1
|
Batran RZ, Ebaid MS, Nasralla SN, Son NT, Ha NX, Abdelsattar Ibrahim HA, Alkabbani MA, Kasai Y, Imagawa H, Al-Sanea MM, Ibrahim TM, Elshamy AI, Bekhit AA, Eldehna WM, Sabt A. Synthesis and mechanistic insights of Coumarinyl-Indolinone hybrids as potent inhibitors of Leishmania major. Eur J Med Chem 2025; 288:117392. [PMID: 39999741 DOI: 10.1016/j.ejmech.2025.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Leishmaniasis, recognized as a neglected tropical disease, is a major global health issue that impacts millions of individuals across the globe. The limitations of existing treatments underscore the urgent need for novel antileishmanial drugs. In response, this study synthesized and evaluated fifteen hybrid compounds (7a-c, 10a-j, and 13a-b) combining 4-hydroxycoumarin and pyrazolyl indolin-2-one motifs for their in vitro antileishmanial efficacy towards Leishmania major. These molecules demonstrated remarkable activity against the promastigote form, with IC50 values ranging from 1.21 to 7.21 μM, surpassing the reference drug miltefosine (IC50 = 7.83 μM). Assessment against the intracellular amastigote form revealed efficient inhibitory action (IC50: 2.41-9.44 μM vs. 8.07 μM for miltefosine). Compounds 7a and 7b exhibited exceptional antileishmanial activity against both forms while maintaining favorable safety profiles. Mechanistic studies indicated that the most effective compounds act through an antifolate mechanism, targeting pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Molecular docking and dynamics simulations of compounds 7a and 7b revealed strong in-silico binding and stable dynamics against PTR1, suggesting a high potential for enzyme inhibition. These findings present a promising new class of antileishmanial agents targeting the folate pathway.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Sherry N Nasralla
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoim, 10000, Viet Nam
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, 10000, Hanoim, Viet Nam
| | | | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, 11829, Badr City, Cairo, Egypt
| | - Yusuke Kasai
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 72388, Sakaka, Aljouf, Saudi Arabia
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt; Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Adnan A Bekhit
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Bahrain; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., 21648, Alexandria, Egypt.
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Eldehna WM, Roshdy E, Abdulla MH, Zain-Alabdeen AI, Shaldam MA, Alhassan NS, Traiki TB, Al-Sanea MM, El-Hamaky AA, Al-Karmalawy AA, El Kerdawy AM, Abe M, Tawfik HO. Discovery of 1-phenyl-1,2,3-triazole ureas as dual VEGFR-2/JNK-1 type II kinase inhibitors targeting pancreatic cancer. Int J Biol Macromol 2025; 308:142372. [PMID: 40139613 DOI: 10.1016/j.ijbiomac.2025.142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
In oncology, pancreatic cancer (PC) continues to be a problem that requires creative approaches to therapy. This research aims to create dual kinase inhibitors that target VEGFR-2 and JNK-1, two important factors in the angiogenesis and progression of PC. We found compounds with promising anticancer action using phenyltriazolyl piperazine/(piperidine) carboxamides (PTPCs) and phenyltriazolyl phenylureas (PTPUs). Compound 12b was the most effective in inhibiting VEGFR-2 (IC50: 46 nM) and JNK-1 (IC50: 35 nM) and showed the highest activity against PANC-1 cancer cells (IC50: 1.05 μM). Furthermore, 12b altered the caspase-3, Bcl-2, and Bax apoptotic markers. The binding interactions of 12b with target kinases were discovered by in silico investigations. This study emphasizes how dual kinase inhibitors may be a viable way to improve the effectiveness of cancer treatments and deal with resistance mechanisms.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Eslam Roshdy
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8526, Japan; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia.
| | | | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Noura S Alhassan
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia
| | - Anwar A El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Ahmed M El Kerdawy
- School of Health and Care Sciences, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8526, Japan
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
3
|
El-Damasy AK, Kim HJ, Faisal M, Angeli A, Elsawi AE, Eldehna WM, Supuran CT, Keum G. Novel N-(3-(1-(4-sulfamoylphenyl)triazol-4-yl)phenyl)benzamide Derivatives as Potent Carbonic Anhydrase Inhibitors with Broad-Spectrum Anticancer Activity: Leveraging Tail and Dual-Tail Approaches. J Med Chem 2025; 68:3764-3781. [PMID: 39818802 DOI: 10.1021/acs.jmedchem.4c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Carbonic anhydrases (CAs) IX and XII are crucial for the survival and metastasis of solid tumors under hypoxic conditions. We designed compounds 7a-s, integrating triazole and benzenesulfonamide scaffolds known for inhibiting tumor-associated CAs IX/XII. Initial synthesis included compounds 7a-e, followed by diversification with small hydrophobic groups (7f-m) and hydrophilic heterocyclic secondary amines (7n-s). Compounds were evaluated against CA II, IX, and XII to assess activity and selectivity. Chlorinated derivative 7l exhibited the highest efficacy against CA IX (KI = 0.317 μM) and ditrifluoromethylated 7j against CA XII (KI = 0.081 μM). Subsequent testing on 60 cancer cell lines at 10 μM revealed promising anticancer activity, especially for dimethylated derivative 7h (CA IX, KI = 1.324 μM; CA XII, KI = 0.435 μM), with GI50 values ranging from 0.361 to 9.21 μM. Molecular docking analyses elucidated binding mechanisms, highlighting potential inhibitory actions of compound 7h on CAs IX and XII.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hyun Ji Kim
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Muhammad Faisal
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box, Kafrelsheikh 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box, Kafrelsheikh 33516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Gyochang Keum
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
El-Saghier AM, Hashem H, Maher SA, Enaili SS, Alkhammash A, Bräse S, Aziz HA. Design, Synthesis, Anticancer Screening, and Mechanistic Study of Spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide Derivatives. Int J Mol Sci 2025; 26:863. [PMID: 39859577 PMCID: PMC11766273 DOI: 10.3390/ijms26020863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound 1) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated isoforms of carbonic anhydrase. Compound 1 demonstrated considerable efficacy against the renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC50 values of 7.01 ± 0.39, 24.3 ± 1.29, and 9.55 ± 0.51 µM, respectively. In comparison, doxorubicin exhibited IC50 values of 13.54 ± 0.82, 13.50 ± 0.71, and 6.08 ± 0.32 µM for the corresponding cell lines. Importantly, compound 1 exhibited lower toxicity to the normal WI 38 cell line than doxorubicin, with IC50 values of 46.20 ± 2.59 and 18.13 ± 0.93 µM, respectively, indicating greater selectivity of the target compound compared to the standard anticancer agent doxorubicin. Also, mechanistic experiments demonstrated that compound 1 exhibits inhibitory activity against human carbonic anhydrase hCA IX and XII, with IC50 values of 0.477 ± 0.03 and 1.933 ± 0.11 μM, respectively, indicating enhanced selectivity for cancer-associated isoforms over cytosolic isoforms hCA I and II, with IC50 values of 7.353 ± 0.36 and 12.560 ± 0.74 μM, respectively. Cell cycle studies revealed that compound 1 caused G1 phase arrest in RXF393 cells, and apoptosis experiments verified a substantial induction of apoptosis with significant levels of early and late apoptosis, as well as necrosis (11.69%, 19.78%, and 3.66%, respectively), comparable to those induced by the conventional cytotoxic agent doxorubicin, at 9.91%, 23.37%, and 6.16%, respectively. Molecular docking experiments confirmed the strong binding affinity of compound 1 to the active sites of hCA IX and XII, highlighting significant interactions with zinc-binding groups and hydrophobic residues. These findings underscore the target compound's potential as a viable anticancer agent via targeting CA.
Collapse
Affiliation(s)
- Ahmed M. El-Saghier
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Sherif A. Maher
- Department of Biochemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt;
| | - Souhaila S. Enaili
- Department of Chemistry, Faculty of Science, University of Zawia, Az Zawiyah 16418, Libya;
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Stefan Bräse
- Institute for Biological and Chemical System, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Hossameldin A. Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt;
| |
Collapse
|
5
|
Zengin M, Unsal Tan O, Sabuncuoglu S, Arafa RK, Balkan A. Design and Discovery of New Dual Carbonic Anhydrase IX and VEGFR-2 Inhibitors Based on the Benzenesulfonamide-Bearing 4-Thiazolidinones/2,4-Thiazolidinediones Scaffold. Drug Dev Res 2024; 85:e70030. [PMID: 39660547 DOI: 10.1002/ddr.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Dual-targeting drug design has become a popular approach in investigating and developing potent anticancer agents. In this regard, carbonic anhydrase (CAIX) and vascular endothelial growth factor receptor (VEGFR-2) are emerging as highly effective targets in the battle against cancer. In the present study, two series of 4-thiazolidinones/2,4-thiazolidinediones carrying 2-methylbenzenesulfonamide derivatives were designed and synthesized as potential dual CAIX/VEGFR-2 inhibitors. All the target compounds were evaluated against CAIX enzyme compared to dorzolamide and acetazolamide, subsequently the most potent CAIX inhibitors (3a, 3b, 3o, 6d, 6g, and 6i) were selected to evaluate their inhibitory activity against VEGFR-2 using sorafenib as a reference drug. These compounds were also evaluated against MCF-7 breast cancer cells and the murine fibroblast 3T3 cell line. According to the results, 3b (CAIX IC50 = 0.035 µM, VEGFR-2 IC50 = 0.093 µM) and 6i (CAIX IC50 = 0.041 µM, VEGFR-2 IC50 = 0.048 µM) emerged the most potent compounds against CAIX and VEGFR-2. Furthermore, docking studies of selected compounds were performed with the CAIX and the tyrosine kinase domain of VEGFR-2 to comprehend the ligand-binding interactions. Physicochemical predictions were examined using in silico techniques. In conclusion, these scaffolds present promising leads and furnish promising chemical backbones for the design of potent dual CAIX and VEGFR-2 inhibitors.b.
Collapse
Affiliation(s)
- Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, Egypt
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Cairo, Egypt
| | - Ayla Balkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Elkotamy MS, Elgohary MK, Alkabbani MA, Salem R, Eldehna WM, Abdel-Aziz HA. Spiro-fused indoline-quinazoline hybrids as smart bombs against TNF-α-mediated inflammation. Int J Biol Macromol 2024; 283:137554. [PMID: 39549799 DOI: 10.1016/j.ijbiomac.2024.137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Inflammation is central to numerous diseases, highlighting the need for new anti-inflammatory agents. This study explores the potential of novel spirofused indoline-quinazoline hybrids (4a-p) as anti-inflammatory compounds, inspired by a spiroisatin analogue (VI) that showed modest TNF-α inhibition. We aimed to enhance activity by modifying the isatin scaffold: first, introducing N-alkylation (propyl, butyl, or isobutyl) to improve hydrophobic interactions within the TNF-α dimer active site; second, adding halogens (F, Cl, Br) at the 5-position to increase lipophilicity. Anti-inflammatory activity against TNF-α was confirmed in-vivo for all synthesized analogues, with 4b, 4e, 4k, and 4n emerging as the top candidates. Further studies on these four compounds assessed their analgesic effects, as well as their impact on PGE2, NF-κB, paw thickness, and paw weight. In-vitro analyses revealed nanomolar TNFR2-TNF-α binding inhibition for the four leads. Safety evaluations included histopathology, ulcerogenic potential, kidney and liver functions, and acute hemotoxicity. In-silico studies examined drug-likeness, pharmacokinetics, and TNF-α dimer interactions. These results suggest that the four lead compounds possess promising profiles compared to standard therapies.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo, 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
7
|
Marques CS, Brandão P, Burke AJ. Targeting Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2): Latest Insights on Synthetic Strategies. Molecules 2024; 29:5341. [PMID: 39598729 PMCID: PMC11596329 DOI: 10.3390/molecules29225341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) is a crucial mediator of angiogenesis, playing a pivotal role in both normal physiological processes and cancer progression. Tumors harness VEGFR-2 signaling to promote abnormal blood vessel growth, which is a key step in the metastasis process, making it a valuable target for anticancer drug development. While there are VEGFR-2 inhibitors approved for therapeutic use, they face challenges like drug resistance, off-target effects, and adverse side effects, limiting their effectiveness. The quest for new drug candidates with VEGFR-2 inhibitory activity often starts with the selection of key structural motifs present in molecules currently used in clinical practice, expanding the chemical space by generating novel derivatives bearing one or more of these moieties. This review provides an overview of recent advances in the development of novel VEGFR-2 inhibitors, focusing on the synthesis of new drug candidates with promising antiproliferative and VEGFR-2 inhibition activities, organizing them by relevant structural features.
Collapse
Affiliation(s)
- Carolina S. Marques
- LAQV-REQUIMTE, Institute for Research and Advanced Training, University of Évora, Rua Romão Ramalho, 59, 7000-641 Evora, Portugal
| | - Pedro Brandão
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitátio, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Associate Laboratory i4HB–Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Anthony J. Burke
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| |
Collapse
|
8
|
Eldehna WM, Elsayed ZM, Ammara A, El Hassab MA, Almahli H, Fares M, Nocentini A, Supuran CT, Abou-Seri SM. Discovery of new sulfonamide-tethered 2-aryl-4-anilinoquinazolines as the first-in-class dual carbonic anhydrase and EGFR inhibitors. Int J Biol Macromol 2024; 279:135010. [PMID: 39197616 DOI: 10.1016/j.ijbiomac.2024.135010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In today's medical field, there is a growing trend of exploiting a single small molecule to target two different molecular targets concurrently. This approach is proving to be highly effective in fighting against cancer. The 4-anilinoquinazoline scaffold, known for its potential in cancer therapy and its effectiveness as a leading class of tyrosine kinase inhibitors, was employed to develop a novel series of anilinoquinazoline-sulfonamides (AQSs) (8a-d, 9a-f, and 10a-d) as dual inhibitors of the tumor-associated carbonic anhydrases (CA) IX/XII and EGFR. 2-(3-Methoxyphenyl)quinazoline bearing p-sulfanilamide 10b elicited superior hCA IX and XII inhibition in the low nanomolar range (KIs = 38.4 and 8.9 nM, respectively). Also, 10b shined as a potent and selective EGFR inhibitor, boasting an impressive IC50 value of 51.2 ± 0.97 nM, surpassing the reference EGFR inhibitor Erlotinib (IC50 = 80 ± 2.0 nM). Compound 10b exhibited broadest-spectrum antiproliferative activity against the NCI-tumor panel with a mean GI% value of 68 %. Of special interest, 10b demonstrated potent growth inhibition (GI% ≥ 80-97 %) toward cell lines reported to express high levels of EGFR belonging to renal, colon, breast, and lung cancers. Compound 10b's molecular docking in the CA IX/XII and EGFR active sites revealed binding modes that justify its potent enzyme inhibitory effects. Additionally, molecular dynamic simulations demonstrated strong and stable interactions of 10b with the binding sites of these targets.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Firenze, Italy
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ERU, Badr City, Cairo 11829, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Firenze, Italy.
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| |
Collapse
|
9
|
Elsebaie HA, Abdulla MH, Elsayed ZM, Shaldam MA, Tawfik HO, Morsy SN, Vaali Mohammed MA, Bin Traiki T, Elkaeed EB, Abdel-Aziz HA, Eldehna WM. Unveiling the potential of isatin-grafted phenyl-1,2,3-triazole derivatives as dual VEGFR-2/STAT-3 inhibitors: Design, synthesis and biological assessments. Bioorg Chem 2024; 151:107626. [PMID: 39013242 DOI: 10.1016/j.bioorg.2024.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
The use of VEGFR-2 inhibitors as a stand-alone treatment has proven to be ineffective in clinical trials due to the robustness of cellular response loops that lead to treatment resistance when only targeting VEGFR-2. The over-activation of the signal transducer/activator of transcription 3 (STAT-3) is expected to significantly impact treatment failure and resistance to VEGFR-2 inhibitors. In this study, we propose the concept of combined inhibition of VEGFR-2 and STAT-3 to combat induced STAT-3-mediated resistance to VEGFR-2 inhibition therapy. To explore this, we synthesized new isatin-grafted phenyl-1,2,3-triazole derivatives "6a-n" and "9a-f". Screening on PANC1 and PC3 cancer cell lines revealed that compounds 6b, 6 k, 9c, and 9f exhibited sub-micromolar ranges. The most promising molecules, 6b, 6 k, 9c, and 9f, demonstrated the highest inhibition when tested as dual inhibitors on VEGFR-2 (with IC50 range 53-82 nM, respectively) and STAT-3 (with IC50 range 5.63-10.25 nM). In particular, triazole 9f showed the best results towards both targets. Inspired by these findings, we investigated whether 9f has the ability to trigger apoptosis in prostate cancer PC3 cells via the assessment of the expression levels of the apoptotic markers Caspase-8, Bcl-2, Bax, and Caspase-9. Treatment of the PC3 cells with compound 9f significantly inhibited the protein expression levels of VEGFR-2 and STAT-3 kinases compared to the control.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samar N Morsy
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mansoor-Ali Vaali Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
10
|
Thakur A, Rana M, Mishra A, Kaur C, Pan CH, Nepali K. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions. Eur J Med Chem 2024; 272:116472. [PMID: 38728867 DOI: 10.1016/j.ejmech.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
"A journey of mixed emotions" is a quote that best describes the progress chart of vascular endothelial growth factor receptor (VEGFR) inhibitors as cancer therapeutics in the last decade. Exhilarated with the Food and Drug Administration (FDA) approvals of numerous VEGFR inhibitors coupled with the annoyance of encountering the complications associated with their use, drug discovery enthusiasts are on their toes with an unswerving determination to enhance the rate of translation of VEGFR inhibitors from preclinical to clinical stage. The recently crafted armory of VEGFR inhibitors is a testament to their growing dominance over other antiangiogenic therapies for cancer treatment. This review perspicuously underscores the earnest attempts of the researchers to extract the antiproliferative potential of VEGFR inhibitors through the design of mechanistically diverse structural assemblages. Moreover, this review encompasses sections on structural/molecular properties and physiological functions of VEGFR, FDA-approved VEGFR inhibitors, and hurdles restricting the activity range/clinical applicability of VEGFR targeting antitumor agents. In addition, tactics to overcome the limitations of VEGFR inhibitors are discussed. A clear-cut viewpoint transmitted through this compilation can provide practical directions to push the cart of VEGFR inhibitors to advanced-stage clinical investigations in diverse malignancies.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
11
|
Hefny SM, El-Moselhy TF, El-Din N, Giovannuzzi S, Bin Traiki T, Vaali-Mohammed MA, El-Dessouki AM, Yamaguchi K, Sugiura M, Shaldam MA, Supuran CT, Abdulla MH, Eldehna WM, Tawfik HO. Discovery and Mechanistic Studies of Dual-Target Hits for Carbonic Anhydrase IX and VEGFR-2 as Potential Agents for Solid Tumors: X-ray, In Vitro, In Vivo, and In Silico Investigations of Coumarin-Based Thiazoles. J Med Chem 2024. [PMID: 38642371 DOI: 10.1021/acs.jmedchem.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza 12566, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
12
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
13
|
Khaleel EF, Sabt A, Korycka-Machala M, Badi RM, Son NT, Ha NX, Hamissa MF, Elsawi AE, Elkaeed EB, Dziadek B, Eldehna WM, Dziadek J. Identification of new anti-mycobacterial agents based on quinoline-isatin hybrids targeting enoyl acyl carrier protein reductase (InhA). Bioorg Chem 2024; 144:107138. [PMID: 38262087 DOI: 10.1016/j.bioorg.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Tuberculosis (TB) is a global issue that poses a significant economic burden as a result of the ongoing emergence of drug-resistant strains. The urgent requirement for the development of novel antitubercular drugs can be addressed by targeting specific enzymes. One such enzyme, Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein (enoyl-ACP) reductase (InhA), plays a crucial role in the survival of the MTB bacterium. In this research study, a series of hybrid compounds combining quinolone and isatin were synthesized and assessed for their effectiveness against MTB, as well as their ability to inhibit the activity of the InhA enzyme in this bacterium. Among the compounds tested, 7a and 5g exhibited the most potent inhibitory activity against MTB, with minimum inhibitory concentration (MIC) values of 55 and 62.5 µg/mL, respectively. These compounds were further evaluated for their inhibitory effects on InhA and demonstrated significant activity compared to the reference drug Isoniazid (INH), with IC50 values of 0.35 ± 0.01 and 1.56 ± 0.06 µM, respectively. Molecular docking studies investigated the interactions between compounds 7a and 5g and the target enzyme, revealing hydrophobic contacts with important amino acid residues in the active site. To further confirm the stability of the complexes formed by 5g and 7a with the target enzyme, molecular dynamic simulations were employed, which demonstrated that both compounds 7a and 5g undergo minor structural changes and remain nearly stable throughout the simulated process, as assessed through RMSD, RMSF, and Rg values.
Collapse
Affiliation(s)
- Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo 12622, Egypt
| | - Malgorzata Korycka-Machala
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 10000, Viet Nam
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi 10000, Viet Nam
| | - Mohamed Farouk Hamissa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | - Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Bozena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Jaroslaw Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
14
|
Higazy S, Samir N, El-Khouly A, Giovannuzzi S, Begines P, Gaber HM, Supuran CT, Abouzid KAM. Identification of thienopyrimidine derivatives tethered with sulfonamide and other moieties as carbonic anhydrase inhibitors: Design, synthesis and anti-proliferative activity. Bioorg Chem 2024; 144:107089. [PMID: 38237393 DOI: 10.1016/j.bioorg.2023.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Eighteen novel compounds harboring the privileged thienopyrimidine scaffold (5a-q, and 6a),were designed based on molecular hybridization strategy. These compounds were synthesized and tested for their inhibitory activity against four different carbonic anhydrase isoforms: CA I, II, IX, and XII. Microwave and conventional techniques were applied for their synthesis. Compounds 5b, 5g, 5l, and 5p showed the highest inhibition activity against the four CA isoforms. Compound 5p exhibited promising inhibitory activity against CA II, CA IX and CA XII with KI values of8.6, 13.8, and 19 nM, respectively, relative to AAZ, where KIs = 12, 25, and 5.7 nM, respectively. Also, compound 5 l showed significant activity against the tumor-associated isoform CA IX with KI = 16.1 nM. All the newly synthesized compounds were also screened for their anticancer activity against NCI 60 cancer cell lines at a 10 µM concentration. Compound 5n showed 80.38, 83.95, and 87.39 % growth inhibition against the leukemic cell lines CCRF-CEM, HL-60 (TB), and RPMI-8226, respectively. Also, 5 h showed 87.57 % growth inhibition against breast cancer cell line MDA-MB-468; and 66.58 and 60.95 % inhibitionagainst renal cancer cell lines UO-31, and ACHN, respectively. A molecular docking studywas carried out to predict binding modes of our synthesized compounds in the binding pockets of the four carbonic anhydrase isoforms, and results revealed that compounds 5b, 5g, 5l, and 5p succeeded in mimicking the binding mode of AAZ through metal coordination with Zn+2 ion and binding to the amino acids Thr199, His94, and His96 that are critical for activity.
Collapse
Affiliation(s)
| | - Nermin Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Ahmed El-Khouly
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Sadat City, Egypt; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jordan
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Paloma Begines
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | | | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy.
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
15
|
Aboshouk DR, Youssef MA, Bekheit MS, Hamed AR, Girgis AS. Antineoplastic indole-containing compounds with potential VEGFR inhibitory properties. RSC Adv 2024; 14:5690-5728. [PMID: 38362086 PMCID: PMC10866129 DOI: 10.1039/d3ra08962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Cancer is one of the most significant health challenges worldwide. Various techniques, tools and therapeutics/materials have been developed in the last few decades for the treatment of cancer, together with great interest, funding and efforts from the scientific society. However, all the reported studies and efforts seem insufficient to combat the various types of cancer, especially the advanced ones. The overexpression of tyrosine kinases is associated with cancer proliferation and/or metastasis. VEGF, an important category of tyrosine kinases, and its receptors (VEGFR) are hyper-activated in different cancers. Accordingly, they are known as important factors in the angiogenesis of different tumors and are considered in the development of effective therapeutic approaches for controlling many types of cancer. In this case, targeted therapeutic approaches are preferable to the traditional non-selective approaches to minimize the side effects and drawbacks associated with treatment. Several indole-containing compounds have been identified as effective agents against VEGFR. Herein, we present a summary of the recent indolyl analogs reported within the last decade (2012-2023) with potential antineoplastic and VEGFR inhibitory properties. The most important drugs, natural products, synthesized potent compounds and promising hits/leads are highlighted. Indoles functionalized and conjugated with various heterocycles beside spiroindoles are also considered.
Collapse
Affiliation(s)
- Dalia R Aboshouk
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - M Adel Youssef
- Department of Chemistry, Faculty of Science, Helwan University Helwan Egypt
| | - Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department, National Research Centre Dokki Giza 12622 Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
16
|
Eldehna WM, Al-Ansary GH, Al-Warhi T, Jaballah MY, Elaasser M, Rashed M. Identification of novel ureido benzothiophenes as dual VEGFR-2/EGFR anticancer agents. Bioorg Chem 2024; 143:107037. [PMID: 38134521 DOI: 10.1016/j.bioorg.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Presently, dual-targeting by a single small molecule stands out as a fruitful cancer-fighting strategy. Joining the global effort to fight cancer, a leading cause of death worldwide, we report in this study a novel set for benzothiophene-based aryl urea derivatives as potential anti-proliferative candidates endowed with dual VEGFR-2/EGFR inhibitory activities. The prepared ureido benzothiophenes 6a-r have been evaluated for their anticancer action on a panel of tumor cell lines, namely PanC-1, MCF-7, and HepG2 cells. Most newly synthesized benzo[b]thiophene ureas disclosed effective cytotoxic activities against the examined cancer cell lines. In particular, compound 6q, with an appended 4-trifluoromethoxy group on the terminal phenyl ring, exhibited the most significant cytotoxic activity in MCF-7 with IC50 3.86 ± 0.72 ug/mL; IC50 of 3.65 ± 0.18 ug/ml in PanC-1 cell line and an IC50 of 4.78 ± 0.06 ug/ml in HepG2. After that, derivatives that exhibited the most potent cytotoxic activities (6g, 6j, 6q, and 6r) were further evaluated as VEGFR-2 and EGFR inhibitors. Fortunately, they displayed low nanomolar IC50 values against both enzymes, where compound 6q emerged to possess superior inhibitory effects towards both EGFR and VEGFR-2 with IC50 46.6 nM and 11.3 nM simultaneously compared to the reference medications Erlotinib and Sorafenib, respectively. The docked structure of 6q within the catalytic region of VEGFR-2 and EGFR kinases was acquired and studied so that we could investigate potential binding mechanisms for the target ureido benzothiophenes. Hence, the benzothiophene-based aryl urea scaffold has great potential for advancing the development of highly effective dual inhibitors targeting both EGFR and VEGFR-2, which can serve as effective candidates for anticancer therapy.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Mahmoud Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
17
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
18
|
Coandă M, Limban C, Nuță DC. Small Schiff Base Molecules-A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:75. [PMID: 38247634 PMCID: PMC10812491 DOI: 10.3390/antibiotics13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.
Collapse
Affiliation(s)
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | | |
Collapse
|