1
|
Sharma A, Kumar N, Gulati HK, Rana R, Jyoti, Khanna A, Muskan, Singh JV, Bedi PMS. Antidiabetic potential of thiazolidinedione derivatives with efficient design, molecular docking, structural activity relationship, and biological activity: an update review (2021-2023). Mol Divers 2024:10.1007/s11030-023-10793-6. [PMID: 38253844 DOI: 10.1007/s11030-023-10793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Thiazolidinedione has been used successfully by medicinal chemists all over the world in the development of potent antidiabetic derivatives. The few compounds with excellent antidiabetic potency that we have identified in this review could be used as a lead for further research into additional antidiabetic mechanisms. The information provided in this review regarding the design, biological activity, structure-activity relationships, and docking studies may be useful for scientists who wish to further explore this scaffold in order to fully utilize its biological potential and develop antidiabetic agents that would overcome the limitations of currently available medications for the treatment of diabetes. This review outlines the antidiabetic potential of Thiazolidinedione-based derivatives that have been published in the year 2021- till date.
Collapse
Affiliation(s)
- Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Muskan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | |
Collapse
|
2
|
Krátký M, Nováčková K, Svrčková K, Švarcová M, Štěpánková Š. New 3-amino-2-thioxothiazolidin-4-one-based inhibitors of acetyl- and butyryl-cholinesterase: synthesis and activity. Future Med Chem 2024; 16:59-74. [PMID: 38047370 DOI: 10.4155/fmc-2023-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aim: 2-Thioxothiazolidin-4-one represents a versatile scaffold in drug development. The authors used it to prepare new potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors that can be utilized, e.g., to treat Alzheimer's disease. Materials & methods: 3-Amino-2-thioxothiazolidin-4-one was modified at the amino group or active methylene, using substituted benzaldehydes. The derivatives were evaluated for inhibition of AChE and BChE (Ellman's method). Results & conclusion: The derivatives were obtained with yields of 52-94%. They showed dual inhibition with IC50 values from 13.15 μM; many compounds were superior to rivastigmine. The structure-activity relationship favors nitrobenzylidene and 3,5-dihalogenosalicylidene scaffolds. AChE was inhibited noncompetitively, whereas BChE was inhibited with a mixed type of inhibition. Molecular docking provided insights into molecular interactions. Each enzyme is inhibited by a different binding mode.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Karolína Nováčková
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Katarína Svrčková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Markéta Švarcová
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Šárka Štěpánková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
3
|
Hamdi A, Yaseen M, Ewes WA, Bhat MA, Ziedan NI, El-Shafey HW, Mohamed AAB, Elnagar MR, Haikal A, Othman DIA, Elgazar AA, Abusabaa AHA, Abdelrahman KS, Soltan OM, Elbadawi MM. Development of new thiazolidine-2,4-dione hybrids as aldose reductase inhibitors endowed with antihyperglycaemic activity: design, synthesis, biological investigations, and in silico insights. J Enzyme Inhib Med Chem 2023; 38:2231170. [PMID: 37470409 PMCID: PMC10361003 DOI: 10.1080/14756366.2023.2231170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023] Open
Abstract
This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Noha I Ziedan
- Department of physical, mathematical and Engineering science, Faculty of science, Business and Enterprise, University of Chester, Chester, UK
| | - Hamed W El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed R Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Abdullah Haikal
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dina I A Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed H A Abusabaa
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|