1
|
Viperino A, Höpfner M, Edel N, Al Nasr IS, Koko WS, Khan TA, Ben Abdelmalek I, Schobert R, Biersack B, Nitzsche B. Identification of a New Pentafluorosulfanyl-Substituted Chalcone with Activity Against Hepatoma and Human Parasites. Pharmaceuticals (Basel) 2025; 18:50. [PMID: 39861113 PMCID: PMC11768771 DOI: 10.3390/ph18010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES New drugs are required for the treatment of liver cancers and protozoal parasite infections. Analogs of the known anticancer active and antileishmanial 2',4',6'-trimethoxychalcone SU086 were prepared and investigated. METHODS The chalcones were prepared according to the Claisen-Schmidt condensation protocol and analyzed. They were tested for activity against two liver cancer cell lines (HepG2 and HuH-7) and protozoal parasites (Toxoplasma gondii and Leishmania major). Unspecific toxicity and expression of Hsp90 and Hsp70 upon treatment were analyzed in liver cancer cells. RESULTS A new chalcone, 2',4',6'-trimethoxy-3-pentafluorosulfanylchalcone (246TMP-3SF5), with a pentafluorosulfanyl (SF5) substituent showed pronounced activities against liver cancer cells and T. gondii parasites which were superior to the activities of the parent chalcone SU086 in these models. In contrast, SU086 and its anthracene analog 2',4',6'-trimethoxy-9-anthracenylchalcone (246TMP-Anth) were most active against L. major promastigotes. The new SF5-substituted chalcone behaved like the known Hsp90 inhibitor 17-AAG and upregulated Hsp70 expression in liver cancer cells. CONCLUSIONS The SF5-substituted SU086 analog has potential to become a new drug for the therapy of hepatoma and toxoplasmosis.
Collapse
Affiliation(s)
- Alessandra Viperino
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.V.); (M.H.); (N.E.)
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.V.); (M.H.); (N.E.)
| | - Nicole Edel
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.V.); (M.H.); (N.E.)
| | - Ibrahim S. Al Nasr
- Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.); (I.B.A.)
| | - Waleed S. Koko
- Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.); (I.B.A.)
| | - Tariq A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Imen Ben Abdelmalek
- Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.); (I.B.A.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.V.); (M.H.); (N.E.)
| |
Collapse
|
2
|
Wu J, Han M, Tan X, Zeng L, Yang Z, Zhong H, Jiang X, Yao S, Liu W, Li W, Liu X, Wu W. Green synthesis of neuroprotective spirocyclic chalcone derivatives and their role in protecting against traumatic optic nerve injury. Eur J Med Chem 2024; 280:116933. [PMID: 39368262 DOI: 10.1016/j.ejmech.2024.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
For clinically prevalent traumatic optic neuropathy (TON) and other retinal and optic nerve injuries lacking effective therapeutic agents, there is an urgent clinical demand for developing highly efficient and safe neuroprotective agents. Here, we have integrated naturally sourced chalcone with isatin through a catalyst-free green synthesis method, reporting a series of spirocyclic chalcone derivatives with significantly lower cytotoxicity than chalcone itself. Following in vitro cell protection assays in models of hydrogen peroxide and glutamic acid-induced damage, multiple active compounds capable of combating both forms of damage were identified. Among these, candidate compound X38 demonstrated promising neuroprotective prospects: in vitro, it attenuated glutamate-induced cell apoptosis, while in vivo, it effectively ameliorated retinal thinning and loss of optic nerve electrophysiological function induced by optic nerve injury. Preliminary mechanistic studies suggest that X38 exerts its neuroprotective effects by mitigating intracellular ROS accumulation, inhibiting JNK phosphorylation, and alleviating oxidative stress. Additionally, acute toxicity studies (intraperitoneal injection, 500 mg/kg) underscored the favorable in vivo safety profile of X38. Taken together, this study has designed a class of safe, neuroprotective spirocyclic chalcone derivatives that can be synthesized using green methods, offering an attractive candidate for treating retinal and optic nerve injuries.
Collapse
Affiliation(s)
- Jianzhang Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Meiting Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiangpeng Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Ling Zeng
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhenzhen Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hongliang Zhong
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaohui Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuang Yao
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weibin Liu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wulan Li
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xin Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Liu S, Cai M, Liu Z, Gao W, Li J, Li Y, Abudouxukuer X, Zhang J. Comprehensive Insights into the Development of Antitoxoplasmosis Drugs: Current Advances, Obstacles, and Future Perspectives. J Med Chem 2024; 67:20740-20764. [PMID: 39589152 DOI: 10.1021/acs.jmedchem.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Current therapies for toxoplasmosis rely on a few drugs, most of which have severe side effects, and seeking ideal therapies for different types of toxoplasmosis is a long-term and challenging mission. Research and development (R&D) of novel drugs against Toxoplasma gondii (T. gondii) has focused on two main directions, the structural modification of lead compounds and natural products. Here we summarize the recent advances in the development of anti-T. gondii drugs from these two perspectives and provide comprehensive insights, reflecting on the advantages and selected molecules in each field. This review also focuses on the current obstacles to the development of novel anti-T. gondii agents, proposes comprehensive solutions, and facilitates future development.
Collapse
Affiliation(s)
- Siyang Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Minghao Cai
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Zhendi Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Weixin Gao
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Junjie Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Yuxueqing Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Xiayire Abudouxukuer
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Jili Zhang
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| |
Collapse
|
4
|
Ndlovu MT, Harding CR, Kaschula CH, Chellan P. Synthesis of ferrocenyl benzimidazole derivatives as novel anti- Toxoplasma gondii agents. NEW J CHEM 2024; 48:16415-16428. [PMID: 39268224 PMCID: PMC11385693 DOI: 10.1039/d3nj05116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
Toxoplasmosis, a disease caused by the apicomplexan parasite Toxoplasma gondii, affects up to one third of the global population. Although immunocompetent individuals rarely experience severe symptoms, those with immunodeficiencies may potentially face fatal disease. The frontline treatments are currently sulphadiazine and pyrimethamine, which suffer from adverse side effects, and lack efficiency in clearing parasite cysts from the muscles and brain of patients. To address the need for novel, more effective, and less toxic treatments, four new ferrocenyl benzimidazole complexes 15-18 were synthesised and evaluated against the ΔKu80:mNeonGreen strain of T. gondii. Complexes 15 and 17 were found to be active with EC50 values of 17.9 and 17.5 μM respectively, with comparable activity to pyrimethamine, which had an EC50 value of 13.8 μM, and less effective than sulphadiazine, which had an EC50 value of 2.56 μM. Additionally, the compounds were found to be relatively non-toxic against HEK 293T and PNT1A human cell lines. Further investigations found that the complexes act by generating reactive oxygen species (ROS) through the ferrocenyl moiety. These complexes show potential for the development of new treatments against Toxoplasmosis.
Collapse
Affiliation(s)
- Malcolm T Ndlovu
- Department of Chemistry and Polymer Science, Stellenbosch University Stellenbosch Western Cape South Africa +2721 8083327
| | - Clare R Harding
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow Glasgow UK
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University Stellenbosch Western Cape South Africa +2721 8083327
| | - Prinessa Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University Stellenbosch Western Cape South Africa +2721 8083327
| |
Collapse
|
5
|
Mazzone F, Klischan MKT, Greb J, Smits SHJ, Pietruszka J, Pfeffer K. Synthesis and In vitro evaluation of bichalcones as novel anti-toxoplasma agents. Front Chem 2024; 12:1406307. [PMID: 39104777 PMCID: PMC11298430 DOI: 10.3389/fchem.2024.1406307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, an apicomplexan parasite that infects approximately a third of the world's human population. This disease can cause serious complications during pregnancy and can be fatal in immunocompromised hosts. The current treatment options for toxoplasmosis face several limitations. Thus, to address the urgent medical need for the discovery of novel anti-toxoplasma potential drug candidates, our research focused on exploring a series of monomeric and dimeric chalcones, polyphenolic molecules belonging to the class of flavonoids. Chalcones 1aa-1bg and axially chiral A-A'-connected bichalcones 2aa-2bg were evaluated in vitro against the proliferation of the parasite in a cell-based assay. A comparison of the efficacy demonstrated that, in several cases, bichalcones exhibited increased bioactivity compared to their corresponding monomeric counterparts. Among these compounds, a bichalcone with a phenyl substituent and a methyl moiety 2ab showed the most potent and selective inhibitory activity in the nanomolar range. Both enantiomers of this bichalcone were synthesized using an axially chiral biphenol building block. The biaryl bond was forged using Suzuki cross-coupling in water under micellar catalysis conditions. Separation of the atropisomers of this biphenol building block was conducted by chiral HPLC on a preparative scale. The biological evaluation of the enantiomers revealed that the (R a)-enantiomer (R a)-2ab is the eutomer. These studies suggest that bichalcones may be important drug candidates for further in vivo evaluations for the discovery of anti-toxoplasma drugs.
Collapse
Affiliation(s)
- Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Moritz K. T. Klischan
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Julian Greb
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Nian C, Gan X, Liu Q, Wu Y, Kong M, Zhang P, Jin M, Dong Z, Li W, Wang L, He W, Li X, Wu J. Synthesis and Anti-gastric Cancer Activity by Targeting FGFR1 Pathway of Novel Asymmetric Bis-chalcone Compounds. Curr Med Chem 2024; 31:6521-6541. [PMID: 38847254 DOI: 10.2174/0109298673298420240530093525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Bis-chalcone compounds with symmetrical structures, either isolated from natural products or chemically synthesized, have multiple pharmacological activities. Asymmetric Bis-chalcone compounds have not been reported before, which might be attributed to the synthetic challenges involved, and it remains unknown whether these compounds possess any potential pharmacological activities. AIMS The aim of this study is to investigate the synthesis route of asymmetric bis-chalcone compounds and identify potential candidates with efficient anti-tumor activity. METHODS The two-step structural optimization of the bis-chalcone compounds was carried out sequentially, guided by the screening of the compounds for their growth inhibitory activity against gastric cancer cells by MTT assay. The QSAR model of compounds was established through random forest (RF) algorithm. The activities of the optimal compound J3 on growth inhibition, apoptosis, and apoptosis-inducing protein expression in gastric cancer cells were investigated sequentially by colony formation assay, flow cytometry, and western blotting. Further, the inhibitory effects of J3 on the FGFR1 signaling pathway were explored by Western Blotting, shRNA, and MTT assays. Finally, the in vivo anti-tumor activity and mechanism of J3 were studied through nude mice xenograft assay, western blotting. RESULTS 27 asymmetric bis-chalcone compounds, including two types (N and J) were sequentially designed and synthesized. Some N-class compounds have good inhibitory activity on the growth of gastric cancer cells. The vast majority of J-class compounds optimized on the basis of N3 exhibit excellent inhibitory activity on gastric cancer cell growth. We established a QSAR model (R2 = 0.851627) by applying random forest algorithms. The optimal compound J3, which had better activity, concentration-dependently inhibited the formation of gastric cancer cell colonies and led to cell apoptosis by inducing the expression of the pro-apoptotic protein cleaved PARP in a dose-dependent manner. J3 may exert anti-gastric cancer effects by inhibiting the activation of FGFR1/ERK pathway. Moreover, at a dose of 10 mg/kg/day, J3 inhibited tumor growth in nude mice by nearly 70% in vivo with no significant toxic effect on body weight and organs. CONCLUSION In summary, this study outlines a viable method for the synthesis of novel asymmetric bischalcone compounds. Furthermore, the compound J3 demonstrates substantial promise as a potential candidate for an anti-tumor drug.
Collapse
Affiliation(s)
- Chunhui Nian
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Gan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Qunpeng Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yuna Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou, 325027, China
| | - Miaomiao Kong
- The 1st affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiqin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mingming Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhaojun Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ledan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou, 325027, China
| |
Collapse
|
7
|
Oliveira LR, Trein MR, Assis LR, Rigo GV, Simões LPM, Batista VS, Macedo AJ, Trentin DS, Nascimento-Júnior NM, Tasca T, Regasini LO. Phenolic chalcones as agents against Trichomonas vaginalis. Bioorg Chem 2023; 141:106888. [PMID: 37839143 DOI: 10.1016/j.bioorg.2023.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Trichomonas vaginalis, a flagellated and anaerobic protozoan, is a causative agent of trichomoniasis. This disease is among the world's most common non-viral sexually transmitted infection. A single class drug, nitroimidazoles, is currently available for the trichomoniasis treatment. However, resistant isolates have been identified from unsuccessfully treated patients. Thus, there is a great challenge for a discovery of innovative anti-T. vaginalis agents. As part of our ongoing search for antiprotozoal chalcones, we designed and synthesized a series of 21 phenolic chalcones, which were evaluated against T. vaginalis trophozoites. Structure-activity relationship indicated hydroxyl group plays a role key in antiprotozoal activity. 4'-Hydroxychalcone (4HC) was the most active compound (IC50 = 27.5 µM) and selected for detailed bioassays. In vitro and in vivo evaluations demonstrated 4HC was not toxic against human erythrocytes and Galleria mellonella larvae. Trophozoites of T. vaginalis were treated with 4HC and did not present significant reactive oxygen species (ROS) accumulation. However, compound 4HC was able to increase ROS accumulation in neutrophils coincubated with T. vaginalis. qRT-PCR Experiments indicated that 4HC did not affect the expression of pyruvate:ferredoxin oxidoreductase (PFOR) and β-tubulin genes. In silico simulations, using purine nucleoside phosphorylase of T. vaginalis (TvPNP), corroborated 4HC as a promising ligand. Compound 4HC was able to establish interactions with residues D21, G20, M180, R28, R87 and T90 through hydrophobic interactions, π-donor hydrogen bond and hydrogen bonds. Altogether, these results open new avenues for phenolic chalcones to combat trichomoniasis, a parasitic neglected infection.
Collapse
Affiliation(s)
- Lígia R Oliveira
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), 15054-000 São José do Rio Preto, SP, Brazil
| | - Márcia R Trein
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Letícia R Assis
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), 15054-000 São José do Rio Preto, SP, Brazil
| | - Graziela V Rigo
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Leonardo P M Simões
- Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil
| | - Victor S Batista
- Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil
| | - Alexandre J Macedo
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Danielle S Trentin
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, 90050-170 Porto Alegre, RS, Brazil
| | - Nailton M Nascimento-Júnior
- Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil
| | - Tiana Tasca
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil.
| | - Luis O Regasini
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
8
|
Nematollahi MH, Mehrabani M, Hozhabri Y, Mirtajaddini M, Iravani S. Antiviral and antimicrobial applications of chalcones and their derivatives: From nature to greener synthesis. Heliyon 2023; 9:e20428. [PMID: 37810815 PMCID: PMC10556610 DOI: 10.1016/j.heliyon.2023.e20428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Chalcones and their derivatives have been widely studied due to their versatile pharmacological and biological activities, such as anti-inflammatory, antibacterial, antiviral, and antitumor effects. These compounds have shown suitable antiviral effects through the selective targeting of a variety of viral enzymes, including lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, protein tyrosine phosphatase, topoisomerase-II, protein kinases, integrase/protease, and lactate/isocitrate dehydrogenase, among others. Chalcones and their derivatives have displayed excellent potential for combating pathogenic bacteria and fungi (especially, multidrug-resistant bacteria). However, relevant mechanisms should be further explored, focusing on inhibitory effects against DNA gyrase B, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), and efflux pumps (e.g., NorA), among others. In addition, the antifungal and antiparasitic activities of these compounds (e.g., antitrypanosomal and antileishmanial properties) have prompted additional explorations. Nonetheless, systematic analysis of the relevant mechanisms, biosafety issues, and pharmacological properties, as well as clinical translation studies, are vital for practical applications. Herein, recent advancements pertaining to the antibacterial, antiviral, antiparasitic, and antifungal activities of chalcones and their derivatives are deliberated, focusing on the relevant mechanisms of action, crucial challenges, and future prospects. Furthermore, due to the great importance of greener and more sustainable synthesis of these valuable compounds, especially on an industrial scale, the progress made in this field has been briefly discussed. Hopefully, this review can serve as a catalyst for researchers to delve deeper into the exploration and designing of novel chalcone compounds with medicinal properties, especially against pathogenic viruses and multidrug-resistant bacteria as major causes of concern for human health.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Hozhabri
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryamossadat Mirtajaddini
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| |
Collapse
|
9
|
Desiatkina O, Mösching M, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J, Păunescu E. New Nucleic Base-Tethered Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Compounds: Synthesis and Antiparasitic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238173. [PMID: 36500266 PMCID: PMC9738179 DOI: 10.3390/molecules27238173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Aiming toward compounds with improved anti-Toxoplasma activity by exploiting the parasite auxotrophies, a library of nucleobase-tethered trithiolato-bridged dinuclear ruthenium(II)-arene conjugates was synthesized and evaluated. Structural features such as the type of nucleobase and linking unit were progressively modified. For comparison, diruthenium hybrids with other type of molecules were also synthesized and assessed. A total of 37 compounds (diruthenium conjugates and intermediates) were evaluated in a primary screening for in vitro activity against transgenic Toxoplasma gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in non-infected host cells (human foreskin fibroblasts, HFF) was determined by alamarBlue assay. Twenty compounds strongly impairing parasite proliferation with little effect on HFF viability were subjected to T. gondii β-gal half maximal inhibitory concentration determination (IC50) and their toxicity for HFF was assessed at 2.5 µM. Two promising compounds were identified: 14, ester conjugate with 9-(2-oxyethyl)adenine, and 36, a click conjugate bearing a 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl substituent, with IC50 values of 0.059 and 0.111 µM respectively, significantly lower compared to pyrimethamine standard (IC50 = 0.326 µM). Both 14 and 36 exhibited low toxicity against HFF when applied at 2.5 µM and are candidates for potential treatment options in a suitable in vivo model.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Mösching
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Laboratoire de Parasitologie, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Anti-Toxoplasma gondii agent isolated from Orostachys malacophylla (Pallas) Fischer. Exp Parasitol 2022; 242:108397. [DOI: 10.1016/j.exppara.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
|