1
|
Semenova E, Guo A, Liang H, Hernandez CJ, John EB, Thaker VV. The expanding landscape of genetic causes of obesity. Pediatr Res 2024:10.1038/s41390-024-03780-6. [PMID: 39690244 DOI: 10.1038/s41390-024-03780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
Obesity and weight regulation disorders are determined by the combined effects of genetics and environment. Polygenic obesity results from the combination of common variants in several genes which predisposes the individual to obesity and its related complications. In contrast, monogenic obesity results from changes in single genes, especially those in leptin-melanocortin pathway, and presents with early onset severe obesity, with or without other syndromic features. Rare variants in melanocortin 4 receptor are the commonest form of monogenic obesity. In addition, structural variation in small or large segments of chromosomes may also present with syndromic forms of obesity. Prader-Willi Syndrome, caused by imprinting errors in chromosome 15q11-13, is the most prevalent genetic cause of severe hyperphagia and obesity. With the advances in technologies, the past decade has witnessed a revolution in the identification of novel genetic causes of obesity, primarily in genes related to the leptin melanocortin pathway. The availability of safe melanocortin analogs holds the potential for targeted therapies for some of these disorders. This review summarizes known and novel rare genetic forms of obesity, along with approaches for the clinical investigation of copy number and sequence variants. The goal is to provide a reference for practicing clinicians to encourage genetic testing in obesity. IMPACT: What does this article add to the existing literature? Genetic obesity is an expanding frontier with potential to change management. Here, we summarize current information on the genetic causes of obesity and provide guidance for genetic testing. Emerging treatments may provide targeted precise treatment and change management practices.
Collapse
Affiliation(s)
- Ekaterina Semenova
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Guo
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Harry Liang
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cindy J Hernandez
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Ella B John
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Abstract
Gains and losses of large segments of genomic DNA, known as copy number variants (CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic and molecular methods with different detection capabilities to detect clinically relevant CNVs. In this review, we summarize methodological progress from conventional approaches to current state of the art techniques capable of detecting CNVs from a few bases up to several megabases. Although the recent rapid progress of sequencing methods has enabled precise detection of CNVs, determining their functional effect on cellular and whole-body physiology remains a challenge. Here, we provide a comprehensive list of databases and bioinformatics tools that may serve as useful assets for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV detection and interpretation.
Collapse
|
3
|
Pang JMB, Gorringe KL, Wong SQ, Dobrovic A, Campbell IG, Fox SB. Appraisal of the technologies and review of the genomic landscape of ductal carcinoma in situ of the breast. Breast Cancer Res 2015; 17:80. [PMID: 26078038 PMCID: PMC4469314 DOI: 10.1186/s13058-015-0586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ductal carcinoma in situ is a biologically diverse entity. Whereas some lesions are cured by local surgical excision, others recur as in situ disease or progress to invasive carcinoma with subsequent potential for metastatic spread. Reliable prognostic biomarkers are therefore desirable for appropriate clinical management but remain elusive. In common with invasive breast cancer, ductal carcinoma in situ exhibits many genomic changes, predominantly copy number alterations. Although studies have revealed the genomic heterogeneity within individual ductal carcinoma in situ lesions and the association of certain copy number alterations with nuclear grade, none of the genomic changes defined so far is consistently associated with invasive transformation or recurrence risk in pure ductal carcinoma in situ. This article will review the current landscape of genomic alterations in ductal carcinoma in situ and their potential as prognostic biomarkers together with the technologies used to define these.
Collapse
Affiliation(s)
- Jia-Min B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| | - Kylie L Gorringe
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen Q Wong
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Translational Research Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Alexander Dobrovic
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Translational Genomics & Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Studley Road, Heidelberg, VIC, 3084, Australia.
| | - Ian G Campbell
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Ceulemans S, van der Ven K, Del-Favero J. Targeted screening and validation of copy number variations. Methods Mol Biol 2012; 838:311-28. [PMID: 22228019 DOI: 10.1007/978-1-61779-507-7_15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The accessibility of genome-wide screening technologies considerably facilitated the identification and characterization of copy number variations (CNVs). The increasing amount of available data describing these variants, clearly demonstrates their abundance in the human genome. This observation shows that not only SNPs, but also CNVs and other structural variants strongly contribute to genetic variation. Even though not all structural variants have an obvious phenotypic effect, there is evidence that CNVs influence gene dosage and hence can have profound effects on human disease susceptibility, disease manifestation, and disease severity. Therefore, CNV screening and analysis methodologies, specifically focusing on disease-related CNVs are actively progressing. This chapter specifically describes different techniques currently available for the targeted screening and validation of CNVs. We not only provide an overview of all these CNV analysis methods, but also address their strong and weak points. Methods covered include fluorescence in situ hybridization (FISH), quantitative real-time PCR (qPCR), paralogue ratio test (PRT), molecular copy-number counting (MCC), and multiplex PCR-based approaches, such as multiplex amplifiable probe hybridization (MAPH), multiplex ligation-dependent probe amplification (MLPA), multiplex PCR-based real-time invader assay (mPCR-RETINA), quantitative multiplex PCR of short fluorescent fragments (QMPSF), and multiplex amplicon quantification (MAQ). We end with some general remarks and conclusions, furthermore briefly addressing the future perspectives.
Collapse
Affiliation(s)
- Shana Ceulemans
- Applied Molecular Genomics Unit, VIB, Department of Molecular Genetics, Flanders, Belgium
| | | | | |
Collapse
|
5
|
Kousoulidou L, Sismani C, Patsalis PC. Multiplex Amplifiable Probe Hybridization (MAPH) methodology as an alternative to comparative genomic hybridization (CGH). Methods Mol Biol 2010; 653:47-71. [PMID: 20721737 DOI: 10.1007/978-1-60761-759-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Genomic imbalances in locus copy-number are highly significant for the diagnosis and prognosis of cancer. Rapidly progressing DNA microarray technologies detect such pathogenic copy-number changes in the genome with high throughput, efficiency, and resolution. A variety of different microarray-based approaches have emerged, with array comparative genomic hybridization (array-CGH) being the method of choice in current clinical practice. Here we describe an alternative microarray-based technique called array-MAPH, derived from conventional Multiplex Amplifiable Probe Hybridization (MAPH).The main novelty of array-MAPH is the directed reduction of test DNA complexity prior to hybridization, yielding a mixture of specific probes, identical to target sequences on the microarray and thus increasing hybridization specificity. Unique amplifiable 400-600 bp fragments can be designed for any genomic region of interest, PCR-amplified, and spotted onto arrays as targets. The same sequences are combined into a probe mixture and hybridized to genomic DNA immobilized on a membrane. Bound probes are recovered by quantitative PCR and hybridized to the array. Array-MAPH can be used for the detection of small-scale copy-number changes, thereby providing new insights into the genetic basis of several diseases, including cancer.
Collapse
Affiliation(s)
- Ludmila Kousoulidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | |
Collapse
|
6
|
Bashiardes S, Kousoulidou L, van Bokhoven H, Ropers HH, Chelly J, Moraine C, de Brouwer APM, Van Esch H, Froyen G, Patsalis PC. A new chromosome x exon-specific microarray platform for screening of patients with X-linked disorders. J Mol Diagn 2009; 11:562-8. [PMID: 19779134 DOI: 10.2353/jmoldx.2009.090086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent studies and advances in high-density oligonucleotide arrays have shown that microdeletions and microduplications occur at a high frequency in the human genome, causing various genetic conditions including mental retardation. Thus far little is known about the pathways leading to this disease, and implementation of microarrays is hampered by their increasing cost and complexity, underlining the need for new diagnostic tools. The aim of this study was to introduce a new targeted platform called "chromosome X exon-specific array" and to apply this new platform to screening of 20 families (including one blind positive control) with suspected X-linked mental retardation, to identify new causative X-linked mental retardation genes. The new microarray contains of 21,939 oligonucleotides covering 92.9% of all exons of all genes on chromosome X. Patient screening resulted in successful identification of the blind positive control included in the sample of 20 families, and one of the remaining 19 families was found to carry a 1.78-kilobase deletion involving all exons of pseudogene BRAF2. The BRAF2 deletion segregated in the family and was not found in 200 normal male samples, and no copy number variations are reported in this region. Further studies and focused investigation of X-linked disorders have the potential to reveal the molecular basis of human genetic pathological conditions that are caused by copy-number changes in chromosome X genes.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Cyprus Institute of Neurology and Genetics, PO Box 23462, 1683 Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Array-MAPH: a methodology for the detection of locus copy-number changes in complex genomes. Nat Protoc 2008; 3:849-65. [DOI: 10.1038/nprot.2008.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Kousoulidou L, Männik K, Zilina O, Parkel S, Palta P, Remm M, Kurg A, Patsalis PC. Application of two different microarray-based copy-number detection methodologies – array-comparative genomic hybridization and array-multiplex amplifiable probe hybridization – with identical amplifiable target sequences. Clin Chem Lab Med 2008; 46:722-4. [DOI: 10.1515/cclm.2008.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Hung CC, Chen CP, Lin SP, Chien SC, Lee CN, Cheng WF, Hsieh WS, Liu MS, Su YN, Lin WL. Quantitative Assay of Deletion or Duplication Genotype by Capillary Electrophoresis System: Application in Prader–Willi Syndrome and Duchenne Muscular Dystrophy. Clin Chem 2006; 52:2203-10. [PMID: 17040959 DOI: 10.1373/clinchem.2006.071118] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background: Deletions and duplications involving large DNA segments result in underexpression or overexpression, depending on the changes in allele dose, and are known to cause many common disorders. Detection of allele dose variations in the human genome is increasingly important in medical genetic diagnosis.
Methods: We used multiplex quantitative PCR coupled with capillary electrophoresis for accurate allele dose determination. In cases of Prader–Willi syndrome (PWS), a total of 24 patients with PWS, as well as 205 control individuals from the general population, were analyzed by use of multiplex quantitative PCR to amplify the FGFR2 gene, the KRIT1 gene, and the SNRPN gene simultaneously. In cases of Duchenne muscular dystrophy (DMD), we optimized the multiplex quantitative PCR to amplify 38 exons to analyze the DMD gene for rapid diagnosis of 12 DMD-affected males, 12 obligate carriers from families, and 50 unaffected female controls.
Results: We were able to unambiguously diagnose the deletion genotype in PWS patients and identify all deletion or duplication genotypes and carrier status in DMD-affected cases with 100% sensitivity and specificity.
Conclusions: This report describes a novel single assay that can rapidly quantify allele dose to provide accurate clinical genetic diagnosis. This technique offers a valuable alternative for the rapid detection of genomic deletions or duplications and decreases costs because it does not require expensive fluorescent reagents.
Collapse
Affiliation(s)
- Chia-Cheng Hung
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Patsalis PC, Kousoulidou L, Männik K, Sismani C, Zilina O, Parkel S, Puusepp H, Tõnisson N, Palta P, Remm M, Kurg A. Detection of small genomic imbalances using microarray-based multiplex amplifiable probe hybridization. Eur J Hum Genet 2006; 15:162-72. [PMID: 17119536 DOI: 10.1038/sj.ejhg.5201738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Array-based genome-wide screening methods were recently introduced to clinical practice in order to detect small genomic imbalances that may cause severe genetic disorders. The continuous advancement of such methods plays an extremely important role in diagnostic genetics and medical genomics. We have modified and adapted the original multiplex amplifiable probe hybridization (MAPH) to a novel microarray format providing an important new diagnostic tool for detection of small size copy-number changes in any locus of human genome. Here, we describe the new array-MAPH diagnostic method and show proof of concept through fabrication, interrogation and validation of a human chromosome X-specific array. We have developed new bioinformatic tools and methodology for designing and producing amplifiable hybridization probes (200-600 bp) for array-MAPH. We designed 558 chromosome X-specific probes with median spacing 238 kb and 107 autosomal probes, which were spotted onto microarrays. DNA samples from normal individuals and patients with known and unknown chromosome X aberrations were analyzed for validation. Array-MAPH detected exactly the same deletions and duplications in blind studies, as well as other unknown small size deletions showing its accuracy and sensitivity. All results were confirmed by fluorescence in situ hybridization and probe-specific PCR. Array-MAPH is a new microarray-based diagnostic tool for the detection of small-scale copy-number changes in complex genomes, which may be useful for genotype-phenotype correlations, identification of new genes, studying genetic variation and provision of genetic services.
Collapse
Affiliation(s)
- Philippos C Patsalis
- Department of Cytogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lugtenberg D, JC Hamel B, van Bokhoven H, PM de Brouwer A. Strategies for present and future mental retardation diagnosis. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.6.775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mental retardation (MR) is a highly heterogeneous condition with a prevalence of 1–3% in the general population. The psychosocial burden on families with mentally handicapped children is extensive. In addition, the accompanying expenses with mental handicaps are considerable. In this review a comprehensive strategy to systematically identify the causative genetic defect in patients with mental retardation is proposed. This strategy is a combination of routinely used and recently developed approaches, such as direct DNA sequencing, single nucleotide polymorphism arrays and expression profiling, to establish a molecular diagnosis in MR patients. Finally, it will be described how these mutations can be studied in different model systems, which can eventually be used to elucidate the neurobiological basis of MR and to facilitate possible therapeutic intervention.
Collapse
Affiliation(s)
- Dorien Lugtenberg
- Radboud University, Department of Human Genetics, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ben JC Hamel
- Radboud University, Department of Human Genetics, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Radboud University, Department of Human Genetics, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Arjan PM de Brouwer
- Radboud University, Department of Human Genetics, Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
12
|
Gibbons B, Datta P, Wu Y, Chan A, AL Armour J. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA. BMC Genomics 2006; 7:163. [PMID: 16813644 PMCID: PMC1533824 DOI: 10.1186/1471-2164-7-163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 06/30/2006] [Indexed: 01/29/2023] Open
Abstract
Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH) we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A). Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.
Collapse
Affiliation(s)
- Brian Gibbons
- Institute of Genetics, University of Nottingham, QMC, Nottingham NG7 2UH, UK
| | - Parikkhit Datta
- Institute of Genetics, University of Nottingham, QMC, Nottingham NG7 2UH, UK
| | - Ying Wu
- PamGene International B.V., P.O. Box 1345, 5200 BJ 's-Hertogenbosch, The Netherlands
| | - Alan Chan
- PamGene International B.V., P.O. Box 1345, 5200 BJ 's-Hertogenbosch, The Netherlands
| | - John AL Armour
- Institute of Genetics, University of Nottingham, QMC, Nottingham NG7 2UH, UK
| |
Collapse
|
13
|
|