1
|
Parthiban D, Kuppusamy MR, Vanitha C, Gomathi A, Suraksha D. Mangrove tree aerial root extract mediated green synthesis of Ag/Fe 3O 4/rGO nanocomposite and its application as a catalyst for one pot synthesis of 7-phenyl-6H,7H-benzo[4,5]imidazo[2,1-b]chromeno[4,3-d][1,3]thiazin-6-one derivatives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59490-59506. [PMID: 39358656 DOI: 10.1007/s11356-024-35126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we report the green preparation of magnetically separable Ag/Fe3O4/rGO nanocomposites using mangrove tree aerial root extract as a stabilising agent. The morphology, size, chemical composition, magnetic property and other characteristic parameters of synthesised Ag/Fe3O4/rGO nanocomposite were determined by analytical techniques like Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results proved that mangrove tree aerial root extract has the ability to reduce Ag+ ions, graphene oxide (GO) to Ag nanoparticle and reduced graphene oxide (rGO), respectively. The prepared Ag/Fe3O4/rGO nanocomposite was used successfully as a prompt catalyst for synthesis of 7-phenyl-6H,7H-benzo[4,5]imidazo[2,1-b]chromeno[4,3-d][1,3]thiazin-6-one derivatives by one-pot multi-component reaction of 4-hydroxycoumarin (10 mmol), 2-mercaptobenzimidazole (10 mmol) and different arylaldehyde (10 mmol) in the presence of ethanol (10 ml) as an eco-benign solvent at reflux condition. By utilising this protocol, we have constructed 7-phenyl-6H,7H-benzo[4,5]imidazo[2,1-b]chromeno[4,3-d][1,3]thiazin-6-one derivatives in good to excellent yield of 80-90%. This synthesis involves the formation of C-C, C-N and C-S bonds. The synthesised organic heterocyclic compounds were examined for the green matrix properties such as atom economy (AE), E-factor and product mass intensity (PMI). This green protocol is of big interest due to employing simple, non-toxic heterogeneous, separable, reusable Ag/Fe3O4/rGO as an eco-safe heterogeneous catalyst and environmentally benign ethanol as a green solvent without the use of any harmful mineral acid and toxic transition metal catalyst.
Collapse
Affiliation(s)
- Devendiran Parthiban
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Muniyan Ramasamy Kuppusamy
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Chinnaswamy Vanitha
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Ayyanan Gomathi
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Dhanasekaran Suraksha
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India.
| |
Collapse
|
2
|
Li X, Huang X, Zhao Y, Zheng Z, Guo M, Chen Z, Chen P, Li X, Liao J, Jiang M, Cho WJ, Cho YC, Zeng R, Tang Q, Liang G. Design, synthesis and bioactivity evaluation of 4-hydroxycoumarin derivatives as potential anti-inflammatory agents against acute lung injury and colitis. Eur J Med Chem 2024; 272:116487. [PMID: 38759452 DOI: 10.1016/j.ejmech.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 μM and 6.51 μM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyi Huang
- Department of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yunxi Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiwei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mi Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhicao Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Liao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Miao Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Ruifeng Zeng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Qidong Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Citarella A, Vittorio S, Dank C, Ielo L. Syntheses, reactivity, and biological applications of coumarins. Front Chem 2024; 12:1362992. [PMID: 38440776 PMCID: PMC10909861 DOI: 10.3389/fchem.2024.1362992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).
Collapse
Affiliation(s)
- Andrea Citarella
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Turin, Italy
| |
Collapse
|