1
|
Krejčová K, Krafcikova P, Klima M, Chalupska D, Chalupsky K, Zilecka E, Boura E. Structural and functional insights in flavivirus NS5 proteins gained by the structure of Ntaya virus polymerase and methyltransferase. Structure 2024; 32:1099-1109.e3. [PMID: 38781970 DOI: 10.1016/j.str.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain. It is responsible for both RNA replication and installation of the 5' RNA cap. We structurally and biochemically analyzed the Ntaya virus MTase and RdRp domains and we compared their properties to other flaviviral NS5s. The enzymatic centers are well conserved across Flaviviridae, suggesting that the development of drugs targeting all flaviviruses is feasible. However, the enzymatic activities of the isolated proteins were significantly different for the MTase domains.
Collapse
Affiliation(s)
- Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Feng Y. Recent advances in the study of zika virus structure, drug targets, and inhibitors. Front Pharmacol 2024; 15:1418516. [PMID: 39011504 PMCID: PMC11246971 DOI: 10.3389/fphar.2024.1418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Zika Virus (ZIKV) is a positive-strand RNA virus that can lead to Guillain-Barré syndrome or encephalitis in some individuals and hence presents a serious public health risk. Since the first outbreak of ZIKV in Brazil in 2015, no effective clinical inhibitors have been developed, making the development of effective ZIKV drugs an urgent issue that needs to be addressed. ZIKV belongs to the Flaviviridae family, and its structure includes three structural proteins, namely, capsular (C), premembrane (prM), and envelope (E) proteins, as well as seven nonstructural proteins, namely, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. To provide a reference for the development of future ZIKV drugs, this paper reviews the structure of the ZIKV based on recent literature reports, analyzes the potential therapeutic targets of various proteins, and proposes feasible drug design strategies. Additionally, this paper reviews and classifies the latest research progress on several protease inhibitors, such as E protein inhibitors, NS2B-NS3 inhibitors, and NS5 inhibitors, so that researchers can quickly understand the current status of development and the interconnections among these inhibitors.
Collapse
Affiliation(s)
- Yingqi Feng
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
3
|
Zhang K, Liang J, Zhang B, Huang L, Yu J, Xiao X, He Z, Tao H, Yuan J. A Marine Natural Product, Harzianopyridone, as an Anti-ZIKV Agent by Targeting RNA-Dependent RNA Polymerase. Molecules 2024; 29:978. [PMID: 38474490 DOI: 10.3390/molecules29050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne virus that already poses a danger to worldwide human health. Patients infected with ZIKV generally have mild symptoms like a low-grade fever and joint pain. However, severe symptoms can also occur, such as Guillain-Barré syndrome, neuropathy, and myelitis. Pregnant women infected with ZIKV may also cause microcephaly in newborns. To date, we still lack conventional antiviral drugs to treat ZIKV infections. Marine natural products have novel structures and diverse biological activities. They have been discovered to have antibacterial, antiviral, anticancer, and other therapeutic effects. Therefore, marine products are important resources for compounds for innovative medicines. In this study, we identified a marine natural product, harzianopyridone (HAR), that could inhibit ZIKV replication with EC50 values from 0.46 to 2.63 µM while not showing obvious cytotoxicity in multiple cellular models (CC50 > 45 µM). Further, it also reduced the expression of viral proteins and protected cells from viral infection. More importantly, we found that HAR directly bound to the ZIKV RNA-dependent RNA polymerase (RdRp) and suppressed its polymerase activity. Collectively, our findings provide HAR as an option for the development of anti-ZIKV drugs.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bingzhi Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuhan Xiao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Sajid M, Tur Razia I, Kanwal A, Ahsan M, Tahir RA, Sajid M, Khan MS, Mukhtar N, Parveen G, Sehgal SA. Computational Advancement towards the Identification of Natural Inhibitors for Dengue Virus: A Brief Review. Comb Chem High Throughput Screen 2024; 27:2464-2484. [PMID: 37859315 DOI: 10.2174/0113862073244468230921050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 08/03/2023] [Indexed: 10/21/2023]
Abstract
Viral infectious illnesses represent a severe hazard to human health due to their widespread incidence worldwide. Among these ailments, the dengue virus (DENV) infection stands out. World Health Organization (WHO) estimates that DENV infection affects ~400 million people each year, with potentially fatal symptoms showing up in 1% of the cases. In several instances, academic and pharmaceutical researchers have conducted several pilot and clinical studies on a variety of topics, including viral epidemiology, structure and function analyses, infection source and route, therapeutic targets, vaccinations, and therapeutic drugs. Amongst Takeda, TAK-003, Sanofi, Dengvaxia®, and Butantan/NIH/Merck, Dengvaxia® (CYD-TDV) is the only licensed vaccination yet; however, the potential inhibitors are under development. The biology and evolution of DENVs are briefly discussed in this review, which also compiles the most recent studies on prospective antiviral targets and antiviral candidates. In conclusion, the triumphs and failures have influenced the development of anti-DENV medications, and the findings in this review article will stimulate more investigation.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Iashia Tur Razia
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Ayesha Kanwal
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | - Rana Adnan Tahir
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | | | - Naila Mukhtar
- Department of Botany, University of Okara, Okara, Punjab, Pakistan
| | - Gulnaz Parveen
- Department of Botany, Women University Swabi, Swabi, KPK, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology, and Bioinformatics, The Islamia University of Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
5
|
Dos Santos Nascimento IJ, Albino SL, da Silva Menezes KJ, de Azevedo Teotônio Cavalcanti M, de Oliveira MS, Mali SN, de Moura RO. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr Med Chem 2024; 31:2264-2284. [PMID: 37921174 DOI: 10.2174/0109298673255826231011114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Abstract
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Pharmacy Department, Cesmac University Center, Maceió, 57051-160, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Sonaly Lima Albino
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Karla Joane da Silva Menezes
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Mozaniel Santana de Oliveira
- Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi, 1901, Belém, 66077-530, PA Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai, 400019, India
| | - Ricardo Olimpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
6
|
Wang L, Zhou R, Liu Y, Guo S, Yi D, Zhao J, Li Q, Zhang Y, Liang C, Wang J, Shan G, Cen S. A cell-based assay to discover inhibitors of Zika virus RNA-dependent RNA polymerase. Virology 2024; 589:109939. [PMID: 37979208 DOI: 10.1016/j.virol.2023.109939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Zika virus (ZIKV) belongs to Flaviviridae, the Flavivirus genus. Its infection causes congenital brain abnormalities and Guillain-Barré syndrome. However, there are no effective vaccines, no FDA-approved drugs to manage ZIKV infection. The non-structural protein NS5 of ZIKV has been recognized as a valuable target of antivirals because of its RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) activities essential for viral RNA synthesis. Here, we report a cell-based assay for discovering inhibitors of ZIKV NS5 and found that 5-Azacytidine potently inhibits ZIKV NS5, with EC50 of 4.9 μM. Furthermore, 5-Azacytidine suppresses ZIKV replication by inhibiting NS5-mediated viral RNA transcription. Therefore, we have developed a cell-based ZIKV NS5 assay which can be deployed to discover ZIKV NS5 inhibitors and demonstrated the potential of 5-Azacytidine for further development as a ZIKV NS5 inhibitor.
Collapse
Affiliation(s)
- Lidan Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Rui Zhou
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Yitong Liu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Saisai Guo
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Dongrong Yi
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Jianyuan Zhao
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Quanjie Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Yongxin Zhang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, H3T 1E2, Canada
| | - Jing Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China.
| | - Guangzhi Shan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China.
| | - Shan Cen
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantanxili, Beijing, 100050, China.
| |
Collapse
|
7
|
Shukla D, Alanazi AM, Panda SP, Dwivedi VD, Kamal MA. Unveiling the antiviral potential of Plant compounds from the Meliaceae family against the Zika virus through QSAR modeling and MD simulation analysis. J Biomol Struct Dyn 2023:1-16. [PMID: 37728536 DOI: 10.1080/07391102.2023.2259498] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Zika virus (ZIKV) is a flavivirus transmitted by mosquitoes, causing neurological disorders and congenital malformations. RNA-dependent RNA polymerase (RdRp) is one of its essential enzymes and a promising drug target for antiviral therapy due to its involvement in the growth and multiplication of the virus. In this study, we conducted a QSAR-based chemical library screening from the Meliaceae family to identify potential RdRp inhibitors. The QSAR model was built using the known inhibitors of RdRp NS5 of ZIKV and their biological activity (EC50), along with the structural and chemical characteristics of the compounds. The top two hit compounds were selected from QSAR screening for further analysis using molecular docking to evaluate their binding energies and intermolecular interactions with RdRp, including the critical residue Trp485. Furthermore, molecular dynamics (MD) simulations were performed to evaluate their binding stability and flexibility upon binding to RdRp. The MD results showed that the selected compounds formed stable complexes with RdRp, and their binding interactions were similar to those observed for the native ligand. The binding energies of the top two hits (-8.6 and -7.7 kcal/mole) were comparable to those of previously reported ZIKV RdRp inhibitors (-8.9 kcal/mole). The compound IMPHY009135 showed the strongest binding affinity with RdRp, forming multiple hydrogen bonds and hydrophobic interactions with key residues. However, compound IMPHY009276 showed the most stable and consistent RMSD, which was similar to the native ligand. Our findings suggest that IMPHY009135 and IMPHY009276 are potential lead compounds for developing novel antiviral agents against ZIKV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divyanshi Shukla
- Department of Chemistry, Lajpat Rai PG College, Sahibabad, Ghaziabad, India
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar, India
| | - Vivek Dhar Dwivedi
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Thandalam, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| |
Collapse
|
8
|
Vishwanath D, Shete-Aich A, Honnegowda MB, Anand MP, Chidambaram SB, Sapkal G, Basappa B, Yadav PD. Discovery of Hybrid Thiouracil-Coumarin Conjugates as Potential Novel Anti-SARS-CoV-2 Agents Targeting the Virus's Polymerase "RdRp" as a Confirmed Interacting Biomolecule. ACS OMEGA 2023; 8:27056-27066. [PMID: 37546653 PMCID: PMC10398856 DOI: 10.1021/acsomega.3c02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
The coronavirus (COVID-19) pandemic, along with its various strains, has emerged as a global health crisis that has severely affected humankind and posed a great challenge to the public health system of affected countries. The replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly depends on RNA-dependent RNA polymerase (RdRp), a key enzyme that is involved in RNA synthesis. In this regard, we designed, synthesized, and characterized hybrid thiouracil and coumarin conjugates (HTCAs) by ether linkage, which were found to have anti-SARS-CoV-2 properties. Our in vitro real-time quantitative reverse transcription PCR (RT-qPCR) results confirmed that compounds such as 5d, 5e, 5f, and 5i inhibited the replication of SARS-CoV-2 with EC50 values of 14.3 ± 0.14, 6.59 ± 0.28, 86.3 ± 1.45, and 124 ± 2.38 μM, respectively. Also, compound 5d displayed significant antiviral activity against human coronavirus 229E (HCoV-229E). In addition, some of the HTCAs reduced the replication of SARS-CoV-2 variants such as D614G and B.617.2. In parallel, HTCAs in uninfected Vero CCL-81 cells indicated that no cytotoxicity was noticed. Furthermore, we compared the in silico interaction of lead compounds 5d and 5e toward the cocrystal structure of Suramin and RdRp polymerase with Remdesvir triphosphate, which showed that compounds 5d, 5e, and Remdesvir triphosphate (RTP) share a common catalytical site of RdRp but not Suramin. Additionally, the in silico ADMET properties predicted for the lead HTCAs and RTP showed that the maximum therapeutic doses recommended for compounds 5d and 5e were comparable to those of RTP. Concurrently, the pharmacokinetics of 5d was characterized in male Wistar Albino rats by administering a single oral gavage at a dose of 10 mg/kg, which gave a Cmax value of 0.22 μg/mL and a terminal elimination half-life period of 73.30 h. In conclusion, we established a new chemical entity that acts as a SARS-CoV-2 viral inhibitor with minimal or no toxicity to host cells in the rodent model, encouraging us to proceed with preclinical studies.
Collapse
Affiliation(s)
- Divakar Vishwanath
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Anita Shete-Aich
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| | | | - Mahesh Padukudru Anand
- Department
of Respiratory Medicine, JSS Medical College, and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Gajanan Sapkal
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| | - Basappa Basappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Pragya D. Yadav
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| |
Collapse
|
9
|
Zhou GF, Qian W, Li F, Yang RH, Wang N, Zheng CB, Li CY, Gu XR, Yang LM, Liu J, Xiong SD, Zhou GC, Zheng YT. Discovery of ZFD-10 of a pyridazino[4,5-b]indol-4(5H)-one derivative as an anti-ZIKV agent and a ZIKV NS5 RdRp inhibitor. Antiviral Res 2023; 214:105607. [PMID: 37088168 DOI: 10.1016/j.antiviral.2023.105607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Zika virus (ZIKV) infection is associated with the birth defect microcephaly and Guillain-Barré syndrome in adults. There is no approved vaccine or specific antiviral agent against ZIKV. ZFD-10, a novel structural skeleton of 1H-pyridazino[4,5-b]indol-4(5H)-one, was firstly synthesized and discovered to be a potent anti-ZIKV inhibitor with very low cytotoxicity. ZFD-10's anti-ZIKV potency is independent of cell lines and ZFD-10 mainly targets the post-entry stages of ZIKV life cycle. Time-of-addition and time-of-withdrawal assays showed that 10 μM ZFD-10 displayed the ability to decrease mainly at the RNA level and weakly the viral progeny particle load. Furthermore, ZFD-10 could protect ZIKV NS5 from thermal unfolding and aggregation and increase the Tagg value of ZIKV NS5 protein from 44.6 to 49.3 °C, while ZFD-10 dose-dependently inhibits ZIKV NS5 RdRp activity using in vitro RNA polymerase assays. Molecular docking study suggests that ZFD-10 affects RdRp enzymatic function through interfering with the fingers and thumb subdomains. These results supported that ZFD-10's cell-based anti-ZIKV activity is related to its anti-RdRp activity of ZIKV NS5. The in vivo anti-ZIKV study shows that the middle-dose (4.77 mg/kg/d) of ZFD-10 protected mice from ZIKV infection and the viral loads of the blood, liver, kidney and brain in the middle-dose and high-dose (9.54 mg/kg/d) were significantly reduced compared to those of the ZIKV control. These results confirm that ZFD-10 has a certain antiviral effect against ZIKV infection in vivo.
Collapse
Affiliation(s)
- Guang-Feng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; College of Pharmacy, Soochow University, Suzhou, 215021, China
| | - Weiyi Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ren-Hua Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Na Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Chun-Yan Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xue-Rong Gu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Si-Dong Xiong
- College of Pharmacy, Soochow University, Suzhou, 215021, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
10
|
Singh S, Alallah J, Amrit A, Maheshwari A, Boppana S. Neurological Manifestations of Perinatal Dengue. NEWBORN (CLARKSVILLE, MD.) 2023; 2:158-172. [PMID: 37559696 PMCID: PMC10411360 DOI: 10.5005/jp-journals-11002-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Dengue viruses (DENVs) are single-stranded RNA viruses belonging to the family Flaviviridae. There are four distinct antigenically related serotypes, DENVs types 1, 2, 3, and 4. These are all mosquito-borne human pathogens. Congenital dengue disease occurs when there is mother-to-fetus transmission of the virus and should be suspected in endemic regions in neonates presenting with fever, maculopapular rash, and thrombocytopenia. Although most of the infected infants remain asymptomatic, some can develop clinical manifestations such as sepsis-like illness, gastric bleeding, circulatory failure, and death. Neurological manifestations include intracerebral hemorrhages, neurological malformations, and acute focal/disseminated encephalitis/encephalomyelitis. Dengue NS1Ag, a highly conserved glycoprotein, can help the detection of cases in the viremic stage. We do not have proven specific therapies yet; management is largely supportive and is focused on close monitoring and maintaining adequate intravascular volume.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Jubara Alallah
- Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Astha Amrit
- Department of Neonatology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Akhil Maheshwari
- Department of Pediatrics, Division of Neonatal Medicine, Louisiana State University – Shreveport, Shreveport, Louisiana; Global Newborn Society, Baltimore, Maryland, United States of America
| | - Suresh Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
11
|
Boonyasuppayakorn S, Saelee T, Huynh TNT, Hairani R, Hengphasatporn K, Loeanurit N, Cao V, Vibulakhaophan V, Siripitakpong P, Kaur P, Chu JJH, Tunghirun C, Choksupmanee O, Chimnaronk S, Shigeta Y, Rungrotmongkol T, Chavasiri W. The 8-bromobaicalein inhibited the replication of dengue, and Zika viruses and targeted the dengue polymerase. Sci Rep 2023; 13:4891. [PMID: 36966240 PMCID: PMC10039358 DOI: 10.1038/s41598-023-32049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Dengue and Zika viruses are mosquito-borne flaviviruses burdening millions every year with hemorrhagic fever and neurological symptoms. Baicalein was previously reported as a potential anti-flaviviral candidate and halogenation of flavones and flavanones potentiated their antiviral efficacies. Here, we reported that a chemically modified 8-bromobaicalein effectively inhibited all dengue serotypes and Zika viruses at 0.66-0.88 micromolar in cell-based system. The compound bound to dengue serotype 2 conserved pocket and inhibited the dengue RdRp activity with 6.93 fold more than the original baicalein. Moreover, the compound was mildly toxic against infant and adult C57BL/6 mice despite administering continuously for 7 days. Therefore, the 8-bromobaicalein should be investigated further in pharmacokinetics and efficacy in an animal model.
Collapse
Affiliation(s)
- Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanaphon Saelee
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thao Nguyen Thanh Huynh
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rita Hairani
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vipanee Vibulakhaophan
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panattida Siripitakpong
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parveen Kaur
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Chairat Tunghirun
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Opas Choksupmanee
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sarin Chimnaronk
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
12
|
Zhou GF, Li F, Xue JX, Qian W, Gu XR, Zheng CB, Li C, Yang LM, Xiong SD, Zhou GC, Zheng YT. Antiviral effects of the fused tricyclic derivatives of indoline and imidazolidinone on ZIKV infection and RdRp activities of ZIKV and DENV. Virus Res 2023; 326:199062. [PMID: 36746341 DOI: 10.1016/j.virusres.2023.199062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The prevalence and ravages of Zika virus (ZIKV) seriously endanger human health, especially causing significant neurological defects in both neonates as pediatric microcephaly and adults as Guillain-Barré syndrome. In this work, we studied anti-ZIKV effects of the fused tricyclic derivatives of indoline and imidazolidinone and discovered that some of them are valuable leads for drug discovery of anti-ZIKV agents. The current results show that certain compounds are broad-spectrum inhibitors of ZIKV- and dengue virus (DENV)-infection while distinctive compounds are selective ZIKV inhibitors or selective DENV inhibitors. Compounds of 12, 17 and 28 are more active against Asian ZIKV SZ-VIV01 strain than African ZIKV MR766 strain. It is valued that silylation makes six TBS compounds of 4-nitrophenyl hydrazine series and phenyl hydrazine series more active against ZIKV infection than their phenols. Time-of-addition and withdrawal studies indicate that compound 12 majorly acts on post-infection of RNA synthesis stage of ZIKV life cycle. Moreover, compounds of 12, 17 and 18 are anti-ZIKV agents with the inhibitory activities to ZIKV NS5 RdRp while 12 doesn't inhibit DENV infection even though it is a DENV RdRp inhibitor, 17 is an active agent against DENV infection but is only a weak DENV NS5 RdRp inhibitor, and 28 is inactive against DENV infection and not a DENV NS5 RdRp inhibitor. As a result, a compound's antiviral difference between ZIKV and DENV is not always related to anti-RdRp difference between ZIKV RdRp and DENV RdRp, and structural features of a compound play important roles in executing antiviral and anti-RdRp functions. Further discovery of highly potent broad-spectrum or selective agents against infection by ZIKV and DENV will be facilitated.
Collapse
Affiliation(s)
- Guang-Feng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; College of Pharmacy, Soochow University, Suzhou 215021, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jian-Xia Xue
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Medical College, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Weiyi Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xue-Rong Gu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Si-Dong Xiong
- College of Pharmacy, Soochow University, Suzhou 215021, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
13
|
Chen R, Francese R, Wang N, Li F, Sun X, Xu B, Liu J, Liu Z, Donalisio M, Lembo D, Zhou GC. Exploration of novel hexahydropyrrolo[1,2-e]imidazol-1-one derivatives as antiviral agents against ZIKV and USUV. Eur J Med Chem 2023; 248:115081. [PMID: 36623328 DOI: 10.1016/j.ejmech.2022.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) and Usutu virus (USUV) are two emerging flaviviruses mostly transmitted by mosquitos. ZIKV is associated with microcephaly in newborns and the less-known USUV, with its reported neurotropism and its extensive spread in Europe, represents a growing concern for human health. There is still no approved vaccine or specific antiviral against ZIKV and USUV infections. The main goal of this study is to investigate the anti-ZIKV and anti-USUV activity of a new library of compounds and to preliminarily investigate the mechanism of action of the selected hit compounds in vitro. Two potent anti-ZIKV and anti-USUV agents, namely ZDL-115 and ZDL-116, were discovered, both presenting low cytotoxicity, cell-line independent antiviral activity in the low micromolar range and ability of reducing viral progeny production. The analysis of the structure-activity relationship (SAR) revealed that introduction of 2-deoxyribose to 3-arene was fundamental to enhance the solubility and improve the antiviral action. Additionally, we demonstrated that ZDL-115 and ZDL-116 are significantly active against both viruses when added on cells for at least 24 h prior to viral inoculation or immediately post-infection. The docking analysis showed that ZDL-116 could target the host vitamin D receptor (VDR) and viral proteins. Future experiments will be focused on compound modification to discover analogues that are more potent and on the clarification of the mechanism of action and the specific drug target. The discovery and the development of a novel anti-flavivirus drug will have a significant impact in a context where there are no fully effective antiviral drugs or vaccines for most flaviviruses.
Collapse
Affiliation(s)
- Ran Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - Na Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Bin Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhuyun Liu
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, Jiangsu, China
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China.
| |
Collapse
|
14
|
Chen Y, Chi X, Zhang H, Zhang Y, Qiao L, Ding J, Han Y, Lin Y, Jiang J. Identification of Potent Zika Virus NS5 RNA-Dependent RNA Polymerase Inhibitors Combining Virtual Screening and Biological Assays. Int J Mol Sci 2023; 24:ijms24031900. [PMID: 36768218 PMCID: PMC9915956 DOI: 10.3390/ijms24031900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The Zika virus (ZIKV) epidemic poses a significant threat to human health globally. Thus, there is an urgent need for developing effective anti-ZIKV agents. ZIKV non-structural protein 5 RNA-dependent RNA polymerase (RdRp), a viral enzyme for viral replication, has been considered an attractive drug target. In this work, we screened an anti-infection compound library and a natural product library by virtual screening to identify potential candidates targeting RdRp. Then, five selected candidates were further applied for RdRp enzymatic analysis, cytotoxicity, and binding examination by SPR. Finally, posaconazole (POS) was confirmed to effectively inhibit both RdRp activity with an IC50 of 4.29 μM and the ZIKV replication with an EC50 of 0.59 μM. Moreover, POS was shown to reduce RdRp activity by binding with the key amino acid D666 through molecular docking and site-directed mutation analysis. For the first time, our work found that POS could inhibit ZIKV replication with a stronger inhibitory activity than chloroquine. This work also demonstrated fast anti-ZIKV screening for inhibitors of RdRp and provided POS as a potential anti-ZIKV agent.
Collapse
|
15
|
Mottin M, de Paula Sousa BK, de Moraes Roso Mesquita NC, de Oliveira KIZ, Noske GD, Sartori GR, de Oliveira Albuquerque A, Urbina F, Puhl AC, Moreira-Filho JT, Souza GE, Guido RV, Muratov E, Neves BJ, da Silva JHM, Clark AE, Siqueira-Neto JL, Perryman AL, Oliva G, Ekins S, Andrade CH. Discovery of New Zika Protease and Polymerase Inhibitors through the Open Science Collaboration Project OpenZika. J Chem Inf Model 2022; 62:6825-6843. [PMID: 36239304 PMCID: PMC9923514 DOI: 10.1021/acs.jcim.2c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 μM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 μM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 μM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 μM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.
Collapse
Affiliation(s)
- Melina Mottin
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Bruna Katiele de Paula Sousa
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | | | | | - Gabriela Dias Noske
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | | | | | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Guilherme E. Souza
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Rafael V.C. Guido
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Eugene Muratov
- University of North Carolina - University of North Carolina at Chapel Hill, 27599, USA
- Universidade Federal de Paraíba, Joao Pessoa, PB, 58051-900, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | | | - Alex E. Clark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University–New Jersey Medical School, Newark, NJ 07103, United States
- Repare Therapeutics, 7210 Rue Frederick-Banting, Suite 100, Montreal, QC, H4S 2A1, Canada
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| |
Collapse
|
16
|
Gao S, Song L, Xu H, Fikatas A, Oeyen M, De Jonghe S, Zhao F, Jing L, Jochmans D, Vangeel L, Cheng Y, Kang D, Neyts J, Herdewijn P, Schols D, Zhan P, Liu X. Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010160. [PMID: 36615354 PMCID: PMC9822497 DOI: 10.3390/molecules28010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen 518057, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongtao Xu
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Merel Oeyen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| |
Collapse
|
17
|
Natural Compounds as Non-Nucleoside Inhibitors of Zika Virus Polymerase through Integration of In Silico and In Vitro Approaches. Pharmaceuticals (Basel) 2022; 15:ph15121493. [PMID: 36558945 PMCID: PMC9788182 DOI: 10.3390/ph15121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.
Collapse
|
18
|
Dos Santos Nascimento IJ, da Silva Rodrigues ÉE, da Silva MF, de Araújo-Júnior JX, de Moura RO. Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses. Curr Top Med Chem 2022; 22:2435-2462. [PMID: 36415099 DOI: 10.2174/1568026623666221122121330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
The Flaviviridae virus family consists of the genera Hepacivirus, Pestivirus, and Flavivirus, with approximately 70 viral types that use arthropods as vectors. Among these diseases, dengue (DENV) and zika virus (ZIKV) serotypes stand out, responsible for thousands of deaths worldwide. Due to the significant increase in cases, the World Health Organization (WHO) declared DENV a potential threat for 2019 due to being transmitted by infected travelers. Furthermore, ZIKV also has a high rate of transmissibility, highlighted in the outbreak in 2015, generating consequences such as Guillain-Barré syndrome and microcephaly. According to clinical outcomes, those infected with DENV can be asymptomatic, and in other cases, it can be lethal. On the other hand, ZIKV has severe neurological symptoms in newborn babies and adults. More serious symptoms include microcephaly, brain calcifications, intrauterine growth restriction, and fetal death. Despite these worrying data, no drug or vaccine is approved to treat these diseases. In the drug discovery process, one of the targets explored against these diseases is the NS2B-NS3 complex, which presents the catalytic triad His51, Asp75, and Ser135, with the function of cleaving polyproteins, with specificity for basic amino acid residues, Lys- Arg, Arg-Arg, Arg-Lys or Gln-Arg. Since NS3 is highly conserved in all DENV serotypes and plays a vital role in viral replication, this complex is an excellent drug target. In recent years, computer-aided drug discovery (CADD) is increasingly essential in drug discovery campaigns, making the process faster and more cost-effective, mainly explained by discovering new drugs against DENV and ZIKV. Finally, the main advances in computational methods applied to discover new compounds against these diseases will be presented here. In fact, molecular dynamics simulations and virtual screening is the most explored approach, providing several hit and lead compounds that can be used in further optimizations. In addition, fragment-based drug design and quantum chemistry/molecular mechanics (QM/MM) provides new insights for developing anti-DENV/ZIKV drugs. We hope that this review offers further helpful information for researchers worldwide and stimulates the use of computational methods to find a promising drug for treating DENV and ZIKV.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil.,Department of Pharmacy, Cesmac University Center, Maceió, Brazil.,Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| | | | - Manuele Figueiredo da Silva
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| |
Collapse
|
19
|
Yang C, Slavětínská LP, Fleuti M, Klepetářová B, Tichý M, Gurská S, Pavliš P, Džubák P, Hajdúch M, Hocek M. Synthesis of Polycyclic Hetero-Fused 7-Deazapurine Heterocycles and Nucleosides through C-H Dibenzothiophenation and Negishi Coupling. J Am Chem Soc 2022; 144:19437-19446. [PMID: 36245092 PMCID: PMC9619403 DOI: 10.1021/jacs.2c07517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
![]()
A new approach for synthesizing polycyclic heterofused
7-deazapurine
heterocycles and the corresponding nucleosides was developed based
on C–H functionalization of diverse (hetero)aromatics with
dibenzothiophene-S-oxide followed by the Negishi
cross-cooupling with bis(4,6-dichloropyrimidin-5-yl)zinc. This cross-coupling
afforded a series of (het)aryl-pyrimidines that were converted to
fused deazapurine heterocycles through azidation and thermal cyclization.
The fused heterocycles were glycosylated to the corresponding 2′-deoxy-
and ribonucleosides, and a series of derivatives were prepared by
nucleophilic substitutions at position 4. Four series of new polycyclic
thieno-fused 7-deazapurine nucleosides were synthesized using this
strategy. Most of the deoxyribonucleosides showed good cytotoxic activity,
especially for the CCRF-CEM cell line. Phenyl- and thienyl-substituted
thieno-fused 7-deazapurine nucleosides were fluorescent, and the former
one was converted to 2′-deoxyribonucleoside triphosphate for
enzymatic synthesis of labeled oligonucleotides.
Collapse
Affiliation(s)
- Chao Yang
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Marianne Fleuti
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Tichý
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Petr Pavliš
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Michal Hocek
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic,E-mail:
| |
Collapse
|
20
|
Hung SJ, Tsai HP, Wang YF, Ko WC, Wang JR, Huang SW. Assessment of the Risk of Severe Dengue Using Intrahost Viral Population in Dengue Virus Serotype 2 Patients via Machine Learning. Front Cell Infect Microbiol 2022; 12:831281. [PMID: 35223554 PMCID: PMC8866709 DOI: 10.3389/fcimb.2022.831281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus, a positive-sense single-stranded RNA virus, continuously threatens human health. Although several criteria for evaluation of severe dengue have been recently established, the ability to prognose the risk of severe outcomes for dengue patients remains limited. Mutant spectra of RNA viruses, including single nucleotide variants (SNVs) and defective virus genomes (DVGs), contribute to viral virulence and growth. Here, we determine the potency of intrahost viral population in dengue patients with primary infection that progresses into severe dengue. A total of 65 dengue virus serotype 2 infected patients in primary infection including 17 severe cases were enrolled. We utilized deep sequencing to directly define the frequency of SNVs and detection times of DVGs in sera of dengue patients and analyzed their associations with severe dengue. Among the detected SNVs and DVGs, the frequencies of 9 SNVs and the detection time of 1 DVG exhibited statistically significant differences between patients with dengue fever and those with severe dengue. By utilizing the detected frequencies/times of the selected SNVs/DVG as features, the machine learning model showed high average with a value of area under the receiver operating characteristic curve (AUROC, 0.966 ± 0.064). The elevation of the frequency of SNVs at E (nucleotide position 995 and 2216), NS2A (nucleotide position 4105), NS3 (nucleotide position 4536, 4606), and NS5 protein (nucleotide position 7643 and 10067) and the detection times of the selected DVG that had a deletion junction in the E protein region (nucleotide positions of the junction: between 969 and 1022) increased the possibility of dengue patients for severe dengue. In summary, we demonstrated the detected frequencies/times of SNVs/DVG in dengue patients associated with severe disease and successfully utilized them to discriminate severe patients using machine learning algorithm. The identified SNVs and DVGs that are associated with severe dengue will expand our understanding of intrahost viral population in dengue pathogenesis.
Collapse
Affiliation(s)
- Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
- *Correspondence: Sheng-Wen Huang,
| |
Collapse
|