1
|
Chen S, Chen X, Qiu D, Wei J, Zhang J, Guo L. Synthesis, pharmacological evaluation, and modeling of novel quaternary ammonium salts derived from β-carboline containing an imidazole moiety as angiogenesis inhibitors. Bioorg Med Chem 2024; 114:117946. [PMID: 39405602 DOI: 10.1016/j.bmc.2024.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024]
Abstract
In this study, a series of novel β-carboline condensed imidazolium derivatives (7a-7y) were designed and synthesized by incorporating imidazolium salt structures into β-carboline. The cytotoxicity of compounds 7a-7y was evaluated in various cancer cell lines, including lung cancer (A549), gastric cancer (BGC-823), mouse colon cancer (CT-26), liver cancer (Bel-7402), and breast cancer (MCF-7), using the MTT assay. Most compounds exhibited significant activity against one or more of the cancer cell lines. Notably, compounds 7 g, 7o, 7r, 7 s, 7u, 7v, 7x, and 7w showed the highest cytotoxic activity (IC50 < 2 μM) in the tested tumor cell lines. Compound 7x demonstrated cytotoxic activities of 1.3 ± 0.3 μM (for BGC-823), 2.4 ± 0.4 μM (against A549), 7.8 ± 0.9 μM (for Bel-7402), and 9.8 ± 1.4 μM (against CT-26). The chick chorioallantoic membrane assay revealed significant anti-angiogenic potential of compound 7x. Molecular imprinting studies suggested the anti-angiogenic effect of compound 7x might be attributed to inhibition of VEGFR2 kinase. Molecular docking and molecular dynamics further indicate that its activity may be primarily associated with the potential inhibition of VEGFR2. Our research outcomes have provided valuable lead compounds for the development of novel antitumor drugs and have offered beneficial insights for subsequent drug design and optimization.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Xiaofei Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Dongping Qiu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Jiahao Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China.
| | - Liang Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Zulkifli SZ, Pungot NH, Saaidin AS, Jani NA, Mohammat MF. Synthesis and diverse biological activities of substituted indole β-carbolines: a review. Nat Prod Res 2024; 38:3793-3806. [PMID: 37770197 DOI: 10.1080/14786419.2023.2261141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
β-Carboline bearing indole is one of the heterocyclic compounds that play a vital role in medicinal chemistry with various pharmacological effects such as anticancer, anti-acetylcholinesterase, anti-inflammation, antimalarial, antibacterial, anti-diabetic, and antioxidant. Over the last two decades, many studies on the synthesis and biological activity of indole β-carboline compounds have been conducted yet there is no appropriate data summary has been presented. Thus, the goal of this review was to highlight the synthesis pathway and bioactivity of substituted indole β-carboline reported from 2005 to date. In addition, this will encourage further investigation into the synthesis and evaluation of new indole β-carboline, in the hope of contributing to the development of potentially new medications for the treatment of various ailments.
Collapse
Affiliation(s)
- Siti Zafirah Zulkifli
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Noor Hidayah Pungot
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Nor Akmalazura Jani
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Ribeiro JLP, Costa I, Silva R, Lopes SMM, Saraiva L, Pinho E Melo TMVD. 3-Tetrazolyl-β-carboline derivatives as potential neuroprotective agents. Bioorg Med Chem 2024; 111:117841. [PMID: 39094526 DOI: 10.1016/j.bmc.2024.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
3-Tetrazolyl-β-carbolines were prepared by the Pictet-Spengler approach using a tryptophan analogue as building block, in which the carboxylic acid was replaced by the bioisosteric tetrazole group. Knowing that β-carbolines are often associated with psychopharmacological effects, the study of the 3-tetrazolyl-β-carbolines as potential neuroprotective agents against Parkinson's disease was investigated. The evaluation of neuroprotective effects against 1-methyl-4-phenylpyridin-1-ium (MPP+)-induced cytotoxicity allowed to identify compounds with relevant neuroprotective activity. One derivative, 3-(1-benzyl-1H-tetrazol-5-yl)-1-(p-dimethylaminophenyl)-β-carboline, stood out for its low cytotoxicity and excellent performance, preventing cell death induced by this neurotoxin. The most promising compounds were also evaluated for their neuroprotective properties against iron (III)-induced cytotoxicity. However, only one 3-tetrazolyl-β-carboline derivative slightly reduced iron-induced cytotoxicity. Overall, the neuroprotective properties of 3-tetrazolyl-β-carbolines have been demonstrated and this finding may contribute to the development of new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- João L P Ribeiro
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences, and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Inês Costa
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - Renata Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - Susana M M Lopes
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences, and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences, and Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Zhang N, Wang C, Xu H, Zheng M, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Alstrostine G Utilizing a Catalytic Asymmetric Desymmetrization Strategy. Angew Chem Int Ed Engl 2024; 63:e202407127. [PMID: 38818628 DOI: 10.1002/anie.202407127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-β-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.
Collapse
Affiliation(s)
- Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Hailong Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Ming Zheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
5
|
Pavić K, Poje G, Pessanha de Carvalho L, Tandarić T, Marinović M, Fontinha D, Held J, Prudêncio M, Piantanida I, Vianello R, Krošl Knežević I, Perković I, Rajić Z. Discovery of harmiprims, harmine-primaquine hybrids, as potent and selective anticancer and antimalarial compounds. Bioorg Med Chem 2024; 105:117734. [PMID: 38677112 DOI: 10.1016/j.bmc.2024.117734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the β-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Goran Poje
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | | | - Tana Tandarić
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden; Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marina Marinović
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ivo Piantanida
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | - Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
6
|
Saxena A, Majee S, Ray D, Saha B. Inhibition of cancer cells by Quinoline-Based compounds: A review with mechanistic insights. Bioorg Med Chem 2024; 103:117681. [PMID: 38492541 DOI: 10.1016/j.bmc.2024.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
This article includes a thorough examination of the inhibitory potential of quinoline-based drugs on cancer cells, as well as an explanation of their modes of action. Quinoline derivatives, due to their various chemical structures and biological activity, have emerged as interesting candidates in the search for new anticancer drugs. The review paper delves into the numerous effects of quinoline-based chemicals in cancer progression, including apoptosis induction, cell cycle modification, and interference with tumor-growth signaling pathways. Mechanistic insights on quinoline derivative interactions with biological targets enlightens their therapeutic potential. However, obstacles such as poor bioavailability, possible off-target effects, and resistance mechanisms make it difficult to get these molecules from benchside to bedside. Addressing these difficulties might be critical for realizing the full therapeutic potential of quinoline-based drugs in cancer treatment.
Collapse
Affiliation(s)
- Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh
| | - Suman Majee
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Devalina Ray
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh.
| |
Collapse
|
7
|
Mousa M, Adly ME, Mahmoud AM, El-Nassan HB. Synthesis of Tetrahydro-β-carboline Derivatives under Electrochemical Conditions in Deep Eutectic Solvents. ACS OMEGA 2024; 9:14198-14209. [PMID: 38559915 PMCID: PMC10975637 DOI: 10.1021/acsomega.3c09790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
In this work, a novel, green, and atom-efficient method for the synthesis of tetrahydro-β-carboline derivatives using electrochemistry (EC) in deep eutectic solvents (DESs) was reported. The EC reaction conditions were optimized to achieve the highest yield. The experimental design was also optimized to perform the reaction in a two-step, one-pot reaction, thereby the time, workup procedure, and solvents needed were all reduced. The new approach achieved our strategy as EC served to decrease the time of reaction, eliminate the use of hazardous catalysts, and lower the energy required for the synthesis of the targeted compounds. On the other side, DESs were used as catalysts, in situ electrolytes, and noninflammable green solvents. The scope of the reaction was investigated using different aromatic aldehydes. Finally, the scalability of the reaction was investigated using a gram-scale reaction that afforded the product in an excellent yield.
Collapse
Affiliation(s)
- Mohamed
O. Mousa
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mina E. Adly
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr M. Mahmoud
- Pharmaceutical
Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hala B. El-Nassan
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Pavić K, Poje G, Carvalho LPD, Held J, Rajić Z. Synthesis, antiproliferative and antiplasmodial evaluation of new chloroquine and mefloquine-based harmiquins. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:537-558. [PMID: 38147482 DOI: 10.2478/acph-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 12/28/2023]
Abstract
Here we present the synthesis and evaluation of the biological activity of new hybrid compounds, ureido-type (UT) harmiquins, based on chloroquine (CQ) or mefloquine (MQ) scaffolds and β-carboline alkaloid harmine against cancer cell lines and Plasmodium falciparum. The hybrids were prepared from the corresponding amines by 1,1'-carbonyldiimidazole (CDI)-mediated synthesis. In vitro evaluation of the biological activity of the title compounds revealed two hit compounds. Testing of the antiproliferative activity of the new UT harmiquins, and previously prepared triazole-(TT) and amide-type (AT) CQ-based harmiquins, against a panel of human cell lines, revealed TT harmiquine 16 as the most promising compound, as it showed pronounced and selective activity against the tumor cell line HepG2 (IC 50 = 5.48 ± 3.35 μmol L-1). Screening of the antiplasmodial activities of UT harmiquins against erythrocytic stages of the Plasmodium life cycle identified CQ-based UT harmiquine 12 as a novel antiplasmodial hit because it displayed low IC 50 values in the submicromolar range against CQ-sensitive and resistant strains (IC 50 0.06 ± 0.01, and 0.19 ± 0.02 μmol L-1, respectively), and exhibited high selectivity against Plasmodium, compared to mammalian cells (SI = 92).
Collapse
Affiliation(s)
- Kristina Pavić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | - Goran Poje
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | | | - Jana Held
- 2University of Tübingen, Institute of Tropical Medicine, 72074, Tübingen Germany
- 3German Center for Infection Research (DZIF), 72074, Tübingen Germany
| | - Zrinka Rajić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| |
Collapse
|