2
|
González S, Wall RJ, Thomas J, Braillard S, Brunori G, Díaz IC, Cantizani J, Carvalho S, Castañeda Casado P, Chatelain E, Cotillo I, Fiandor JM, Francisco AF, Grimsditch D, Keenan M, Kelly JM, Kessler A, Luise C, Lyon JJ, MacLean L, Marco M, Martin JJ, Martinez MS, Paterson C, Read KD, Santos-Villarejo A, Zuccotto F, Wyllie S, Miles TJ, De Rycker M. Short-course combination treatment for experimental chronic Chagas disease. Sci Transl Med 2023; 15:eadg8105. [PMID: 38091410 PMCID: PMC7615676 DOI: 10.1126/scitranslmed.adg8105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.
Collapse
Affiliation(s)
- Silvia González
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | | | - Juan Cantizani
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Ignacio Cotillo
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Jose M. Fiandor
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | | | | | - John M. Kelly
- London School for Hygiene and Tropical Medicine, London, UK
| | - Albane Kessler
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Chiara Luise
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Lorna MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Maria Marco
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - J. Julio Martin
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Fabio Zuccotto
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Tim J. Miles
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| |
Collapse
|
3
|
Thomas M, McGonagle K, Rowland P, Robinson DA, Dodd PG, Camino-Díaz I, Campbell L, Cantizani J, Castañeda P, Conn D, Craggs PD, Edwards D, Ferguson L, Fosberry A, Frame L, Goswami P, Hu X, Korczynska J, MacLean L, Martin J, Mutter N, Osuna-Cabello M, Paterson C, Peña I, Pinto EG, Pont C, Riley J, Shishikura Y, Simeons FRC, Stojanovski L, Thomas J, Wrobel K, Young RJ, Zmuda F, Zuccotto F, Read KD, Gilbert IH, Marco M, Miles TJ, Manzano P, De Rycker M. Structure-Guided Design and Synthesis of a Pyridazinone Series of Trypanosoma cruzi Proteasome Inhibitors. J Med Chem 2023; 66:10413-10431. [PMID: 37506194 PMCID: PMC10424187 DOI: 10.1021/acs.jmedchem.3c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 07/30/2023]
Abstract
There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the Leishmania proteasome. A related analogue, active against Trypanosoma cruzi, showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated. Screening a library of phenotypically active analogues against the T. cruzi proteasome identified an active, selective pyridazinone, the development of which is described herein. We obtained a cryo-EM co-structure of proteasome and a key inhibitor and used this to drive optimization of the compounds. Alongside this, optimization of the absorption, distribution, metabolism, and excretion (ADME) properties afforded a suitable compound for mouse efficacy studies. The outcome of these studies is discussed, alongside future plans to further understand the series and its potential to deliver a new treatment for Chagas disease.
Collapse
Affiliation(s)
- Michael
G. Thomas
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Kate McGonagle
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Paul Rowland
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - David A. Robinson
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Peter G. Dodd
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Isabel Camino-Díaz
- GlaxoSmithKline,
Discovery DMPK, IVIVT, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Lorna Campbell
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Juan Cantizani
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Pablo Castañeda
- GlaxoSmithKline,
Discovery DMPK, IVIVT, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Daniel Conn
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Peter D. Craggs
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Darren Edwards
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Liam Ferguson
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Andrew Fosberry
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Laura Frame
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Panchali Goswami
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Xiao Hu
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Justyna Korczynska
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Lorna MacLean
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Julio Martin
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Nicole Mutter
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Maria Osuna-Cabello
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Christy Paterson
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Imanol Peña
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Erika G. Pinto
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Caterina Pont
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Jennifer Riley
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Yoko Shishikura
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Frederick R. C. Simeons
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Laste Stojanovski
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - John Thomas
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Karolina Wrobel
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | | | - Filip Zmuda
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Fabio Zuccotto
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Kevin D. Read
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Ian H. Gilbert
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Maria Marco
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Timothy J. Miles
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Pilar Manzano
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Manu De Rycker
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| |
Collapse
|
4
|
Jacques Dit Lapierre TJW, Cruz MGFDML, Brito NPF, Resende DDM, Souza FDO, Pilau EJ, da Silva MFB, Neves BJ, Murta SMF, Rezende Júnior CDO. Hit-to-lead optimization of a pyrazinylpiperazine series against Leishmania infantum and Leishmania braziliensis. Eur J Med Chem 2023; 256:115445. [PMID: 37156183 DOI: 10.1016/j.ejmech.2023.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
An early hit-to-lead optimization of a novel pyrazinylpiperazine series against L. infantum and L. braziliensis has been performed after an extensive SAR focusing on the benzoyl fragment of hit (4). Deletion of the meta-Cl of (4) led to the obtention of the para-hydroxyl derivative (12), on which the design of most monosubstituted derivatives of the SAR was based. Further optimization of the series, involving disubstituted benzoyl fragments and the hydroxyl substituent of (12), allowed the obtention of a total of 15 compounds with increased antileishmanial potency (IC50 < 10 μM), nine of which displayed activity in the low micromolar range (IC50 < 5 μM). This optimization ultimately identified the ortho, meta-dihydroxyl derivative (46) as an early lead for this series (IC50 (L. infantum) = 2.8 μM, IC50 (L. braziliensis) = 0.2 μM). Additional assessment of some selected compounds against other trypanosomatid parasites revealed that this series is selective towards Leishmania parasites, and in silico ADMET predictions revealed satisfactory profiles for these compounds, allowing further lead optimization of the pyrazinylpiperazine class against Leishmania.
Collapse
Affiliation(s)
| | | | - Nícolas Peterson Ferreira Brito
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil
| | - Daniela de Melo Resende
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG, 30190-002, Brazil
| | - Felipe de Oliveira Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Meryck Felipe Brito da Silva
- Laboratory of Cheminformatics (LabChem), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics (LabChem), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG, 30190-002, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|