1
|
Shi C, Zhao Y, Huang H, Zhou J, Lu D, Chen Y, Lyu W, Liu Z, Wang H, Zhang L. Development of Potent SHP2 Allosteric Inhibitors: Design, Synthesis, and Evaluation with Antitumor Effects. J Med Chem 2025; 68:5238-5256. [PMID: 40035574 DOI: 10.1021/acs.jmedchem.4c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Src homology-2-containing protein tyrosine phosphatase (PTP) 2 (SHP2) is a pivotal PTP that modulates key cellular processes including proliferation, differentiation, and migration. Its overexpression is implicated in the pathogenesis of various malignancies, highlighting the need for effective SHP2 inhibitors. Herein, we report the design and synthesis of a novel series of thiazolo[5,4-b]pyridine and imidazo[1,2-c]pyrimidine derivatives as SHP2 allosteric inhibitors identified through active fragment splicing. The synthesized compounds exhibited potent SHP2 inhibition, with IC50 values ranging from 9.0 to 34.5 nM. Notably, compound B8 demonstrated superior potency, with an IC50 of 0.04 μM for p-ERK modulation. Compound B8 also displayed favorable drug-like properties and significant antitumor activity in a KYSE520 xenograft mouse model, underscoring its potential as a lead candidate for further development. Our findings provide a foundation for the advancement of SHP2-targeted therapeutics.
Collapse
Affiliation(s)
- Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanping Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Tide Pharmaceutical Co., Ltd., Beijing 100176, China
| | - Han Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiaxu Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dehua Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanming Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
| | - Hongjun Wang
- Beijing Tide Pharmaceutical Co., Ltd., Beijing 100176, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Wujieti B, Hao M, Liu E, Zhou L, Wang H, Zhang Y, Cui W, Chen B. Study on SHP2 Conformational Transition and Structural Characterization of Its High-Potency Allosteric Inhibitors by Molecular Dynamics Simulations Combined with Machine Learning. Molecules 2024; 30:14. [PMID: 39795072 PMCID: PMC11721961 DOI: 10.3390/molecules30010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP). Due to limitations such as conservativeness and poor membrane permeability, SHP2 was once considered a challenging drug target. Nevertheless, with the in-depth investigations into the conformational switch mechanism from SHP2's inactive to active state and the emergence of various SHP2 allosteric inhibitors, new hope has been brought to this target. In this study, we investigated the interaction models of various allosteric inhibitors with SHP2 using molecular dynamics simulations. Meanwhile, we explored the free energy landscape of SHP2 activation using enhanced sampling technique (meta-dynamics simulations), which provides insights into its conformational changes and activation mechanism. Furthermore, to biophysically interpret high-dimensional simulation trajectories, we employed interpretable machine learning methods, specifically extreme gradient boosting (XGBoost) with Shapley additive explanations (SHAP), to comprehensively analyze the simulation data. This approach allowed us to identify and highlight key structural features driving SHP2 conformational dynamics and regulating the activity of the allosteric inhibitor. These studies not only enhance our understanding of SHP2's conformational switch mechanism but also offer crucial insights for designing potent allosteric SHP2 inhibitors and addressing drug resistance issues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China; (B.W.); (M.H.); (E.L.); (L.Z.); (H.W.); (Y.Z.)
| | - Bozhen Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China; (B.W.); (M.H.); (E.L.); (L.Z.); (H.W.); (Y.Z.)
| |
Collapse
|
3
|
Lv X, Li P, Chen Z, Huang S, Zhang S, Ji B, Liu J, Du T, Zhang T, Chen X, Qiang L, He Y, Lai Y. Discovery of novel substituted pyridine carboxamide derivatives as potent allosteric SHP2 inhibitors. Eur J Med Chem 2024; 279:116830. [PMID: 39303516 DOI: 10.1016/j.ejmech.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2), a critical regulator of proliferation pathways and immune checkpoint signaling in various cancers, is an attractive target for cancer therapy. Here, we report the discovery of a novel series of substituted pyridine carboxamide derivatives as potent allosteric SHP2 inhibitors. Among them, compound C6 showed excellent inhibitory activity against SHP2 and antiproliferative effect on MV-4-11 cell line with IC50 values of 0.13 and 3.5 nM, respectively. Importantly, orally administered C6 displayed robust in vivo antitumor efficacy in the MV-4-11 xenograft mouse model (TGI = 69.5 %, 30 mg/kg). Subsequent H&E and Ki67 staining showed that C6 significantly suppressed the proliferation of tumor cells. Notably, flow cytometry, ELISA and immunofluorescence experiments showed that C6 remarkably decreased the population of CD206+/Ly6C+ M2-like tumor-associated macrophages (TAMs), the expression level of interleukin-10 (IL-10), and the number of F4/80+/CD206+ M2-like TAMs, suggesting that C6 could effectively alleviate the activation and infiltration of M2-like TAMs. Taken together, these results illustrate that C6 is a promising SHP2 inhibitor worthy of further development.
Collapse
Affiliation(s)
- Xiashi Lv
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Peifeng Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhuo Chen
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang Zhang
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Bei Ji
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjing Liu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tonghong Du
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yisheng Lai
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Guo Z, Duan Y, Sun K, Zheng T, Liu J, Xu S, Xu J. Advances in SHP2 tunnel allosteric inhibitors and bifunctional molecules. Eur J Med Chem 2024; 275:116579. [PMID: 38889611 DOI: 10.1016/j.ejmech.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
SHP2 is a non-receptor tyrosine phosphatase encoded by PTPN11, which performs the functions of regulating cell proliferation, differentiation, apoptosis, and survival through removing tyrosine phosphorylation and modulating various signaling pathways. The overexpression of SHP2 or its mutations is related to developmental diseases and several cancers. Numerous allosteric inhibitors with striking inhibitory potency against SHP2 allosteric pockets have recently been identified, and several SHP2 tunnel allosteric inhibitors have been applied in clinical trials to treat cancers. However, based on clinical results, the efficacy of single-agent treatments has been proven to be suboptimal. Most clinical trials involving SHP2 inhibitors have adopted drug combination strategies. This review briefly discusses the research progress on SHP2 allosteric inhibitors and pathway-dependent drug combination strategies for SHP2 in cancer therapy. In addition, we summarize the current bifunctional molecules of SHP2 and elaborate on the design and structural optimization strategies of these bifunctional molecules in detail, offering further direction for the research on novel SHP2 inhibitors.
Collapse
Affiliation(s)
- Zhichao Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yiping Duan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kai Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Tiandong Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Tang K, Wang S, Feng S, Yang X, Guo Y, Ren X, Bai L, Yu B, Liu HM, Song Y. Discovery of TK-642 as a highly potent, selective, orally bioavailable pyrazolopyrazine-based allosteric SHP2 inhibitor. Acta Pharm Sin B 2024; 14:3624-3642. [PMID: 39234614 PMCID: PMC11372460 DOI: 10.1016/j.apsb.2024.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 09/06/2024] Open
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a promising therapeutic target for cancer therapy. In this work, we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors, leading to the identification of pyrazolopyrazine-based TK-642 as a highly potent, selective, orally bioavailable allosteric SHP2 inhibitor (SHP2WT IC50 = 2.7 nmol/L) with favorable pharmacokinetic profiles (F = 42.5%; t 1/2 = 2.47 h). Both dual inhibition biochemical assay and docking analysis indicated that TK-642 likely bound to the "tunnel" allosteric site of SHP2. TK-642 could effectively suppress cell proliferation (KYSE-520 cells IC50 = 5.73 μmol/L) and induce apoptosis in esophageal cancer cells by targeting the SHP2-mediated AKT and ERK signaling pathways. Additionally, oral administration of TK-642 also demonstrated effective anti-tumor effects in the KYSE-520 xenograft mouse model, with a T/C value of 83.69%. Collectively, TK-642 may warrant further investigation as a promising lead compound for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Siqi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangli Ren
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Linyue Bai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Shang Y, Fu S, Hao Q, Ying H, Wang J, Shen T. Multiple medicinal chemistry strategies of targeting KRAS: State-of-the art and future directions. Bioorg Chem 2024; 144:107092. [PMID: 38271825 DOI: 10.1016/j.bioorg.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
KRAS is the most frequently mutated oncogene and drives the development and progression of malignancies, most notably non-small cell lung cancer (NSCLS), pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). However, KRAS proteins have maintained the reputation of being "undruggable" due to the lack of suitable deep pockets on its surface. One major milestone for KRAS inhibition was the discovery of the covalent inhibitors bond to the allosteric switch-II pocket of the KRASG12C protein. To date, the FDA has approved two KRASG12C inhibitors, sotorasib and adagrasib, for the treatment of patients with KRASG12C-driven cancers. Researchers have paid close attention to the development of inhibitors for other KRAS mutations and upstream regulatory factors. The KRAS targeted drug discovery has entered a state of rapid development. This article has aimed to present the current state of the art of drug development in the KRAS field. We systematically summarize recent advances in the discovery and optimization processes of direct KRAS inhibitors (including KRASG12C, KRASG12D, KRASG12A and KRASG12R inhibitors), indirect KRAS inhibitors (SOS1 and SHP2 inhibitors), pan-KRAS inhibitors, as well as proteolysis-targetingchimeras degrades and molecular chaperone modulators from the perspective of medicinal chemistry. We also discuss the current challenges and opportunities of KRAS inhibition and hope to shed light on future KRAS drug discovery.
Collapse
Affiliation(s)
- Yanguo Shang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shengnan Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
7
|
Lu X, Yu R, Li Z, Yang M, Dai J, Liu M. JC-010a, a novel selective SHP2 allosteric inhibitor, overcomes RTK/non-RTK-mediated drug resistance in multiple oncogene-addicted cancers. Cancer Lett 2024; 582:216517. [PMID: 38101609 DOI: 10.1016/j.canlet.2023.216517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Src homology 2 domain-containing phosphatase (SHP2) is a non-receptor protein phosphatase that transduces signals from upstream receptor tyrosine kinases (RTKs)/non-RTKs to Ras/MAPK pathway. Accumulating studies indicated that SHP2 is a critical mediator of resistance to current targeted therapies in multiple cancers. Here, we reported a novel SHP2 allosteric inhibitor JC-010a, which was highly selective to SHP2 and bound at the "tunnel" allosteric site of SHP2. The effect of JC-010a on combating RTK/non-RTK or MAPK inhibitors-induced acquired resistance was explored. Our study demonstrated that JC-010a monotherapy significantly inhibited the proliferation of cancer cells with different oncogenic drivers via inhibiting signaling through SHP2. Importantly, JC-010a abolished acquired resistance induced by targeted therapies: in KRAS-mutant cancers, JC-010a abrogated selumetinib-induced adaptive resistance mediated by RTK/SHP2; in BCR-ABL-driven leukemia cells, we demonstrated JC-010a inhibited BCR-ABL T315I mutation-mediated imatinib resistance and proposed a novel mechanism of JC-010a involving the disrupted co-interaction of SHP2, BCR-ABL, and Hsp90; in non-small cell lung cancer (NSCLC) cells, JC-010a inhibited both EGFR T790M/C797S mutation and alternate RTK-driven resistance to gefitinib or osimertinib; importantly, we first proposed a novel potential therapeutic strategy for RET-rearranged cancer, we confirmed that JC-010a monotherapy inhibited cell resistance to BLU-667, and JC-010a/BLU-667 combination prolonged anticancer response both in vivo and in vitro cancer models by inhibiting the alternate MET activation-induced RAS/MAPK reactivation, thereby promoting cancer cell apoptosis. These findings suggested that JC-010a was a novel selective SHP2 allosteric inhibitor, and combing JC-010a with current targeted therapy agents provided a promising therapeutic approach for clinical resistant cancers.
Collapse
Affiliation(s)
- Xuxiu Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhen Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jiajia Dai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Yang X, Xiong J, Yu B, Song Y. Emerging therapeutic approaches of SHP2-targeted modulators. Future Med Chem 2024; 16:291-294. [PMID: 38275153 DOI: 10.4155/fmc-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Tweetable abstract Monotherapy and combination therapy of SHP2 regulator for cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbo Xiong
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
10
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|