weinheim) 2022; 355:e2200106. [PMID: 35532286 DOI: 10.1002/ardp.202200106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022]
Abstract
Leukemia, a hematological malignancy originating from the bone marrow, is the principal cancer of childhood. In recent decades, improved remission rates and survival of patients with leukemia have been achieved due to significant breakthroughs in the treatment. However, chemoresistance and relapse are common, creating an urgent need for the search for novel pharmaceutical interventions. 1,2,3-Triazole is one of the most fascinating pharmacophores in the discovery of new drugs, and several 1,2,3-triazole derivatives have already been used in clinics or are under clinical evaluation for the treatment of cancers. In particular, 1,2,3-triazole hybrids could suppress tumor proliferation, invasion, and metastasis by inhibiting enzymes, proteins, and receptors in cancer cells, revealing their potential as putative antileukemic agents. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential antileukemic activity, focusing on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from January 2017 to January 2022.
Collapse
Affiliation(s)
- Wenchao Yang
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Bixia Xuan
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Xiaofang Li
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Haiyan Si
- Department of Gastroenterology, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Aiping Chen
- Emergency Department, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| |
Collapse
|
45
|
Feng LS, Su WQ, Cheng JB, Xiao T, Li HZ, Chen DA, Zhang ZL. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure-activity relationship, and mechanisms of action (2019-2021). Arch Pharm (Weinheim) 2022; 355:e2200051. [PMID: 35385159 DOI: 10.1002/ardp.202200051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Cancer, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth, remains a prominent cause of death across the world. Almost all currently available anticancer agents used in clinical practice have developed multidrug resistance, creating an urgent need to develop novel chemotherapeutics. Benzimidazole derivatives could exert anticancer properties through diverse mechanisms, inclusive of the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, antiangiogenesis, and blockage of glucose transport. Moreover, several benzimidazole-based agents have already been approved for the treatment of cancers. Hence, benzimidazole derivatives are useful scaffolds for the development of novel anticancer agents. In particular, benzimidazole hybrids could exert dual or multiple antiproliferative activities and had the potential to overcome drug resistance, demonstrating the potential of benzimidazole hybrids as potential prototypes for clinical deployment in the control and eradication of cancers. The purpose of the present review article is to provide a comprehensive landscape of benzimidazole hybrids as potential anticancer agents, and the structure-activity relationship as well as mechanisms of action are also discussed to facilitate the further rational design of more effective candidates, covering articles published from 2019 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
46
|
Mahmoud MA, Mohammed AF, Salem OIA, Gomaa HAM, Youssif BGM. New 1,3,4-oxadiazoles linked with the 1,2,3-triazole moiety as antiproliferative agents targeting the EGFR tyrosine kinase. Arch Pharm (Weinheim) 2022; 355:e2200009. [PMID: 35195309 DOI: 10.1002/ardp.202200009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
A series of 1,3,4-oxadiazole-1,2,3-triazole hybrids bearing different pharmacophoric moieties has been designed and synthesized. Their antiproliferative activity was evaluated against four human cancer cell lines (Panc-1, MCF-7, HT-29, and A-549) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The preliminary activity test displayed that the most active compounds, 6d, 6e, and 8a-e, suppressed cancer cell growth (GI50 = 0.23-2.00 µM) comparably to erlotinib (GI50 = 0.06 µM). Compounds 6d, 6e, and 8a-e inhibited the epidermal growth factor receptor tyrosine kinase (EGFR-TK) at IC50 = 0.11-0.73 µM, compared to erlotinib (IC50 = 0.08 ± 0.04 µM). The apoptotic mechanism revealed that the most active hybrid 8d induced expression levels of caspase-3, caspase-9, and cytochrome-c in the human cancer cell line Panc-1 by 7.80-, 19.30-, and 13-fold higher than doxorubicin. Also, 8d increased the Bax level by 40-fold than doxorubicin, along with decreasing Bcl-2 levels by 6.3-fold. Cell cycle analysis after treatment of Panc-1 cells with hybrid 8d revealed a high proportion of cell accumulation (41.53%) in the pre-G1 phase, indicating cell cycle arrest at the G1 transition. Computational docking of the 8d and 8e hybrids with the EGFR binding site revealed their ability to bind with EGFR similar to erlotinib. Finally, in silico absorption, distribution, metabolism, and excretion/pharmacokinetic studies for the most active hybrids are discussed.
Collapse
Affiliation(s)
- Mohamed A Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
47
|
Mahnashi MH, El-Senduny FF, Alshahrani MA, Abou-Salim MA. Design, Synthesis, and Biological Evaluation of a Novel VEGFR-2 Inhibitor Based on a 1,2,5-Oxadiazole-2-Oxide Scaffold with MAPK Signaling Pathway Inhibition. Pharmaceuticals (Basel) 2022; 15:246. [PMID: 35215358 PMCID: PMC8880564 DOI: 10.3390/ph15020246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Over the past few decades, the development of broad-spectrum anticancer agents with anti-angiogenic activity has witnessed considerable progress. In this study, a new series of pyrazolo[3,4-d]pyrimidines based on a phenylfuroxan scaffold were designed, synthesized, and evaluated, in terms of their anticancer activities. NCI-60 cell one-dose screening revealed that compounds 12a-c and 14a had the best MGI%, among the tested compounds. The target fluorinated compound 12b, as the most active one, showed better anticancer activity compared to the reference drug sorafenib, with IC50 values of 11.5, 11.6, and 13 µM against the HepG-2, A2780CP, and MDA-MB-231 cell lines, respectively. Furthermore, compound 12b (IC50 = 0.092 µM) had VEGFR-2-inhibitory activity comparable to that of the standard inhibitor sorafenib (IC50 = 0.049 µM). Furthermore, the ability of compound 12b in modulating MAPK signaling pathways was investigated. It was found to decrease the level of total ERK and its phosphorylated form, as well as leading to the down-regulation of metalloproteinase MMP-9 and the over-expression of p21 and p27, thus leading to subG1 cell-cycle arrest and, thus, the induction of apoptosis. Additionally, compound 12b decreased the rate of wound healing in the absence of serum, in comparison to DMSO-treated cells, providing a significant impact on metastasis inhibition. The quantitative RT-PCR results for E-cadherin and N-cadherin showed lower expression of the neuronal N-cadherin and increased expression of epithelial E-cadherin, indicating the ability of 12b to suppress metastasis. Furthermore, 12b-treated HepG2 cells expressed a low level of anti-apoptotic BCL-2 and over-expressed proapoptotic Bax genes, respectively. Using the DAF-FM DA fluorescence probe, compound 12b produced NO intracellularly as efficiently as the reference drug JS-K. In silico molecular docking studies showed a structural similarity through an overlay of 12b with sorafenib. Interestingly, the drug-likeness properties of compound 12b met the expectations of Pfizer's rule for the design of new drug candidates. Therefore, this study presents a novel anticancer lead compound that is worthy of further investigation and activity improvement.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia;
| | - Fardous F. El-Senduny
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Mahrous A. Abou-Salim
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
48
|
Mohi El-Deen EM, Anwar MM, El-Gwaad AAA, Karam EA, El-Ashrey MK, Kassab RR. Novel Pyridothienopyrimidine Derivatives: Design, Synthesis and Biological Evaluation as Antimicrobial and Anticancer Agents. Molecules 2022; 27:803. [PMID: 35164067 PMCID: PMC8839448 DOI: 10.3390/molecules27030803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
The growing risk of antimicrobial resistance besides the continuous increase in the number of cancer patients represents a great threat to global health, which requires intensified efforts to discover new bioactive compounds to use as antimicrobial and anticancer agents. Thus, a new set of pyridothienopyrimidine derivatives 2a,b-9a,b was synthesized via cyclization reactions of 3-amino-thieno[2,3-b]pyridine-2-carboxamides 1a,b with different reagents. All new compounds were evaluated against five bacterial and five fungal strains. Many of the target compounds showed significant antimicrobial activity. In addition, the new derivatives were further subjected to cytotoxicity evaluation against HepG-2 and MCF-7 cancer cell lines. The most potent cytotoxic candidates (3a, 4a, 5a, 6b, 8b and 9b) were examined as EGFR kinase inhibitors. Molecular docking study was also performed to explore the binding modes of these derivatives at the active site of EGFR-PK. Compounds 3a, 5a and 9b displayed broad spectrum antimicrobial activity with MIC ranges of 4-16 µg/mL and potent cytotoxic activity with IC50 ranges of 1.17-2.79 µM. In addition, they provided suppressing activity against EGFR with IC50 ranges of 7.27-17.29 nM, higher than that of erlotinib, IC50 = 27.01 nM.
Collapse
Affiliation(s)
- Eman M. Mohi El-Deen
- Department of Therapeutic Chemistry, National Research Centre, Cairo 12622, Egypt; (M.M.A.); (A.A.A.E.-G.)
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, National Research Centre, Cairo 12622, Egypt; (M.M.A.); (A.A.A.E.-G.)
| | - Amina A. Abd El-Gwaad
- Department of Therapeutic Chemistry, National Research Centre, Cairo 12622, Egypt; (M.M.A.); (A.A.A.E.-G.)
| | - Eman A. Karam
- Department of Microbial Chemistry, National Research Centre, Cairo 12622, Egypt;
| | - Mohamed K. El-Ashrey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Rafika R. Kassab
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Cairo 11754, Egypt;
| |
Collapse
|
49
|
Synthesis, Anticancer Assessment, and Molecular Docking of Novel Chalcone-Thienopyrimidine Derivatives in HepG2 and MCF-7 Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4759821. [PMID: 35003514 PMCID: PMC8728392 DOI: 10.1155/2021/4759821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Heterocycles containing thienopyrimidine moieties have attracted attention due to their interesting biological and pharmacological activities. In this research article, we reported the synthesis of a series of new hybrid molecules through merging the structural features of chalcones and pyridothienopyrimidinones. Our results indicated that the synthesis of chalcone-thienopyrimidine derivatives from the corresponding thienopyrimidine and chalcones proceeded in a relatively short reaction time with good yields and high purity. Most of these novel compounds exhibited moderate to robust cytotoxicity against HepG2 and MCF-7 cancer cells similar to that of 5-fluorouracil (5-FU). The results indicated that IC50 of the two compounds (3b and 3g) showed more potent anticancer activities against HepG2 and MCF-7 than 5-FU. An MTT assay and flow cytometry showed that only 3b and 3g had anticancer activity and antiproliferative activities at the G1 phase against MCF-7 cells, while six compounds (3a-e and 3g) had cytotoxicity and cell cycle arrest at different phases against HepG2 cells. Their cytotoxicity was achieved through downregulation of Bcl-2 and upregulation of Bax, caspase-3, and caspase-9. Although all tested compounds increased oxidative stress via increment of MDA levels and decrement of glutathione reductase (GR) activities compared to control, the 3a, 3b, and 3g in HepG2 and 3b and 3g in MCF-7 achieved the target results. Moreover, there was a positive correlation between cytotoxic efficacy of the compound and apoptosis in both HepG2 (R 2 = 0.531; P = 0.001) and MCF-7 (R 2 = 0.219; P = 0.349) cell lines. The results of molecular docking analysis of 3a-g into the binding groove of Bcl-2 revealed relatively moderate binding free energies compared to the selective Bcl-2 inhibitor, DRO. Like venetoclax, compounds 3a-g showed 2 violations from Lipinski's rule. However, the results of the ADME study also revealed higher drug-likeness scores for compounds 3a-g than for venetoclax. In conclusion, the tested newly synthesized chalcone-pyridothienopyrimidinone derivatives showed promising antiproliferative and apoptotic effects. Mechanistically, the compounds increased ROS production with concomitant cell cycle arrest and apoptosis. Therefore, regulation of the cell cycle and apoptosis are possible targets for anticancer therapy. The tested compounds could be potent anticancer agents to be tested in future clinical trials after extensive pharmacodynamic, pharmacokinetic, and toxicity profile investigations.
Collapse
|
50
|
Toolabi M, Safari F, Ayati A, Fathi P, Moghimi S, Salarinejad S, Foroumadi R, Ketabforoosh SHME, Foroumadi A. Synthesis of novel 2‐acetamide‐5‐phenylthio‐1,3,4‐thiadiazole‐containing phenyl urea derivatives as potential VEGFR‐2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2100397. [DOI: 10.1002/ardp.202100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Mahsa Toolabi
- Department of Medicinal Chemistry, Faculty of Pharmacy Ahvaz Jundishapur University of Medical sciences Ahvaz Iran
- Toxicology Research Center Medical Basic Sciences Research Institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science University of Guilan Rasht Iran
| | - Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS) Tehran University of Medical Sciences Tehran Iran
| | - Parnian Fathi
- Department of Medicinal Chemistry, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS) Tehran University of Medical Sciences Tehran Iran
| | - Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | | | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS) Tehran University of Medical Sciences Tehran Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|