1
|
Luo M, Ye Y, Tang L, Kan W, Chen L, Li C, Sheng L, Zhou Y, Li J, Xiong B, Wang H, Chen D. Design and development of a series of 4-(piperazin-1-yl)pyrimidines as irreversible menin inhibitors. Eur J Med Chem 2024; 280:116918. [PMID: 39366253 DOI: 10.1016/j.ejmech.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
The interaction between menin and MLL1 protein plays an important role in AML with MLL rearrangement and NPM1 mutation. Blocking the formation of menin-MLL complex can inhibit proliferation and induce differentiation in these cancer subtypes. In development of anticancer drugs, irreversible inhibitors are gaining spotlight as they may have better activities than the reversible analogs. Therefore, we designed and developed a novel series of covalent menin inhibitors. Among these compounds, 37 emerges as a selective and potent inhibitor of MLL fusion protein-expressing leukemic cells. The cellular study indicates 37 has a distinct mechanism of action, in both reducing menin protein levels and downregulating MEN1 transcription. This effect of 37 is not involved in proteasomal degradation, and may directly affect the synthesis of menin protein, which offers a significant advantage in addressing acquired resistance to menin inhibitors. Further study showed that compound 37 has prolonged anti-leukemic action and exhibits promising in vivo efficacy, making it a valuable probe for further menin-MLL interaction studies.
Collapse
Affiliation(s)
- Menglan Luo
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yunfei Ye
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Lu Tang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Weijuan Kan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Cong Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Li Sheng
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Jia Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Hanlin Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
3
|
Li D, Peng X, Hu Z, Li S, Chen J, Pan W. Small molecules targeting selected histone methyltransferases (HMTs) for cancer treatment: Current progress and novel strategies. Eur J Med Chem 2024; 264:115982. [PMID: 38056296 DOI: 10.1016/j.ejmech.2023.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Histone methyltransferases (HMTs) play a critical role in gene post-translational regulation and diverse physiological processes, and are implicated in a plethora of human diseases, especially cancer. Increasing evidences demonstrate that HMTs may serve as a potential therapeutic target for cancer treatment. Thus, the development of HMTs inhibitor have been pursued with steadily increasing interest over the past decade. However, the disadvantages such as insufficient clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of conventional HMT inhibitors. New technologies and methods are imperative to enhance the anticancer activity of HMT inhibitors. In this review, we first review the structure and biological functions of the several essential HMTs, such as EZH2, G9a, PRMT5, and DOT1L. The internal relationship between these HMTs and cancer is also expounded. Next, we mainly focus on the latest progress in the development of HMT modulators encompassing dual-target inhibitors, targeted protein degraders and covalent inhibitors from perspectives such as rational design, pharmacodynamics, pharmacokinetics, and clinical status. Lastly, we also discuss the challenges and future directions for HMT-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 516000, PR China.
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|