1
|
Xue C, Wang Y, Peng J, Feng S, Guan Y, Hao Y. Unraveling the pathogenic mechanism of a novel filamin a frameshift variant in periventricular nodular heterotopia. Front Pharmacol 2024; 15:1429177. [PMID: 39399465 PMCID: PMC11466872 DOI: 10.3389/fphar.2024.1429177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Background Periventricular nodular heterotopia (PVNH) is a neuronal migration disorder caused by the inability of neurons to move to the cortex. Patients with PVNH often experience epilepsy due to ectopic neuronal discharges. Most cases of PVNH are associated with variations in filamin A (FLNA), which encodes an actin-binding protein. However, the underlying pathological mechanisms remain unclear. Methods Next-generation sequencing was performed to detect variants in the patient with PVNH, and the findings were confirmed using Sanger sequencing. Iterative threading assembly refinement was used to predict the structures of the variant proteins, and the search tool for the retrieval of interacting genes/proteins database was used to determine the interactions between FLNA and motility-related proteins. An induced pluripotent stem cell (iPSC) line was generated as a disease model by reprogramming human peripheral blood mononuclear cells. The FLNA expression in iPSCs was assessed using western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunofluorescence analysis was performed to determine the arrangement of F-actin. Results A novel FLNA frameshift variant (NM_001456.3: c.1466delG, p. G489Afs*9) was identified in a patient with PVNH and epilepsy. Bioinformatic analysis indicated that this variation was likely to impair FLNA function. Western blot and qRT-PCR analysis of iPSCs derived from the patient's peripheral blood mononuclear cells revealed the absence of FLNA protein and mRNA. Immunofluorescence analysis suggested an irregular arrangement and disorganization of F-actin compared to that observed in healthy donors. Conclusion Our findings indicate that the frameshift variant of FLNA (NM_001456.3: c.1466delG, p. G489Afs*9) impairs the arrangement and organization of F-actin, potentially influencing cell migration and causing PVNH.
Collapse
Affiliation(s)
- Chunran Xue
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yishu Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Peng
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sisi Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Punan Branch, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Paliotti K, Dassi C, Berrahmoune S, Bejaran ML, Davila CEV, Martinez AB, Estupiñà MCF, Mancardi MM, Riva A, Giacomini T, Severino M, Romaniello R, Dubeau F, Srour M, Myers KA. The phenotypic spectrum of epilepsy associated with periventricular nodular heterotopia. J Neurol 2023:10.1007/s00415-023-11724-z. [PMID: 37119372 DOI: 10.1007/s00415-023-11724-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Periventricular nodular heterotopia (PVNH) is a congenital brain malformation often associated with seizures. We aimed to clarify the spectrum of epilepsy phenotypes in PVNH and the significance of specific brain malformation patterns. METHODS In this retrospective cohort study, we recruited people with PVNH and a history of seizures, and collected data via medical record review and a standardized questionnaire. RESULTS One hundred individuals were included, aged 1 month to 61 years. Mean seizure onset age was 7.9 years. Ten patients had a self-limited epilepsy course and 35 more were pharmacoresponsive. Fifty-five had ongoing seizures, of whom 23 met criteria for drug resistance. Patients were subdivided as follows: isolated PVNH ("PVNH-Only") single nodule (18) or multiple nodules (21) and PVNH with additional brain malformations ("PVNH-Plus") single nodule (8) or multiple nodules (53). Of PVNH-Only single nodule, none had drug-resistant seizures. Amongst PVNH-Plus, 55% with multiple unilateral nodules were pharmacoresponsive, compared to only 21% with bilateral nodules. PVNH-Plus with bilateral nodules demonstrated the highest proportion of drug resistance (39%). A review of genetic testing results revealed eight patients with pathogenic or likely pathogenic single-gene variants, two of which were FLNA. Five had copy number variants, two of which were pathogenic. CONCLUSIONS The spectrum of epilepsy phenotypes in PVNH is broad, and seizure patterns are variable; however, epilepsy course may be predicted to an extent by the pattern of malformation. Overall, drug-resistant epilepsy occurs in approximately one quarter of affected individuals. When identified, genetic etiologies are very heterogeneous.
Collapse
Affiliation(s)
- Karina Paliotti
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Christelle Dassi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Marlin Liz Bejaran
- Pediatric Neurology Department, Sant Joan de Déu Barcelona Children's Hospital, Sant Joan de Déu Research Institute, Member of the ERN EpiCARE, Barcelona, Spain
| | - Carlos Eduardo Valera Davila
- Pediatric Neurology Department, Sant Joan de Déu Barcelona Children's Hospital, Sant Joan de Déu Research Institute, Member of the ERN EpiCARE, Barcelona, Spain
| | - Ariadna Borràs Martinez
- Pediatric Neurology Department, Sant Joan de Déu Barcelona Children's Hospital, Sant Joan de Déu Research Institute, Member of the ERN EpiCARE, Barcelona, Spain
| | - Maria Carme Fons Estupiñà
- Pediatric Neurology Department, Sant Joan de Déu Barcelona Children's Hospital, Sant Joan de Déu Research Institute, Member of the ERN EpiCARE, Barcelona, Spain
| | - Maria Margherita Mancardi
- Epilepsy Center, Reference Center for Rare and Complex Epilepsies-EpiCARE, IRCCS Istituto Gaslini, Genoa, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Gaslini, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Romina Romaniello
- Child Neuropsychiatry and Neurorehabilitation Department, Scientific Institute Eugenio Medea, La Nostra Famiglia, Lecco, Italy
| | - François Dubeau
- Department of Neurology and Neurosurgery, McGill University Health Centre, Montreal, QC, Canada
| | - Myriam Srour
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, MUHC Glen Site, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Neurology and Neurosurgery, McGill University Health Centre, Montreal, QC, Canada
| | - Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, MUHC Glen Site, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Department of Neurology and Neurosurgery, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
3
|
Zheng Y, Ma H, Yan Y, Ye P, Yu W, Lin S, Chen SL. Deficiency of filamin A in smooth muscle cells protects against hypoxia‑mediated pulmonary hypertension in mice. Int J Mol Med 2023; 51:22. [PMID: 36704846 PMCID: PMC9911089 DOI: 10.3892/ijmm.2023.5225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
Filamin A (FLNA) is a high molecular weight cytoskeleton protein important for cell locomotion. A relationship between FLNA mutations and pulmonary arterial hypertension (PAH) has previously been reported; however, the detailed mechanism remains unclear. The present study aimed to explore the role of FLNA in vascular smooth muscle cells during the development of PAH. Smooth muscle cell (SMC)‑specific FLNA‑deficient mice were generated and the mice were then exposed to hypoxia for 28 days to build the mouse model of PAH. Human pulmonary arterial smooth muscle cells (PASMCs) were also cultured and transfected with FLNA small interfering RNA or overexpression plasmids to investigate the effects of FLNA on PASMC proliferation and migration. Notably, compared with control individuals, the expression levels of FLNA were increased in lung tissues from patients with PAH, and it was obviously expressed in the PASMCs of pulmonary arterioles. FLNA deficiency in SMCs attenuated hypoxia‑induced pulmonary hypertension and pulmonary vascular remodeling. In vitro studies suggested that absence of FLNA impaired PASMC proliferation and migration, and produced lower levels of phosphorylated (p)‑PAK‑1 and RAC1 activity. However, FLNA overexpression promoted PASMC proliferation and migration, and increased the expression levels of p‑PAK‑1 and RAC1 activity. The present study highlights the role of FLNA in pulmonary vascular remodeling; therefore, it could serve as a potential target for the treatment of PAH.
Collapse
Affiliation(s)
- Yaguo Zheng
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Hong Ma
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Song Lin
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China,Correspondence to: Dr Song Lin or Dr Shao-Liang Chen, Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai, Nanjing, Jiangsu 210008, P.R. China, E-mail: , E-mail:
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China,Correspondence to: Dr Song Lin or Dr Shao-Liang Chen, Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai, Nanjing, Jiangsu 210008, P.R. China, E-mail: , E-mail:
| |
Collapse
|
4
|
West T, Williamson N, Akhter J. Case report: Filamin A mutation lung disease recognized in an 11-year-old child. Pediatr Pulmonol 2023; 58:61-65. [PMID: 36174535 DOI: 10.1002/ppul.26156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
The loss of function (LOF) due to mutations in the Filamin A (FLNA) gene may result in abnormality of the FLNA protein. Of the many clinical syndromes, this condition may produce chronic lung disease, which usually presents and is diagnosed in the infant/toddler age group. Its clinical pattern may mimic broncho-pulmonary dysplasia. It is part of the entities included in childhood interstitial lung disease group of disorders. We are herein reporting a patient that was diagnosed with FLNA-associated lung disease at 11 years of age. This case provides a unique insight into the long-term course of lung disease in this illness and broadens our understanding of the spectrum of its presentation. Although the patient had symptoms early in life, the diagnosis was not entertained because of the rarity of the disorder, its atypical and clinically mild presentation, and discontinuous care due to parents moving to different cities for employment reasons. Her presentation to our institution was for pneumonia. Due to highly unusual chest X-ray images, asthenia, and early clubbing, an extensive workup included further imaging and a lung biopsy. The final diagnosis was confirmed by the detection of FLNA LOF gene mutation.
Collapse
Affiliation(s)
- Tahira West
- Advocate Children's Hospital, Oak Lawn, Illinois, USA
| | | | - Javeed Akhter
- Advocate Children's Hospital, Oak Lawn, Illinois, USA
| |
Collapse
|
5
|
Heterogenous Disease Course and Long-Term Outcome of Children's Interstitial Lung Disease Related to Filamin A Gene Variants. Ann Am Thorac Soc 2022; 19:2021-2030. [PMID: 35767027 DOI: 10.1513/annalsats.202202-142oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Variable disease course and outcomes have been reported in children's interstitial lung disease associated with FLNA (Filamin A gene) variants. Objectives: To further delineate long-term respiratory outcomes and identify potential contributing factors to severe disease course. Methods: We retrospectively collected longitudinal data from three centers on nine cases (one male) with FLNA variants and early respiratory disease onset (within the first 24 mo of life). Clinical, radiographic, and histopathologic data were analyzed, focusing on cardiorespiratory disease course. Results: All required early respiratory support (three invasive ventilation, three noninvasive ventilation, three supplemental oxygen), and all experienced frequent severe infective respiratory exacerbations. Three died in infancy from refractory respiratory failure and pulmonary hypertension (PH). The six surviving individuals were 3, 10, 11, 15, 18, and 33 years old at time of reporting. The extent of functional respiratory impairment decreased with age; at last follow-up, there were no individuals on home invasive ventilation, one on nocturnal noninvasive ventilation, four on oxygen, and one on no respiratory support. Spirometry consistently demonstrated moderate to severe obstructive defects (forced expiratory volume in 1 s/forced vital capacity [FVC] z-score, -3.76 to -1.77; percent predicted FVC, 31.5% to 92.1%). Seven required PH treatment in early childhood (7/9), and three of the survivors (3/6) still receive treatment. Radiologic and histopathologic findings were consistent among cases. Conclusions: Early mortality was common, but many survivors stabilized even after severe symptoms in infancy. All survivors had persistent obstructive defects on spirometry, and half have persistent or recurrent PH. These typical findings are suggestive of this rare diagnosis and should prompt consideration of genetic testing.
Collapse
|
6
|
Gerlevik U, Saygı C, Cangül H, Kutlu A, Çaralan EF, Topçu Y, Özören N, Sezerman OU. Computational analysis of missense filamin-A variants, including the novel p.Arg484Gln variant of two brothers with periventricular nodular heterotopia. PLoS One 2022; 17:e0265400. [PMID: 35613087 PMCID: PMC9132340 DOI: 10.1371/journal.pone.0265400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Periventricular nodular heterotopia (PNH) is a cell migration disorder associated with mutations in Filamin-A (FLNA) gene on chromosome X. Majority of the individuals with PNH-associated FLNA mutations are female whereas liveborn males with FLNA mutations are very rare. Fetal viability of the males seems to depend on the severity of the variant. Splicing or severe truncations presumed loss of function of the protein product, lead to male lethality and only partial-loss-of-function variants are reported in surviving males. Those variants mostly manifest milder clinical phenotypes in females and thus avoid detection of the disease in females. Methods We describe a novel p.Arg484Gln variant in the FLNA gene by performing whole exome analysis on the index case, his one affected brother and his healthy non-consanguineous parents. The transmission of PNH from a clinically asymptomatic mother to two sons is reported in a fully penetrant classical X-linked dominant mode. The variant was verified via Sanger sequencing. Additionally, we investigated the impact of missense mutations reported in affected males on the FLNa protein structure, dynamics and interactions by performing molecular dynamics (MD) simulations to examine the disease etiology and possible compensative mechanisms allowing survival of the males. Results We observed that p.Arg484Gln disrupts the FLNa by altering its structural and dynamical properties including the flexibility of certain regions, interactions within the protein, and conformational landscape of FLNa. However, these impacts existed for only a part the MD trajectories and highly similar patterns observed in the other 12 mutations reported in the liveborn males validated this mechanism. Conclusion It is concluded that the variants seen in the liveborn males result in transient pathogenic effects, rather than persistent impairments. By this way, the protein could retain its function occasionally and results in the survival of the males besides causing the disease.
Collapse
Affiliation(s)
- Umut Gerlevik
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ceren Saygı
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Hakan Cangül
- Center for Genetic Diagnosis, Istanbul Medipol University, Istanbul, Turkey
| | - Aslı Kutlu
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Bioinformatics & Genetics, Faculty of Engineering and Natural Science, İstinye University, İstanbul, Turkey
| | | | - Yasemin Topçu
- Department of Pediatric Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Özören
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
7
|
Tanner LM, Kunishima S, Lehtinen E, Helin T, Volmonen K, Lassila R, Pöyhönen M. Platelet function and filamin A expression in two families with novel FLNA gene mutations associated with periventricular nodular heterotopia and panlobular emphysema. Am J Med Genet A 2022; 188:1716-1722. [PMID: 35156755 PMCID: PMC9303863 DOI: 10.1002/ajmg.a.62690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Pathogenic variants of the X‐linked FLNA gene encoding filamin A protein have been associated with a wide spectrum of symptoms, including the recently described pulmonary phenotype with childhood‐onset panlobular emphysema. We describe three female patients from two families with novel heterozygous FLNA variants c.5837_2del and c.508C > T. Analysis of immunofluorescence of peripheral blood smears and platelet function was performed for all patients. FLNA‐negative platelets were observed, suggesting that these variants result in the loss of a functional protein product. All three patients also had periventricular nodular heterotopia and panlobular emphysema. However, they had considerably milder symptoms and later age of onset than in the previously reported cases. Therefore, patients with pathogenic FLNA variants should be studied actively for lung involvement even in the absence of pronounced respiratory symptoms. Conversely, any patient with unexplained panlobular emphysema should be analyzed for pathogenic FLNA variants. We also suggest that immunofluorescence analysis is a useful tool for investigating the pathogenicity of novel FLNA variants.
Collapse
Affiliation(s)
- Laura M Tanner
- HUSLAB Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Shinji Kunishima
- Department of Medical Technology, Gifu University of Medical Science, Gifu, Japan
| | - Elina Lehtinen
- Coagulation Disorders Unit, Helsinki University Hospital, Research Program Unit in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Tuukka Helin
- HUSLAB Department of Chemistry and Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Volmonen
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, Helsinki University Hospital, Research Program Unit in Systems Oncology, University of Helsinki, Helsinki, Finland.,HUSLAB Department of Chemistry and Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- HUSLAB Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Burrage LC, Heinle JS, Cerfolio RH, Guillerman RP, Patel KR, Santiago NC, Hoover WC, Mallory GB. Application of lung volume reduction surgery for a child with filamin A (FLNA) mutations. Pediatr Pulmonol 2022; 57:224-230. [PMID: 34882997 DOI: 10.1002/ppul.25681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 11/07/2022]
Abstract
Diffuse lung disease in early childhood due to mutations in the filamin A gene has been recently reported. Clinical outcomes vary among individuals indicating variability in phenotype but a substantial proportion of reported cases in early life have ended up in death or lung transplantation. We recently encountered a school-aged child in whom the diagnosis of a filamin A mutation was delayed and the natural history of emphysematous lung disease was altered by serial lung volume reduction surgeries. She eventually underwent a bilateral lung transplant and we report the natural history of her disease and treatments applied herein.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Jeffrey S Heinle
- Michael E. DeBakey Department of Surgery, Division of Congenital Heart Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Robert H Cerfolio
- Department of Cardiovascular Surgery, Division of Thoracic Surgery, New York University Langone, New York, New York, USA
| | | | - Kalyani R Patel
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Nahir C Santiago
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Wynton C Hoover
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - George B Mallory
- Department of Pediatrics, Baylor College of Medicine, Section of Pediatric Pulmonology, Houston, Texas, USA
| |
Collapse
|
9
|
Billon C, Adham S, Hernandez Poblete N, Legrand A, Frank M, Chiche L, Zuily S, Benistan K, Savale L, Zaafrane-Khachnaoui K, Brehin AC, Bal L, Busa T, Fradin M, Quelin C, Chesneau B, Wahl D, Fergelot P, Goizet C, Mirault T, Jeunemaitre X, Albuisson J. Cardiovascular and connective tissue disorder features in FLNA-related PVNH patients: progress towards a refined delineation of this syndrome. Orphanet J Rare Dis 2021; 16:504. [PMID: 34863227 PMCID: PMC8642866 DOI: 10.1186/s13023-021-02128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND FLNA Loss-of-Function (LoF) causes periventricular nodular heterotopia type 1 (PVNH1), an acknowledged cause of seizures of various types. Neurological symptoms are inconstant, and cardiovascular (CV) defects or connective tissue disorders (CTD) have regularly been associated. We aimed at refining the description of CV and CTD features in patients with FLNA LoF and depicting the multisystemic nature of this condition. METHODS We retrospectively evaluated FLNA variants and clinical presentations in FLNA LoF patient with at least one CV or CTD feature, from three cohorts: ten patients from the French Reference Center for Rare Vascular Diseases, 23 patients from the national reference diagnostic lab for filaminopathies-A, and 59 patients from literature review. RESULTS Half of patients did not present neurological symptoms. Most patients presented a syndromic association combining CV and CTD features. CV anomalies, mostly aortic aneurysm and/or dilation were present in 75% of patients. CTD features were present in 75%. Variants analysis demonstrated an enrichment of coding variants in the CH1 domain of FLNA protein. CONCLUSION In FLNA LoF patients, the absence of seizures should not be overlooked. When considering a diagnosis of PVNH1, the assessment for CV and CTD anomalies is of major interest as they represent interlinked features. We recommend systematic study of FLNA within CTD genes panels, regardless of the presence of neurological symptoms.
Collapse
Affiliation(s)
- Clarisse Billon
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France. .,INSERM, U970 PARCC, Université de Paris, Paris, France.
| | - Salma Adham
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,Service de Médecine Vasculaire, Hôpital Saint Eloi, CHU Montpellier, Montpellier, France
| | - Natalia Hernandez Poblete
- Département de génétique médicale, Centre national de référence pour les maladies rares Neurogénétiques, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France.,Laboratoire de maladies rares : Génétique et Metabolisme (MRGM), INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Anne Legrand
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Michael Frank
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Laurent Chiche
- Faculté de médecine, Université de la Sorbonne, Paris, France.,Service de chirurgie vasculaire et endovasculaire, Centre aortique tertiaire, Hôpital universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Stephane Zuily
- Inserm UMRS 1116 DCAC, Université de Lorraine, Nancy, France.,Division de médecine vasculaire et centre de compétence régional pour les maladies vasculaires rares et autoimmunes systémiques, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Karelle Benistan
- Centre de Référence des Syndromes d'Ehlers-Danlos non Vasculaires, Hôpital Raymond Poincaré, Assistance Publique Hôpitaux de Paris, Garches, France.,UMR U1179 INSERM, Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France
| | - Laurent Savale
- Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, INSERM, Groupe hospitalier Marie-Lannelongue -Saint Joseph, Université Paris-Sud, Le Plessis-Robinson, France.,Service de Pneumologie, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | | | - Anne-Claire Brehin
- INSERM U1245 , Normandy center for Genomic and Personalized Medicine, Normandie Univ, CHU Rouen, 76000, Rouen, France
| | - Laurence Bal
- Centre de référence régional Marfan et apparentés, Centre aortique, Hôpital La Timone, AP-HM, Marseille, France
| | - Tiffany Busa
- Département de Génétique Médicale, Hôpital La Timone, CHU de Marseille, Marseille, France
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, CHU Rennes, Hôpital Sud, Rennes, France
| | - Chloé Quelin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, CHU Rennes, Hôpital Sud, Rennes, France
| | - Bertrand Chesneau
- Service de génétique médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France.,Centre de Référence du Syndrome de Marfan et des syndromes apparentés, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Denis Wahl
- Inserm UMRS 1116 DCAC, Université de Lorraine, Nancy, France.,Division de médecine vasculaire et centre de compétence régional pour les maladies vasculaires rares et autoimmunes systémiques, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Patricia Fergelot
- Département de génétique médicale, Centre national de référence pour les maladies rares Neurogénétiques, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France.,Laboratoire de maladies rares : Génétique et Metabolisme (MRGM), INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Département de génétique médicale, Centre national de référence pour les maladies rares Neurogénétiques, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France.,Faculté de médecine, Université de la Sorbonne, Paris, France
| | - Tristan Mirault
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Xavier Jeunemaitre
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Juliette Albuisson
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France.,Plateforme de Transfert en Biologie Cancérologique, Centre Georges François Leclerc - UNICANCER- Institut GIMI, Dijon, France
| | | |
Collapse
|
10
|
Abstract
Childhood interstitial lung disease (ChILD) is an umbrella term encompassing a diverse group of diffuse lung diseases affecting infants and children. Although the timely and accurate diagnosis of ChILD is often challenging, it is optimally achieved through the multidisciplinary integration of imaging findings with clinical data, genetics, and potentially lung biopsy. This article reviews the definition and classification of ChILD; the role of imaging, pathology, and genetics in ChILD diagnosis; treatment options; and future goals. In addition, a practical approach to ChILD imaging based on the latest available research and the characteristic imaging appearance of ChILD entities are presented.
Collapse
|
11
|
Franklin AD, Chaudhari BP, Koboldt DC, Machut KZ. Polymerase Gamma Mitochondrial DNA Depletion Syndrome Initially Presenting as Disproportionate Respiratory Distress in a Moderately Premature Neonate: A Case Report. Front Genet 2021; 12:664278. [PMID: 34194468 PMCID: PMC8238196 DOI: 10.3389/fgene.2021.664278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
A 32-week premature infant presented with respiratory failure, later progressing to pulmonary hypertension (PH), liver failure, lactic acidosis, and encephalopathy. Using exome sequencing, this patient was diagnosed with a rare Polymerase Gamma (POLG)-related mitochondrial DNA (mtDNA) depletion syndrome. This case demonstrates that expanding the differential to uncommon diagnoses is important for complex infants, even in premature neonates whose condition may be explained partially by their gestational age (GA). It also shows that patients with complex neonatal diseases with significant family history may benefit from exome sequencing for diagnosis.
Collapse
Affiliation(s)
- Andrew D Franklin
- Division of Neonatology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Bimal P Chaudhari
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, United States.,The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, United States
| | - Kerri Z Machut
- Division of Neonatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
12
|
Mori S, Tanoue K, Shimizu H, Nagafuchi H, Kim KS, Murakami H, Kurosawa K, Matsui K. Lung disease due to FLNA mutation improved after shunt closure for congenital heart disease. Pediatr Pulmonol 2021; 56:1280-1282. [PMID: 33497531 DOI: 10.1002/ppul.25269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Satomi Mori
- Department of General Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Koji Tanoue
- Department of General Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroyuki Shimizu
- Department of Critical Care Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroyuki Nagafuchi
- Department of Critical Care Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Ki-Sung Kim
- Department of Cardiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroaki Murakami
- Department of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Department of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kiyoshi Matsui
- Department of General Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
13
|
Shah AS, Black ED, Simon DM, Gambello MJ, Garber KB, Iannucci GJ, Riedesel EL, Kasi AS. Heterogeneous Pulmonary Phenotypes in Filamin A Mutation-Related Lung Disease. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2021; 34:7-14. [PMID: 33734874 DOI: 10.1089/ped.2020.1280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Interstitial lung disease (ILD) has been recently reported in a few patients with pathogenic variants in the Filamin A (FLNA) gene with variable presentation and prognosis. This study evaluated the respiratory manifestations and clinical features in children with FLNA disease. Methods: We conducted a retrospective review of pediatric patients with variants in FLNA in a tertiary children's hospital. The clinical features, genotype, management, and outcomes were analyzed. Results: We identified 9 patients with variants in FLNA aged 15 months to 24 years, 4 females and 5 males. Six patients had abnormal chest imaging ranging from mild interstitial prominence to atelectasis, interstitial densities, and hyperinflation. Three patients with ILD presented during the neonatal period or early infancy with respiratory distress or respiratory failure requiring supplemental oxygen or assisted ventilation via tracheostomy. We report male twins with the same FLNA variant and lung disease, but different ages and clinical features at presentation eventually culminating in respiratory failure requiring assisted ventilation. All patients had FLNA variants identified by FLNA sequencing, had abnormal echocardiograms, and none of the patients underwent lung biopsy or lung transplantation. The outcomes were variable and could be as severe as chronic respiratory failure. Conclusion: The wide spectrum of respiratory manifestations and abnormal chest imaging in our study highlights the importance of evaluation for lung disease in patients with variants in FLNA. FLNA sequencing in suspected cases with ILD may obviate the need for a lung biopsy, prompt surveillance for progressive lung disease, and evaluation for associated clinical features.
Collapse
Affiliation(s)
- Amit S Shah
- Division of Pediatric Pulmonology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Emily D Black
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Dawn M Simon
- Division of Pediatric Pulmonology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | | | - Kathryn B Garber
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA.,EGL Genetics, Tucker, Georgia, USA
| | - Glen J Iannucci
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Erica L Riedesel
- Department of Radiology, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Ajay S Kasi
- Division of Pediatric Pulmonology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Filamin A Mutations: A New Cause of Unexplained Emphysema in Adults? Chest 2021; 159:e131-e135. [PMID: 33678279 DOI: 10.1016/j.chest.2020.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
Abstract
Emphysema is a chronic respiratory disorder characterized by destruction of alveoli, usually due to cigarette smoking or exposure to noxious particles or gases. Dysfunction of proteins that are involved in lung development and maintenance, such as alpha-1 antitrypsin, also contributes to emphysema. Filamin A (FLNA) is an actin-binding protein involved in cytoskeleton reorganization. Mutations in the FLNA gene classically lead to abnormal neuronal migration and connective and vascular tissue anomalies. Pulmonary manifestations consist of a wide range of pulmonary disorders that occur during infancy. We report the first familial case of emphysema in non- and very low-smoking adults who carry a loss-of-function mutation of the FLNA gene. The identification of this new risk factor for emphysema encourages (1) screening, prevention and monitoring of pulmonary disorders in patients with FLNA mutation and (2) screening for FLNA mutation in patients with early-onset emphysema that is associated with low-smoking or vascular or connective tissue anomalies.
Collapse
|
15
|
Deng X, Li S, Qiu Q, Jin B, Yan M, Hu Y, Wu Y, Zhou H, Zhang G, Zheng X. Where the congenital heart disease meets the pulmonary arterial hypertension, FLNA matters: a case report and literature review. BMC Pediatr 2020; 20:504. [PMID: 33143682 PMCID: PMC7607646 DOI: 10.1186/s12887-020-02393-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
Background Pediatric patients with genetic disorders have a higher incidence of pulmonary arterial hypertension (PAH) regardless of their heart defects. Filamin A (FLNA) mutation is recently recognized to be associated with pediatric pulmonary disorders, however, the clinical courses of PAH related to the mutation were reported in limited cases. Here, we presented a case and pooled data for better understanding of the correlation between FLNA mutation and pediatric PAH. Case presentation The patient was a 8-month-old female with repeated episodes of pneumonia. Physical examination revealed cleft lip, cleft palate and developmental retardation. Imaging examination showed a small atrial septal defect (ASD), central pulmonary artery enlargement, left upper lobe of lung atelectasis, and pulmonary infiltration. Genetic test showed she carried a de novo pathogenic variant of FLNA gene (c.5417-1G > A, p.-). Oral medications didn’t slow the progression of PAH in the patient, and she died two years later. Conclusions FLNA mutation causes rare but progressive PAH in addition to a wide spectrum of congenital heart disease and other comorbidities in pediatric patients. We highly recommend genetic testing for pediatric patients when suspected with PAH. Given the high mortality in this group, lung transplantation may offer a better outcome.
Collapse
Affiliation(s)
- Xiaoxian Deng
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Shanshan Li
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Qiu Qiu
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Bowen Jin
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Menghuan Yan
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Yuanpin Hu
- Laboratory of Molecular Cardiology, Wuhan Asia Heart hospital, 753 Jinghan Avn, 430022, Wuhan, China
| | - Yang Wu
- Imaging center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Hongmei Zhou
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Gangcheng Zhang
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China
| | - Xuan Zheng
- Congenital Heart Disease center, Wuhan Asia Heart hospital, 753 Jinghan Ave, 430022, Wuhan, China. .,Laboratory of Molecular Cardiology, Wuhan Asia Heart hospital, 753 Jinghan Avn, 430022, Wuhan, China.
| |
Collapse
|
16
|
Walsh R, Batra D, Dixit A, Bhatt JM. Clues beyond the lung: an unusual diagnosis in an infant with chronic lung disease. Breathe (Sheff) 2020; 16:190319. [PMID: 32494305 PMCID: PMC7249791 DOI: 10.1183/20734735.0319-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Yonker LM, Hawley MH, Kinane TB. Do mesenchymal stromal cell infusions advance the understanding and treatment options of FLNA-associated pulmonary disease? Pediatr Pulmonol 2020; 55:270-271. [PMID: 31746552 DOI: 10.1002/ppul.24570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/26/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Lael M Yonker
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Megan H Hawley
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - T Bernard Kinane
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Pelizzo G, Avanzini MA, Lenta E, Mantelli M, Croce S, Catenacci L, Acquafredda G, Ferraro AL, Giambanco C, D'Amelio L, Giordano S, Re G, Zennaro F, Calcaterra V. Allogeneic mesenchymal stromal cells: Novel therapeutic option for mutated FLNA-associated respiratory failure in the pediatric setting. Pediatr Pulmonol 2020; 55:190-197. [PMID: 31468740 DOI: 10.1002/ppul.24497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC)-mediated therapeutic effects have been observed in the treatment of lung diseases. For the first time, this treatment was used as rescue therapy in a pediatric patient with a life-threatening respiratory syndrome associated with the filamin A (FLNA) gene mutation. METHODS A child with a new pathogenic variant of the FLNA gene c.7391_7403del (p.Val2464AlafsTer5), at the age of 18 months, due to serious and irreversible chronic respiratory failure, was treated with repeated intravenous infusions of allogeneic bone marrow (BM)-MSCs. The child's respiratory condition was monitored. Immunologic studies before each MSC treatment were performed. RESULTS No acute adverse events related to the MSC infusions were observed. After the second infusion, the child's respiratory condition progressively improved, with reduced necessity for mechanical ventilation support. A thorax computed tomography (CT) scan showed bilateral recovery of the basal parenchyma, anatomical-functional alignment and aerial penetration improvement. After the first MSC administration, an increase in Th17 and FoxP3+ T percentages in the peripheral blood was observed. After the second MSC infusion, a significant rise in the Treg/Th17 ratio was noted, as well as an increased percentage of CD20+ /CD19+ B lymphocytes and augmented PHA-induced proliferation. DISCUSSION MSC infusions are a promising therapeutic modality for patients in respiratory failure, as observed in this pediatric patient with an FLNA mutation. MSCs may have an immunomodulatory effect and thus mitigate lung injury; although in this case, MSC antimicrobial effects may have synergistically impacted the clinical improvements. Further investigations are planned to establish the safety and efficacy of this treatment option for interstitial lung diseases in children.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital G. di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Maria A Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Laura Catenacci
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Aurelio L Ferraro
- Specialized Oncology Laboratory, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Caterina Giambanco
- Specialized Oncology Laboratory, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Lucia D'Amelio
- Specialized Oncology Laboratory, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Salvatore Giordano
- Biology Unit, Children's Hospital, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Giuseppe Re
- Pediatric Anesthesiology and Intensive Care Unit, Children's Hospital, Mediterranean Institute for Pediatric Excellence, Palermo, Italy
| | - Floriana Zennaro
- Radiologie Pédiatrique, Hôpitaux Pédiatriques de Nice CHU-Lenval, Nice, France
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
19
|
Kremer TM, Lindsay ME, Kinane TB, Hawley MH, Little BP, Mino-Kenudson M. Case 28-2019: A 22-Year-Old Woman with Dyspnea and Chest Pain. N Engl J Med 2019; 381:1059-1067. [PMID: 31509678 DOI: 10.1056/nejmcpc1904041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ted M Kremer
- From the Department of Pediatrics, UMass Memorial Medical Center, and the Department of Pediatrics, University of Massachusetts Medical School, Worcester (T.M.K.), the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Massachusetts General Hospital, and the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Harvard Medical School, Boston, and the Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge (M.H.H.) - all in Massachusetts
| | - Mark E Lindsay
- From the Department of Pediatrics, UMass Memorial Medical Center, and the Department of Pediatrics, University of Massachusetts Medical School, Worcester (T.M.K.), the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Massachusetts General Hospital, and the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Harvard Medical School, Boston, and the Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge (M.H.H.) - all in Massachusetts
| | - T Bernard Kinane
- From the Department of Pediatrics, UMass Memorial Medical Center, and the Department of Pediatrics, University of Massachusetts Medical School, Worcester (T.M.K.), the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Massachusetts General Hospital, and the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Harvard Medical School, Boston, and the Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge (M.H.H.) - all in Massachusetts
| | - Megan H Hawley
- From the Department of Pediatrics, UMass Memorial Medical Center, and the Department of Pediatrics, University of Massachusetts Medical School, Worcester (T.M.K.), the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Massachusetts General Hospital, and the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Harvard Medical School, Boston, and the Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge (M.H.H.) - all in Massachusetts
| | - Brent P Little
- From the Department of Pediatrics, UMass Memorial Medical Center, and the Department of Pediatrics, University of Massachusetts Medical School, Worcester (T.M.K.), the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Massachusetts General Hospital, and the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Harvard Medical School, Boston, and the Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge (M.H.H.) - all in Massachusetts
| | - Mari Mino-Kenudson
- From the Department of Pediatrics, UMass Memorial Medical Center, and the Department of Pediatrics, University of Massachusetts Medical School, Worcester (T.M.K.), the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Massachusetts General Hospital, and the Departments of Pediatrics (M.E.L., T.B.K.), Radiology (B.P.L.), and Pathology (M.M.-K.), Harvard Medical School, Boston, and the Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge (M.H.H.) - all in Massachusetts
| |
Collapse
|
20
|
Childhood Interstitial (Diffuse) Lung Disease: Pattern Recognition Approach to Diagnosis in Infants. AJR Am J Roentgenol 2019; 212:958-967. [PMID: 30835521 DOI: 10.2214/ajr.18.20696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE. The purpose of this article is to discuss imaging techniques and a pattern-based approach for diagnosing childhood interstitial (diffuse) lung diseases in infants. CONCLUSION. Childhood interstitial (diffuse) lung disease in infants consists of a heterogeneous group of disorders previously classified with clinical, radiologic, and pathologic features. By use of an imaging-guided algorithm, the assessment of lung volumes and the presence of ground-glass opacities or cysts can assist the radiologist in making an accurate and timely diagnosis.
Collapse
|
21
|
Microdeletion in Xq28 with a polymorphic inversion in a patient with FLNA-associated progressive lung disease. Respir Investig 2019; 57:395-398. [PMID: 30987847 DOI: 10.1016/j.resinv.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
Abstract
Lung phenotype was reported as a novel phenotype in patients with mutations in the filamin A gene (FLNA) in 2011. FLNA mutations can result in pulmonary hyperinflation during the neonatal period or early infancy with progressive respiratory failure, culminating in a diagnosis of FLNA-associated progressive lung disease, particularly if the patient has periventricular nodular heterotopia and cardiac complications, such as patent ductus arteriosus, atrial septal defect, and pulmonary hypertension. We report the first Japanese case of FLNA-associated progressive lung disease caused by a microdeletion in Xq28 encompassing the FLNA gene with a polymorphic inversion.
Collapse
|
22
|
Pelizzo G, Collura M, Puglisi A, Pappalardo MP, Agolini E, Novelli A, Piccione M, Cacace C, Bussani R, Corsello G, Calcaterra V. Congenital emphysematous lung disease associated with a novel Filamin A mutation. Case report and literature review. BMC Pediatr 2019; 19:86. [PMID: 30922288 PMCID: PMC6440113 DOI: 10.1186/s12887-019-1460-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Progressive lung involvement in Filamin A (FLNA)-related cerebral periventricular nodular heterotopia (PVNH) has been reported in a limited number of cases. CASE PRESENTATION We report a new pathogenic FLNA gene variant (c.7391_7403del; p.Val2464Alafs*5) in a male infant who developed progressive lung disease with emphysematous lesions and interstitial involvement. Following lobar resection, chronic respiratory failure ensued necessitating continuous mechanical ventilation and tracheostomy. Cerebral periventricular nodular heterotopia was also present. CONCLUSIONS We report a novel variant of the FLNA gene, associated with a severe lung disorder and PNVH. The lung disorder led to respiratory failure during infancy and these pulmonary complications may be the first sign of this disorder. Early recognition with thoracic imaging is important to guide genetic testing, neuroimaging and to define optimal timing of potential therapies, such as lung transplant in progressive lung disease.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital "G. di Cristina", ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini, 1, 90134, Palermo, Italy.
| | - Mirella Collura
- Cystic Fibrosis and Respiratory Pediatric Center, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Aurora Puglisi
- Pediatric Anesthesiology and Intensive Care Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Maria Pia Pappalardo
- Pediatric Radiology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Piccione
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Caterina Cacace
- Neonatal Intensive Care Unit, Hospital "Barone Romeo" Patti, ASP Messina, Messina, Italy
| | - Rossana Bussani
- Institute of Pathological Anatomy, Trieste University Hospital, Trieste, Italy
| | - Giovanni Corsello
- Pediatrics and Neonatal Intensive Therapy Unit, Mother and Child Department, University of Palermo, Palermo, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
23
|
Chen MH, Choudhury S, Hirata M, Khalsa S, Chang B, Walsh CA. Thoracic aortic aneurysm in patients with loss of function Filamin A mutations: Clinical characterization, genetics, and recommendations. Am J Med Genet A 2019; 176:337-350. [PMID: 29334594 DOI: 10.1002/ajmg.a.38580] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 01/20/2023]
Abstract
The frequency and gender distribution of thoracic aortic aneurysm as a cardiovascular manifestation of loss-of-function (LOF) X-linked FilaminA (FLNA) mutations are not known. Furthermore, there is very limited cardiovascular morbidity or mortality data in children and adults. We analyzed cardiac data on the largest series of 114 patients with LOF FLNA mutations, both children and adults, with periventricular nodular heterotopia (PVNH), including 48 study patients and 66 literature patients, median age of 22.0 years (88 F, 26 M, range: 0-71 years), with 75 FLNA mutations observed in 80 families. Most (64.9%) subjects had a cardiac anomaly or vascular abnormality (80.8% of males and 60.2% of females). Thoracic aortic aneurysms or dilatation (TAA) were found in 18.4% (n = 21), and were associated with other structural cardiac malformations in 57.1% of patients, most commonly patent ductus arteriosus (PDA) and valvular abnormalities. TAA most frequently involved the aortic root and ascending aorta, and sinus of Valsalva aneurysms were present in one third of TAA patients. Six TAA patients (28.5%) required surgery (median age 37 yrs, range 13-41 yrs). TAA with its associated complications was also the only recorded cause of premature, non-accidental mortality in adults (2 M, 2 F). Two adult patients (1 F, 1 M, median 38.5 yrs), died of spontaneous aortic rupture at aortic dimensions smaller than current recommendations for surgery for other aortopathies. Data from this largest series of LOF FLNA mutation patients underscore the importance of serial follow-up to identify and manage these potentially devastating cardiovascular complications.
Collapse
Affiliation(s)
- Ming Hui Chen
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sangita Choudhury
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Mami Hirata
- Tokyo Women's Medical University, Tokyo, Japan
| | - Siri Khalsa
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Bernard Chang
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Sasaki E, Byrne AT, Phelan E, Cox DW, Reardon W. A review of filamin A mutations and associated interstitial lung disease. Eur J Pediatr 2019; 178:121-129. [PMID: 30547349 DOI: 10.1007/s00431-018-3301-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The filamin A gene (FLNA) on Xq28 encodes the filamin A protein. Mutation in FLNA causes a wide spectrum of disease including skeletal dysplasia, neuronal migration abnormality, cardiovascular malformation, intellectual disability and intestinal obstruction. Recently, childhood-onset interstitial lung disease associated with a range of FLNA mutations has been recognised and reported. We document our personal experience of this emerging disorder and compile a comprehensive overview of clinical features and molecular changes in all identifiable published cases. Reviewing the emerging dataset, we underline this unanticipated phenotypic consequence of pathogenic FLNA mutation-associated pulmonary disease.Conclusion: From the emerging data, we suggest that while reviewing complex cases with a sustained oxygen requirement against a clincial background of cardiac concerns or intestinal obstruction to have a high index of suspicion for FLNA related pathology and to instigate early MRI brain scan and FLNA mutation analysis. What is Known: • FLNA gene on Xq28 encodes the filamin A protein and mutation therein is associated with variable phenotypes depending on its nature of mutation. • Loss-of-function mutation of filamin A is associated with X-linked inherited form of periventricular nodular heterotopia with or without epilepsy with most individuals affected being female. There is a recently recognised associated respiratory phenotype. What is New: • The respiratory phenotype in the form of childhood interstitial lung disease is a recently recognised clinical consequence of loss-of-function FLNA mutation. • Rare male patients with loss-of-function FLNA mutation-associated lung disease with residual protein function can survive into infancy with a severe form of the phenotype.
Collapse
Affiliation(s)
- Erina Sasaki
- Clinical Genetics Department, Our Lady's Children's Hospital, Dublin, Ireland.
| | - Angela T Byrne
- Paediatric Radiology Department, Our Lady's Children's Hospital, Dublin, Ireland
| | - Ethna Phelan
- Paediatric Radiology Department, Our Lady's Children's Hospital, Dublin, Ireland
| | - Desmond W Cox
- Paediatric Respiratory Department, Our Lady's Children's Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - William Reardon
- Clinical Genetics Department, Our Lady's Children's Hospital, Dublin, Ireland
| |
Collapse
|
25
|
Park H, Park MS, Ki CS, Cho J, Lee J, Kim J, Ahn K. A case of FLNAgene mutation with respiratory insufficiency and periventricular heterotopia. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019. [DOI: 10.4168/aard.2019.7.3.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hwanhee Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Seung Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joongbum Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
26
|
Calcaterra V, Avanzini MA, Mantelli M, Agolini E, Croce S, De Silvestri A, Re G, Collura M, Maltese A, Novelli A, Pelizzo G. A case report on filamin A gene mutation and progressive pulmonary disease in an infant: A lung tissued derived mesenchymal stem cell study. Medicine (Baltimore) 2018; 97:e13033. [PMID: 30557962 PMCID: PMC6319781 DOI: 10.1097/md.0000000000013033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Mesenchymal stem cells (MSC) play a crucial role in both the maintenance of pulmonary integrity and the pathogenesis of lung disease. Lung involvement has been reported in patients with the filamin A (FLNA) gene mutation. Considering FLNA's role in the intrinsic mechanical properties of MSC, we characterized MSCs isolated from FLNA-defective lung tissue, in order to define their pathogenetic role in pulmonary damage. PATIENT CONCERNS A male infant developed significant lung disease resulting in emphysematous lesions and perivascular and interstitial fibrosis. He also exhibited general muscular hypotonia, bilateral inguinal hernia, and deformities of the lower limbs (pes tortus congenitalis and hip dysplasia). Following lobar resection, chronic respiratory failure occurred. DIAGNOSIS Genetic testing was performed during the course of his clinical care and revealed a new pathogenic variant of the FLNA gene c.7391_7403del; (p.Val2464AlafsTer5). Brain magnetic resonance imaging revealed periventricular nodular heterotopia. INTERVENTIONS AND OUTCOMES Surgical thoracoscopic lung biopsy was performed in order to obtain additional data on the pathological pulmonary features. A small portion of the pulmonary tissue was used for MSC expansion. Morphology, immunophenotype, differentiation capacity, and proliferative growth were evaluated. Bone marrow-derived mesenchymal stem cells (BM-MSC) were employed as a control. MSCs presented the typical MSC morphology and phenotype while exhibiting higher proliferative capacity (P <.001) and lower migration potential (P=.02) compared to control BM-MSC. LESSONS The genetic profile and altered features of the MSCs isolated from FLNA-related pediatric lung tissue could be directly related to defects in cell migration during embryonic lung development and pulmonary damage described in FLNA-defective patients.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Annalisa De Silvestri
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Giuseppe Re
- Pediatric Anesthesiology and Intensive Care Unit
| | | | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Antonio Novelli
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| |
Collapse
|
27
|
Deloison B, Sonigo P, Millischer-Bellaiche AE, Quibel T, Cavallin M, Benoist G, Quelin C, Jouk PS, Lev D, Alison M, Baumann C, Beldjord C, Razavi F, Bessières B, Boddaert N, Ville Y, Salomon LJ, Bahi-Buisson N. Prenatally diagnosed periventricular nodular heterotopia: Further delineation of the imaging phenotype and outcome. Eur J Med Genet 2018; 61:773-782. [PMID: 30391507 DOI: 10.1016/j.ejmg.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Periventricular nodular heterotopia (PNH) is a malformation of cortical development which presents with heterogeneous imaging, neurological phenotype and outcome. There is a paucity of comprehensive description detailing the prenatal diagnosis of PNH. The aim of this study is to report neuroimaging features and correlated outcomes in order to delineate the spectrum of prenatally diagnosed PNH. METHODS It was a retrospective study over 15 years in five tertiary centers. All fetuses with prenatally diagnosed PNH were collected. Fetal ultrasound and MRI were reviewed and genetic screening collected. Prenatal findings were analyzed in correlation to fetopathological analyses and post-natal follow up. RESULTS Thirty fetuses (22 females and 8 males) with PNH were identified. The two major ultrasound signs were ventriculomegaly associated with dysmorphic frontal horns (60%) and posterior fossa anomalies (73.3%). On MRI, two groups of PNH were identified: the contiguous and diffuse PNH (n = 15, 50%), often associated with megacisterna magna, and the non-diffuse, either anterior, posterior or unilateral PNH. FLNA mutations were found in 6/11 cases with diffuse PNH. Additional cortical malformations were exclusively observed in non diffuse PNH (9/15; 60%). Twenty-four pregnancies (80%) were terminated. Six children aged 6 months to 5 years are alive. Five have normal neurodevelopment (all had diffuse PNH) whereas one case with non diffuse PNH has developmental delay and epilepsy. CONCLUSION PNH is heterogeneous but patients with diffuse PNH are a common subgroup with specific findings on prenatal imaging and implications for prenatal counseling.
Collapse
Affiliation(s)
- B Deloison
- Department of Obstetrics and Gynecology and SFAPE Société Française pour l'Amélioration des Pratiques Echographiques, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes - Sorbonne Paris Cités, France; EA 7328 FETUS, Université Paris Descartes, France
| | - P Sonigo
- Pediatric Radiology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - A E Millischer-Bellaiche
- Pediatric Radiology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - T Quibel
- Department of Obstetrics and Gynecology, Poissy Saint-Germain Hospital, Poissy, France
| | - M Cavallin
- Université Paris Descartes - Sorbonne Paris Cités, France; Institut Imagine-INSERM UMR-1163, Embryology and genetics of congenital malformations, France; Pediatric Neurology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - G Benoist
- Department of Obstetrics and Gynecology, Caen Hospital, Caen Basse Normandie University, France
| | - C Quelin
- Clinical Genetic Department, Rennes Hospital, France
| | - P S Jouk
- Clinical Genetic Department, Grenoble Hospital, France
| | - D Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - M Alison
- Pediatric Radiology, Robert Debre Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Baumann
- Clinical Genetics Department, Robert Debre Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Beldjord
- Department of Molecular Genetics, Cochin-Port-Royal Université Paris Descartes - Sorbonne Paris Cités, Paris, France
| | - F Razavi
- Fetopathology Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - B Bessières
- Fetopathology Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - N Boddaert
- Université Paris Descartes - Sorbonne Paris Cités, France; Pediatric Radiology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Y Ville
- Department of Obstetrics and Gynecology and SFAPE Société Française pour l'Amélioration des Pratiques Echographiques, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes - Sorbonne Paris Cités, France; EA 7328 FETUS, Université Paris Descartes, France
| | - L J Salomon
- Department of Obstetrics and Gynecology and SFAPE Société Française pour l'Amélioration des Pratiques Echographiques, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes - Sorbonne Paris Cités, France; EA 7328 FETUS, Université Paris Descartes, France
| | - N Bahi-Buisson
- Université Paris Descartes - Sorbonne Paris Cités, France; Institut Imagine-INSERM UMR-1163, Embryology and genetics of congenital malformations, France; Pediatric Neurology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
28
|
Cannaerts E, Shukla A, Hasanhodzic M, Alaerts M, Schepers D, Van Laer L, Girisha KM, Hojsak I, Loeys B, Verstraeten A. FLNA mutations in surviving males presenting with connective tissue findings: two new case reports and review of the literature. BMC MEDICAL GENETICS 2018; 19:140. [PMID: 30089473 PMCID: PMC6083619 DOI: 10.1186/s12881-018-0655-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/24/2018] [Indexed: 11/25/2022]
Abstract
Background Mutations in the X-linked gene filamin A (FLNA), encoding the actin-binding protein FLNA, cause a wide spectrum of connective tissue, skeletal, cardiovascular and/or gastrointestinal manifestations. Males are typically more severely affected than females with common pre- or perinatal death. Case presentation We provide a genotype- and phenotype-oriented literature overview of FLNA hemizygous mutations and report on two live-born male FLNA mutation carriers. Firstly, we identified a de novo, missense mutation (c.238C > G, p.(Leu80Val)) in a five-year old Indian boy who presented with periventricular nodular heterotopia, increased skin laxity, joint hypermobility, mitral valve prolapse with regurgitation and marked facial features (e.g. a flat face, orbital fullness, upslanting palpebral fissures and low-set ears). Secondly, we identified two cis-located FLNA mutations (c.7921C > G, p.(Pro2641Ala); c.7923delC, p.(Tyr2642Thrfs*63)) in a Bosnian patient with Ehlers-Danlos syndrome-like features such as skin translucency and joint hypermobility. This patient also presented with brain anomalies, pectus excavatum, mitral valve prolapse, pulmonary hypertension and dilatation of the pulmonary arteries. He died from heart failure in his second year of life. Conclusions These two new cases expand the list of live-born FLNA mutation-positive males with connective tissue disease from eight to ten, contributing to a better knowledge of the genetic and phenotypic spectrum of FLNA-related disease. Electronic supplementary material The online version of this article (10.1186/s12881-018-0655-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elyssa Cannaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College Manipal Academy of Higher Education, Manipal, India
| | - Mensuda Hasanhodzic
- Department of Endocrinology, Metabolic Diseases and Genetics, University Clinical Center Tuzla, Children's hospital, Tuzla, Bosnia and Herzegovina
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Dorien Schepers
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College Manipal Academy of Higher Education, Manipal, India
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children's Hospital Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Aline Verstraeten
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium.
| |
Collapse
|
29
|
Demirel N, Ochoa R, Dishop MK, Holm T, Gershan W, Brottman G. Respiratory distress in a 2-month-old infant: Is the primary cause cardiac, pulmonary or both? Respir Med Case Rep 2018; 25:61-65. [PMID: 30003023 PMCID: PMC6039757 DOI: 10.1016/j.rmcr.2018.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
A 2-month-old female with worsening cough, respiratory distress and an abnormal chest X-ray was referred to our institution for further evaluation of suspected scimitar syndrome. She was found to have normal pulmonary venous drainage with a large patent ductus arteriosus and severe pulmonary arterial hypertension. Chest CT was suggestive of interstitial lung disease. Wedge lung biopsy revealed alveolar simplification and patchy pulmonary interstitial glycogenosis. A definitive diagnosis of Filamin A deficiency was made with genetic studies. The patient is currently showing clinical improvement on systemic glucocorticoid therapy.
Collapse
Affiliation(s)
- Nadir Demirel
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Roberto Ochoa
- Department of Medicine, Universidad de Ciencias Médicas, San José, Costa Rica
| | - Megan K Dishop
- Pathology and Laboratory Medicine, Phoenix Children's, Phoenix, AZ, USA
| | - Tara Holm
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - William Gershan
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gail Brottman
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Shelmerdine SC, Semple T, Wallis C, Aurora P, Moledina S, Ashworth MT, Owens CM. Filamin A (FLNA) mutation-A newcomer to the childhood interstitial lung disease (ChILD) classification. Pediatr Pulmonol 2017; 52:1306-1315. [PMID: 28898549 DOI: 10.1002/ppul.23695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/26/2017] [Indexed: 11/11/2022]
Abstract
AIM Interstitial lung disease (ILD) in infants represents a rare and heterogenous group of disorders, distinct from those occurring in adults. In recent years a new entity within this category is being recognized, namely filamin A (FLNA) mutation related lung disease. Our aims are to describe the clinical and radiological course of patients with this disease entity to aid clinicians in the prognostic counseling and management of similar patients they may encounter. METHOD A retrospective case note review was conducted of all patients treated at our institution (a specialist tertiary referral childrens' center) for genetically confirmed FLNA mutation related lung disease. The clinical presentation, evolution, management and radiological features were recorded and a medical literature review of Medline indexed articles was conducted. RESULTS We present a case series of four patients with interstitial lung disease and genetically confirmed abnormalities within the FLNA gene. Their imaging findings all reveal a pattern of predominantly upper lobe overinflation, coarse pulmonary lobular septal thickening and diffuse patchy atelectasis. The clinical outcomes of our patients have been variable ranging from infant death, lobar resection and need for supplemental oxygen and bronchodilators. CONCLUSION The progressive nature of the pulmonary aspect of this disorder and need for early aggressive supportive treatment make identification crucial to patient management and prognostic counseling.
Collapse
Affiliation(s)
| | - Thomas Semple
- Department of Clinical Radiology, The Royal Brompton Hospital, London, UK
| | - Colin Wallis
- Department of Respiratory Paediatrics, Great Ormond Street Hospital, London, UK
| | - Paul Aurora
- Department of Respiratory Paediatrics, Great Ormond Street Hospital, London, UK
| | - Shahin Moledina
- National Paediatric Pulmonary Hypertension Service UK, Great Ormond Street Hospital, London, UK
| | | | - Catherine M Owens
- Department of Clinical Radiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
31
|
Burrage LC, Guillerman RP, Das S, Singh S, Schady DA, Morris SA, Walkiewicz M, Schecter MG, Heinle JS, Lotze TE, Lalani SR, Mallory GB. Lung Transplantation for FLNA-Associated Progressive Lung Disease. J Pediatr 2017; 186:118-123.e6. [PMID: 28457522 PMCID: PMC5534178 DOI: 10.1016/j.jpeds.2017.03.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To describe a series of patients with pathogenic variants in FLNA and progressive lung disease necessitating lung transplantation. STUDY DESIGN We conducted a retrospective chart review of 6 female infants with heterozygous presumed loss-of-function pathogenic variants in FLNA whose initial presentation was early and progressive respiratory failure. RESULTS Each patient received lung transplantation at an average age of 11 months (range, 5-15 months). All patients had pulmonary arterial hypertension and chronic respiratory failure requiring tracheostomy and escalating levels of ventilator support before transplantation. All 6 patients survived initial lung transplantation; however, 1 patient died after a subsequent heart-lung transplant. The remaining 5 patients are living unrestricted lives on chronic immunosuppression at most recent follow-up (range, 19 months to 11.3 years post-transplantation). However, in all patients, severe ascending aortic dilation has been observed with aortic regurgitation. CONCLUSIONS Respiratory failure secondary to progressive obstructive lung disease during infancy may be the presenting phenotype of FLNA-associated periventricular nodular heterotopia. We describe a cohort of patients with progressive respiratory failure related to a pathogenic variant in FLNA and present lung transplantation as a viable therapeutic option for this group of patients.
Collapse
Affiliation(s)
- Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine,Texas Children’s Hospital
| | | | - Shailendra Das
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine
| | - Shipra Singh
- Division of Pulmonology, Department of Pediatrics, State University of New York - Buffalo
| | | | - Shaine A. Morris
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine
| | | | - Marc G. Schecter
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati School of Medicine
| | - Jeffrey S. Heinle
- Division of Congenital Heart Surgery, Department of Surgery, Baylor College of Medicine
| | - Timothy E. Lotze
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine,Texas Children’s Hospital
| | - George B. Mallory
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine
| |
Collapse
|
32
|
Kinane TB, Lin AE, Lahoud-Rahme M, Westra SJ, Mark EJ. Case 4-2017. A 2-Month-Old Girl with Growth Retardation and Respiratory Failure. N Engl J Med 2017; 376:562-574. [PMID: 28177866 DOI: 10.1056/nejmcpc1613465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T Bernard Kinane
- From the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Massachusetts General Hospital, and the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Harvard Medical School - both in Boston
| | - Angela E Lin
- From the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Massachusetts General Hospital, and the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Harvard Medical School - both in Boston
| | - Manuella Lahoud-Rahme
- From the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Massachusetts General Hospital, and the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Harvard Medical School - both in Boston
| | - Sjirk J Westra
- From the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Massachusetts General Hospital, and the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Harvard Medical School - both in Boston
| | - Eugene J Mark
- From the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Massachusetts General Hospital, and the Departments of Pediatrics (T.B.K., A.E.L.), Cardiology (M.L.-R.), Radiology (S.J.W.), and Pathology (E.J.M.), Harvard Medical School - both in Boston
| |
Collapse
|
33
|
Spagnolo P, Bush A. Interstitial Lung Disease in Children Younger Than 2 Years. Pediatrics 2016; 137:peds.2015-2725. [PMID: 27245831 DOI: 10.1542/peds.2015-2725] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 11/24/2022] Open
Abstract
Childhood interstitial lung disease (chILD) represents a highly heterogeneous group of rare disorders associated with substantial morbidity and mortality. Although our understanding of chILD remains limited, important advances have recently been made, the most important being probably the appreciation that disorders that present in early life are distinct from those occurring in older children and adults, albeit with some overlap. chILD manifests with diffuse pulmonary infiltrates and nonspecific respiratory signs and symptoms, making exclusion of common conditions presenting in a similar fashion an essential preliminary step. Subsequently, a systematic approach to diagnosis includes a careful history and physical examination, computed tomography of the chest, and some or all of bronchoscopy with bronchoalveolar lavage, genetic testing, and if diagnostic uncertainty persists, lung biopsy. This review focuses on chILD presenting in infants younger than 2 years of age and discusses recent advances in the classification, diagnostic approach, and management of chILD in this age range. We describe novel genetic entities, along with initiatives that aim at collecting clinical data and biologic samples from carefully characterized patients in a prospective and standardized fashion. Early referral to expert centers and timely diagnosis may have important implications for patient management and prognosis, but effective therapies are often lacking. Following massive efforts, international collaborations among the key stakeholders are finally starting to be in place. These have allowed the setting up and conducting of the first randomized controlled trial of therapeutic interventions in patients with chILD.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medical University Clinic, Canton Hospital Baselland, and University of Basel, Liestal, Switzerland;
| | - Andrew Bush
- Royal Brompton Hospital and Harefield NHS Foundation Trust, London, United Kingdom; and National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
34
|
Eltahir S, Ahmad KS, Al-Balawi MM, Bukhamsien H, Al-Mobaireek K, Alotaibi W, Al-Shamrani A. Lung disease associated with filamin A gene mutation: a case report. J Med Case Rep 2016; 10:97. [PMID: 27091362 PMCID: PMC4836084 DOI: 10.1186/s13256-016-0871-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding filamin A (FLNA) lead to diseases with high phenotypic diversity including periventricular nodular heterotopia, skeletal dysplasia, otopalatodigital spectrum disorders, cardiovascular abnormalities, and coagulopathy. FLNA mutations were recently found to be associated with lung disease. In this study, we report a novel FLNA gene associated with significant lung disease and unique angiogenesis. CASE PRESENTATION Here, we describe a 1-year-old Saudi female child with respiratory distress at birth. The child then had recurrent lower respiratory tract infections, bilateral lung emphysema with basal atelectasis, bronchospasm, pulmonary artery hypertension, and oxygen and mechanical ventilation dependency. Molecular testing showed a new pathogenic variant of one copy of c.3153dupC in exon 21 in the FLNA gene. CONCLUSIONS Our data support previous reports in the literature that associate FLNA gene mutation and lung disease.
Collapse
Affiliation(s)
- Safa Eltahir
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Khalid S Ahmad
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Mohammed M Al-Balawi
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia.
| | - Hussien Bukhamsien
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Khalid Al-Mobaireek
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Wadha Alotaibi
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | | |
Collapse
|
35
|
Children’s Interstitial and Diffuse Lung Disease. Progress and Future Horizons. Ann Am Thorac Soc 2015; 12:1451-7. [DOI: 10.1513/annalsats.201508-558ps] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
36
|
Connor CJ, Shchelochkov OA, Ciliberto H. Anetoderma in a patient with terminal osseous dysplasia with pigmentary defects. Am J Med Genet A 2015; 167A:2459-62. [DOI: 10.1002/ajmg.a.37176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/10/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Cody J. Connor
- Carver College of Medicine; University of Iowa Hospitals and Clinics
| | | | | |
Collapse
|
37
|
Diffuse Lung Disease. PEDIATRIC CHEST IMAGING 2014. [PMCID: PMC7120093 DOI: 10.1007/174_2014_1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diffuse lung disease (DLD) comprises a diverse group of disorders characterized by widespread pulmonary parenchymal pathology and impaired gas exchange. While many of these disorders are categorized under the rubric of interstitial lung disease (ILD), some of these disorders involve the airspaces or peripheral airways in addition to, or rather than, the interstitium. Some of these disorders are present primarily in infancy or early childhood, while others that are prevalent in adulthood rarely occur in childhood. This chapter will review the classification of pediatric DLD and the characteristic imaging findings of specific disorders to facilitate accurate diagnosis and guide appropriate treatment of children with these disorders.
Collapse
|
38
|
Filamin A regulates neuronal migration through brefeldin A-inhibited guanine exchange factor 2-dependent Arf1 activation. J Neurosci 2013; 33:15735-46. [PMID: 24089482 DOI: 10.1523/jneurosci.1939-13.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Periventricular heterotopias is a malformation of cortical development, characterized by ectopic neuronal nodules around ventricle lining and caused by an initial migration defect during early brain development. Human mutations in the Filamin A (FLNA) and ADP-ribosylation factor guanine exchange factor 2 [ARFGEF2; encoding brefeldin-A-inhibited guanine exchange factor-2 (BIG2)] genes give rise to this disorder. Previously, we have reported that Big2 inhibition impairs neuronal migration and binds to FlnA, and its loss promotes FlnA phosphorylation. FlnA phosphorylation dictates FlnA-actin binding affinity and consequently alters focal adhesion size and number to effect neuronal migration. Here we show that FlnA loss similarly impairs migration, reciprocally enhances Big2 expression, but also alters Big2 subcellular localization in both null and conditional FlnA mice. FlnA phosphorylation promotes relocalization of Big2 from the Golgi toward the lipid ruffles, thereby activating Big2-dependent Arf1 at the cell membrane. Loss of FlnA phosphorylation or Big2 function impairs Arf1-dependent vesicle trafficking at the periphery, and Arf1 is required for maintenance of cell-cell junction connectivity and focal adhesion assembly. Loss of Arf1 activity disrupts neuronal migration and cell adhesion. Collectively, these studies demonstrate a potential mechanism whereby coordinated interactions between actin (through FlnA) and vesicle trafficking (through Big2-Arf) direct the assembly and disassembly of membrane protein complexes required for neuronal migration and neuroependymal integrity.
Collapse
|
39
|
Oegema R, Hulst JM, Theuns-Valks SD, van Unen LM, Schot R, Mancini GM, Schipper ME, de Wit MC, Sibbles BJ, de Coo IF, Nanninga V, Hofstra RM, Halley DJ, Brooks AS. Novel no-stop FLNA
mutation causes multi-organ involvement in males. Am J Med Genet A 2013; 161A:2376-84. [DOI: 10.1002/ajmg.a.36109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Renske Oegema
- Department of Clinical Genetics; Erasmus MC; Rotterdam the Netherlands
| | - Jessie M. Hulst
- Department of Pediatric Gastroenterology; Erasmus MC-Sophia; Rotterdam the Netherlands
| | | | | | - Rachel Schot
- Department of Clinical Genetics; Erasmus MC; Rotterdam the Netherlands
| | | | | | - Marie C.Y. de Wit
- Department of Pediatric Neurology; Erasmus MC-Sophia; Rotterdam the Netherlands
| | - Barbara J. Sibbles
- Department of Pediatric Gastroenterology; Erasmus MC-Sophia; Rotterdam the Netherlands
| | | | - Veerle Nanninga
- Department of Neurology; Albert Schweitzer Ziekenhuis; Dordrecht the Netherlands
| | | | - Dicky J.J. Halley
- Department of Clinical Genetics; Erasmus MC; Rotterdam the Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics; Erasmus MC; Rotterdam the Netherlands
| |
Collapse
|
40
|
Kasper BS, Kurzbuch K, Chang BS, Pauli E, Hamer HM, Winkler J, Hehr U. Paternal inheritance of classic X-linked bilateral periventricular nodular heterotopia. Am J Med Genet A 2013; 161A:1323-8. [DOI: 10.1002/ajmg.a.35917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/04/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Burkhard S. Kasper
- Department of Neurology; Epilepsy Center, Erlangen University; Erlangen; Germany
| | - Katrin Kurzbuch
- Department of Neurology; Epilepsy Center, Erlangen University; Erlangen; Germany
| | - Bernard S. Chang
- Department of Neurology; Comprehensive Epilepsy Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, Massachusetts
| | - Elisabeth Pauli
- Department of Neurology; Epilepsy Center, Erlangen University; Erlangen; Germany
| | - Hajo M. Hamer
- Department of Neurology; Epilepsy Center, Erlangen University; Erlangen; Germany
| | - Jürgen Winkler
- Department of Neurology; Molecular Neurology, Erlangen University; Erlangen; Germany
| | - Ute Hehr
- Department of Human Genetics; Center for Human Genetics, University of Regensburg; Regensburg; Germany
| |
Collapse
|
41
|
Meuwissen MEC, Lequin MH, Bindels-de Heus K, Bruggenwirth HT, Knapen MFCM, Dalinghaus M, de Coo R, van Bever Y, Winkelman BHJ, Mancini GMS. ACTA2 mutation with childhood cardiovascular, autonomic and brain anomalies and severe outcome. Am J Med Genet A 2013; 161A:1376-80. [PMID: 23613326 DOI: 10.1002/ajmg.a.35858] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/20/2012] [Indexed: 01/10/2023]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) are associated with connective tissue disorders like Marfan syndrome and Loeys-Dietz syndrome, caused by mutations in the fibrillin-1, the TGFβ-receptor 1- and -2 genes, the SMAD3 and TGFβ2 genes, but have also been ascribed to ACTA2 gene mutations in adults, spread throughout the gene. We report on a novel de novo c.535C>T in exon 6 leading to p.R179C aminoacid substitution in ACTA2 in a toddler girl with primary pulmonary hypertension, persistent ductus arteriosus, extensive cerebral white matter lesions, fixed dilated pupils, intestinal malrotation, and hypotonic bladder. Recently, de novo ACTA2 R179H substitutions have been associated with a similar phenotype and additional cerebral developmental defects including underdeveloped corpus callosum and vermis hypoplasia in a single patient. The patient here shows previously undescribed abnormal lobulation of the frontal lobes and position of the gyrus cinguli and rostral dysplasis of the corpus callosum; she died at the age of 3 years during surgery due to vascular fragility and rupture of the ductus arteriosus. Altogether these observations support a role of ACTA2 in brain development, especially related to the arginine at position 179. Although all previously reported patients with R179H substitution successfully underwent the same surgery at younger ages, the severe outcome of our patient warns against the devastating effects of the R179C substitution on vasculature.
Collapse
Affiliation(s)
- Marije E C Meuwissen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee EY. Interstitial lung disease in infants: new classification system, imaging technique, clinical presentation and imaging findings. Pediatr Radiol 2013; 43:3-13; quiz p.128-9. [PMID: 23229343 DOI: 10.1007/s00247-012-2524-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/09/2012] [Accepted: 08/11/2012] [Indexed: 12/13/2022]
Abstract
Interstitial lung disease (ILD) is defined as a rare, heterogeneous group of parenchymal lung conditions that develop primarily because of underlying developmental or genetic disorders. Affected infants typically present with clinical syndromes characterized by dyspnea, tachypnea, crackles and hypoxemia. Until recently, the understanding of ILD in infants has been limited largely owing to a lack of evidence-based information of underlying pathogenesis, natural history, imaging findings and histopathological features. However, ILD in infants is now better understood and managed because of (1) advances in imaging methods that result in rapid and accurate detection, (2) improved thoracoscopic techniques for lung biopsy, (3) a consensus regarding the pathological criteria for these particular lung conditions and (4) a new classification system based on the underlying etiology of ILD. This article reviews the new classification system, imaging technique, clinical presentation and imaging findings of ILD in infants. Specialized knowledge of this new classification system in conjunction with recognition of characteristic imaging findings of ILD in infants has great potential for early and accurate diagnosis, which in turn can lead to optimal patient management.
Collapse
Affiliation(s)
- Edward Y Lee
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Sheen VL. Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease. SCIENTIFICA 2012; 2012:480129. [PMID: 24278701 PMCID: PMC3820590 DOI: 10.6064/2012/480129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/14/2012] [Indexed: 06/02/2023]
Abstract
During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH). PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease.
Collapse
Affiliation(s)
- Volney L. Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
44
|
Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A. Eur J Hum Genet 2012; 21:494-502. [PMID: 23032111 DOI: 10.1038/ejhg.2012.209] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations conferring loss of function at the FLNA (encoding filamin A) locus lead to X-linked periventricular nodular heterotopia (XL-PH), with seizures constituting the most common clinical manifestation of this disorder in female heterozygotes. Vascular dilatation (mainly the aorta), joint hypermobility and variable skin findings are also associated anomalies, with some reports suggesting that this might represents a separate syndrome allelic to XL-PH, termed as Ehlers-Danlos syndrome-periventricular heterotopia variant (EDS-PH). Here, we report a cohort of 11 males and females with both hypomorphic and null mutations in FLNA that manifest a wide spectrum of connective tissue and vascular anomalies. The spectrum of cutaneous defects was broader than previously described and is inconsistent with a specific type of EDS. We also extend the range of vascular anomalies associated with XL-PH to included peripheral arterial dilatation and atresia. Based on these observations, we suggest that there is little molecular or clinical justification for considering EDS-PH as a separate entity from XL-PH, but instead propose that there is a spectrum of vascular and connective tissues anomalies associated with this condition for which all individuals with loss-of-function mutations in FLNA should be evaluated. In addition, since some patients with XL-PH can present primarily with a joint hypermobility syndrome, we propose that screening for cardiovascular manifestations should be offered to those patients when there are associated seizures or an X-linked pattern of inheritance.
Collapse
|
45
|
Atypical male and female presentations of FLNA-related periventricular nodular heterotopia. Eur J Med Genet 2012; 55:313-8. [DOI: 10.1016/j.ejmg.2012.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022]
|
46
|
Chardon JW, Mignot C, Aradhya S, Keren B, Afenjar A, Kaminska A, Beldjord C, Héron D, Boycott KM. Deletion of filamin A in two female patients with periventricular nodular heterotopia. Am J Med Genet A 2012; 158A:1512-6. [DOI: 10.1002/ajmg.a.35409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/14/2012] [Indexed: 11/09/2022]
|
47
|
Clapham KR, Yu TW, Ganesh VS, Barry B, Chan Y, Mei D, Parrini E, Funalot B, Dupuis L, Nezarati MM, du Souich C, van Karnebeek C, Guerrini R, Walsh CA. FLNA genomic rearrangements cause periventricular nodular heterotopia. Neurology 2012; 78:269-78. [PMID: 22238415 DOI: 10.1212/wnl.0b013e31824365e4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify copy number variant (CNV) causes of periventricular nodular heterotopia (PNH) in patients for whom FLNA sequencing is negative. METHODS Screening of 35 patients from 33 pedigrees on an Affymetrix 6.0 microarray led to the identification of one individual bearing a CNV that disrupted FLNA. FLNA-disrupting CNVs were also isolated in 2 other individuals by multiplex ligation probe amplification. These 3 cases were further characterized by high-resolution oligo array comparative genomic hybridization (CGH), and the precise junctional breakpoints of the rearrangements were identified by PCR amplification and sequencing. RESULTS We report 3 cases of PNH caused by nonrecurrent genomic rearrangements that disrupt one copy of FLNA. The first individual carried a 113-kb deletion that removes all but the first exon of FLNA. A second patient harbored a complex rearrangement including a deletion of the 3' end of FLNA accompanied by a partial duplication event. A third patient bore a 39-kb deletion encompassing all of FLNA and the neighboring gene EMD. High-resolution oligo array CGH of the FLNA locus suggests distinct molecular mechanisms for each of these rearrangements, and implicates nearby low copy repeats in their pathogenesis. CONCLUSIONS These results demonstrate that FLNA is prone to pathogenic rearrangements, and highlight the importance of screening for CNVs in individuals with PNH lacking FLNA point mutations.
Collapse
Affiliation(s)
- K R Clapham
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lung disease in FLNA mutation: Confirmatory report. Eur J Med Genet 2011; 54:299-300. [DOI: 10.1016/j.ejmg.2010.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022]
|