1
|
Hume E, Cossio ML, Vargas P, Cubillos MP, Maccioni A, Lay-Son G. Another face of RASA1: Report of familial germline variant in RASA1 with dysmorphic features. Am J Med Genet A 2024; 194:e63711. [PMID: 38934655 DOI: 10.1002/ajmg.a.63711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024]
Abstract
RASopathies encompass a diverse set of disorders affecting genes that encode proteins within the RAS-MAPK pathway. RASA1 mutations are the cause of an autosomal dominant disorder called capillary malformation-arteriovenous malformation type 1 (CM-AVM1). Unlike other RASopathies, facial dysmorphism has not been described in these patients. We phenotypically delineated a large family of individuals with multifocal fast-flow capillary malformations, severe lymphatic anomalies of perinatal onset, and dysmorphic features not previously described. Sequencing studies were performed on probands and related family members, confirming the segregation of dysmorphic features in affected members of a novel heterozygous variant in RASA1 (NM_002890.3:c.2366G>A, p.(Arg789Gln)). In this work, we broaden the phenotypic spectrum of CM-AVM type 1 and propose a new RASA1 variant as likely pathogenic.
Collapse
Affiliation(s)
- Esteban Hume
- Sección de Genética y Errores Congénitos del Metabolismo, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Laura Cossio
- Department of Dermatology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Vargas
- Centro de Investigación e Innovación Materno Fetal, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Cubillos
- Servicio de Neonatología, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
| | - Andrea Maccioni
- Servicio de Neonatología, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
- Departamento de Neonatología, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Lay-Son
- Sección de Genética y Errores Congénitos del Metabolismo, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Unidad de Genética, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
| |
Collapse
|
2
|
Sánchez-Espino LF, Ivars M, Prat Torres C, Lavarino CE, Olaciregui NG, Zurriaga CR, Passini VPC, Serrano MB, Baselga E. Single dominant lesion in capillary malformation-arteriovenous malformation (CM-AVM) RASA1 syndrome. Pediatr Dermatol 2024; 41:861-865. [PMID: 38556785 DOI: 10.1111/pde.15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
We report two cases with localized vascular malformations clinically resembling the "dominant lesion" seen in capillary malformation-arteriovenous malformation (CM-AVM) syndrome, however, lacking germline RASA1 variants but presenting double somatic RASA1 variants in affected tissue. Both patients presented with localized and superficial high-flow vascular malformations were treated with surgery and laser therapy and showed partial resolution. The study underscores the rarity of somatic RASA1 variants, contributes to understanding the "second-hit" pathophysiology in vascular lesions, and emphasizes the significance of clinical distinctions and genotyping for accurate diagnoses, offering implications for diagnosis, prognosis, and genetic counseling.
Collapse
Affiliation(s)
- Luis Fernando Sánchez-Espino
- Dermatology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Multidisciplinary Vascular Anomalies Clinic, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Marta Ivars
- Dermatology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Multidisciplinary Vascular Anomalies Clinic, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Carolina Prat Torres
- Dermatology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Cinzia E Lavarino
- Molecular Oncology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Oncology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Nagore Gené Olaciregui
- Molecular Oncology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Oncology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Carlota Rovira Zurriaga
- Multidisciplinary Vascular Anomalies Clinic, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Pathology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Verónica P Celis Passini
- Multidisciplinary Vascular Anomalies Clinic, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Oncology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Miguel Bejarano Serrano
- Multidisciplinary Vascular Anomalies Clinic, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Surgery Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| | - Eulàlia Baselga
- Dermatology Department, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
- Multidisciplinary Vascular Anomalies Clinic, Barcelona Children's Hospital Sant Joan de Déu, Barcelona, Cataluña, Spain
| |
Collapse
|
3
|
Stor MLE, Horbach SER, Lokhorst MM, Tan E, Maas SM, van Noesel CJM, van der Horst CMAM. Genetic mutations and phenotype characteristics in peripheral vascular malformations: A systematic review. J Eur Acad Dermatol Venereol 2024; 38:1314-1328. [PMID: 38037869 DOI: 10.1111/jdv.19640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 12/02/2023]
Abstract
Vascular malformations (VMs) are clinically diverse with regard to the vessel type, anatomical location, tissue involvement and size. Consequently, symptoms and disease impact differ significantly. Diverse causative mutations in more and more genes are discovered and play a major role in the development of VMs. However, the relationship between the underlying causative mutations and the highly variable phenotype of VMs is not yet fully understood. In this systematic review, we aimed to provide an overview of known causative mutations in genes in VMs and discuss associations between the causative mutations and clinical phenotypes. PubMed and EMBASE libraries were systematically searched on November 9th, 2022 for randomized controlled trials and observational studies reporting causative mutations in at least five patients with peripheral venous, lymphatic, arteriovenous and combined malformations. Study quality was assessed with the Newcastle-Ottawa Scale. Data were extracted on patient and VM characteristics, molecular sequencing method and results of molecular analysis. In total, 5667 articles were found of which 69 studies were included, reporting molecular analysis in a total of 4261 patients and 1686 (40%) patients with peripheral VMs a causative mutation was detected. In conclusion, this systematic review provides a comprehensive overview of causative germline and somatic mutations in various genes and associated phenotypes in peripheral VMs. With these findings, we attempt to better understand how the underlying causative mutations in various genes contribute to the highly variable clinical characteristics of VMs. Our study shows that some causative mutations lead to a uniform phenotype, while other causal variants lead to more varying phenotypes. By contrast, distinct causative mutations may lead to similar phenotypes and result in almost indistinguishable VMs. VMs are currently classified based on clinical and histopathology features, however, the findings of this systematic review suggest a larger role for genotype in current diagnostics and classification.
Collapse
Affiliation(s)
- M L E Stor
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S E R Horbach
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - M M Lokhorst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - E Tan
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S M Maas
- Department of Clinical Genetics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C J M van Noesel
- Department of Pathology, Molecular Diagnostics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C M A M van der Horst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Garlisi Torales LD, Sempowski BA, Krikorian GL, Woodis KM, Paulissen SM, Smith CL, Sheppard SE. Central conducting lymphatic anomaly: from bench to bedside. J Clin Invest 2024; 134:e172839. [PMID: 38618951 PMCID: PMC11014661 DOI: 10.1172/jci172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.
Collapse
Affiliation(s)
- Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Benjamin A. Sempowski
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Georgia L. Krikorian
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kristina M. Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Scott M. Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher L. Smith
- Division of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Moreno Alfonso JC, Méndez-Maestro I, Coll I Prat A, Rodríguez-Laguna L, Martínez-Glez V, Triana P, López-Gutiérrez JC. Lymphatic Malformations in Parkes Weber's Syndrome: Retrospective Review of 16 Cases in a Vascular Anomalies Center. Eur J Pediatr Surg 2024; 34:78-83. [PMID: 37595632 DOI: 10.1055/a-2156-5000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
INTRODUCTION Parkes Weber's syndrome (PWS) is a rare genetic disorder characterized by overgrowth and vascular malformations, primarily affecting the extremities. While PWS is known to be associated with arteriovenous and capillary malformations, the potential involvement of lymphatic malformations (LMs) has not been previously reported. The objective of this study is to investigate the presence of lymphatic anomalies in PWS patients and their role in the development of limb asymmetry. MATERIALS AND METHODS This is a retrospective study of patients diagnosed with PWS in a Vascular Anomalies Center from 1994 to 2020. Clinical data were obtained from medical records including diagnostic imaging, lymphoscintigraphy, and genetic testing. The Institutional Review Board and Ethics Committee have approved this study. RESULTS A total of 16 patients aged 18 interquartile range 14.7 years diagnosed with PWS were included (50% female). Six of the 16 patients with PWS had clinical and imaging data suggestive of LM (37.5%) and 3 of them had genetic variants in RASA1 (2/3) or KRAS (1/3). Limb asymmetry was greater in patients with isolated PWS (2.6 ± 0.8 cm) than in the PWS-lymphatic anomalies population (2 ± 0.7 cm), although not significant (p = 0.247). One in 6 patients with PWS-LM required amputation (16.6%) versus 1 in 10 in isolated PWS (10%). CONCLUSION Lymphatic anomalies may be present in a significant number of patients with PWS and could have a role in limb asymmetry and outcomes. It is paramount to investigate their existence and distinguish them from true overgrowth.
Collapse
Affiliation(s)
- Julio César Moreno Alfonso
- Department of Pediatric Surgery, Hospital Universitario de Navarra, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | | | - Aniol Coll I Prat
- Department of Radiology, Cruces University Hospital, Barakaldo, Spain
| | - Lara Rodríguez-Laguna
- Institute of Medical and Molecular Genetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Victor Martínez-Glez
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Paloma Triana
- Division of Pediatric Plastic Surgery and Vascular Anomalies, Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Juan Carlos López-Gutiérrez
- Division of Pediatric Plastic Surgery and Vascular Anomalies, Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
6
|
Chen D, Wiggins D, Sevick EM, Davis MJ, King PD. An EPHB4-RASA1 signaling complex inhibits shear stress-induced Ras-MAPK activation in lymphatic endothelial cells to promote the development of lymphatic vessel valves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568378. [PMID: 38045382 PMCID: PMC10690291 DOI: 10.1101/2023.11.22.568378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
EPHB4 is a receptor protein tyrosine kinase that is required for the development of lymphatic vessel (LV) valves. We show here that EPHB4 is necessary for the specification of LV valves, their continued development after specification, and the maintenance of LV valves in adult mice. EPHB4 promotes LV valve development by inhibiting the activation of the Ras-MAPK pathway in LV endothelial cells (LEC). For LV specification, this role for EPHB4 depends on its ability to interact physically with the p120 Ras-GTPase-activating protein (RASA1) that acts as a negative regulator of Ras. Through physical interaction, EPHB4 and RASA1 dampen oscillatory shear stress (OSS)-induced Ras-MAPK activation in LEC, which is required for LV specification. We identify the Piezo1 OSS sensor as a focus of EPHB4-RASA1 regulation of OSS-induced Ras-MAPK signaling mediated through physical interaction. These findings contribute to an understanding of the mechanism by which EPHB4, RASA1 and Ras regulate lymphatic valvulogenesis.
Collapse
|
7
|
Mologousis MA, Ostertag-Hill CA, Haimes H, Fishman SJ, Mulliken JB, Liang MG. Spectrum of lymphatic anomalies in patients with RASA1-related CM-AVM. Pediatr Dermatol 2023; 40:1028-1034. [PMID: 37767822 DOI: 10.1111/pde.15443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Capillary malformation-arteriovenous malformation (CM-AVM) is characterized by multifocal fast-flow capillary malformations, sometimes with arteriovenous malformations/fistulas, skeletal/soft tissue overgrowth, telangiectasias, or Bier spots. Lymphatic abnormalities are infrequently reported. We describe seven patients with CM-AVM and lymphatic anomalies. METHODS Following IRB approval, we identified patients with CM-AVM and lymphatic anomalies seen at the Vascular Anomalies Center at Boston Children's Hospital from 2003 to 2023. We retrospectively reviewed records for clinical, genetic, laboratory, and imaging findings. RESULTS We found seven patients with CM-AVM and lymphatic abnormalities. Five patients were diagnosed prenatally: four with pleural effusions (including one suspected chylothorax) and one with ascites. Pleural effusions resolved after neonatal drainage in three patients and fetal thoracentesis in the fourth; however, fluid rapidly reaccumulated in this fetus causing hydrops. Ascites resolved after neonatal paracentesis, recurred at 2 months, and spontaneously resolved at 5 years; magnetic resonance lymphangiography for recurrence at age 19 years suggested a central conducting lymphatic anomaly (CCLA), and at age 20 years a right spermatic cord/scrotal lymphatic malformation (LM) was detected. Chylous pericardial effusion presented in a sixth patient at 2 months and disappeared after pericardiocentesis. A seventh patient was diagnosed with a left lower extremity LM at 16 months. Six patients underwent genetic testing, and all had RASA1 mutation. RASA1 variant was novel in three patients (c.1495delinsCTACC, c.434_451delinsA, c.2648del), previously reported in two (c.2603+1G>A, c.475_476del), and unavailable in another. Median follow-up age was 5.8 years (4 months-20 years). CONCLUSION CM-AVM may be associated with lymphatic anomalies, including pericardial/pleural effusions, ascites, CCLA, and LM.
Collapse
Affiliation(s)
- Mia A Mologousis
- Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Dermatology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Hilary Haimes
- Department of Dermatology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Steven J Fishman
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - John B Mulliken
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Marilyn G Liang
- Department of Dermatology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Clapp A, Shawber CJ, Wu JK. Pathophysiology of Slow-Flow Vascular Malformations: Current Understanding and Unanswered Questions. JOURNAL OF VASCULAR ANOMALIES 2023; 4:e069. [PMID: 37662560 PMCID: PMC10473035 DOI: 10.1097/jova.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
Background Slow-flow vascular malformations include venous, lymphatic, and lymphaticovenous malformations. Recent studies have linked genetic variants hyperactivating either the PI3K/AKT/mTOR and/or RAS/RAF/MAPK signaling pathways with slow-flow vascular malformation development, leading to the use of pharmacotherapies such as sirolimus and alpelisib. It is important that clinicians understand basic and translational research advances in slow-flow vascular malformations. Methods A literature review of basic science publications in slow-flow vascular malformations was performed on Pubmed, using search terms "venous malformation," "lymphatic malformation," "lymphaticovenous malformation," "genetic variant," "genetic mutation," "endothelial cells," and "animal model." Relevant publications were reviewed and summarized. Results The study of patient tissues and the use of primary pathogenic endothelial cells from vascular malformations shed light on their pathological behaviors, such as endothelial cell hyperproliferation and disruptions in vessel architecture. The use of xenograft and transgenic animal models confirmed the pathogenicity of genetic variants and allowed for preclinical testing of potential therapies. These discoveries underscore the importance of basic and translational research in understanding the pathophysiology of vascular malformations, which will allow for the development of improved biologically targeted treatments. Conclusion Despite basic and translation advances, a cure for slow-flow vascular malformations remains elusive. Many questions remain unanswered, including how genotype variants result in phenotypes, and genotype-phenotype heterogeneity. Continued research into venous and lymphatic malformation pathobiology is critical in understanding the mechanisms by which genetic variants contribute to vascular malformation phenotypic features.
Collapse
Affiliation(s)
- Averill Clapp
- Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - June K. Wu
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
9
|
Chen D, Van der Ent MA, Lartey NL, King PD. EPHB4-RASA1-Mediated Negative Regulation of Ras-MAPK Signaling in the Vasculature: Implications for the Treatment of EPHB4- and RASA1-Related Vascular Anomalies in Humans. Pharmaceuticals (Basel) 2023; 16:165. [PMID: 37259315 PMCID: PMC9959185 DOI: 10.3390/ph16020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 08/26/2023] Open
Abstract
Ephrin receptors constitute a large family of receptor tyrosine kinases in mammals that through interaction with cell surface-anchored ephrin ligands regulate multiple different cellular responses in numerous cell types and tissues. In the cardiovascular system, studies performed in vitro and in vivo have pointed to a critical role for Ephrin receptor B4 (EPHB4) as a regulator of blood and lymphatic vascular development and function. However, in this role, EPHB4 appears to act not as a classical growth factor receptor but instead functions to dampen the activation of the Ras-mitogen activated protein signaling (MAPK) pathway induced by other growth factor receptors in endothelial cells (EC). To inhibit the Ras-MAPK pathway, EPHB4 interacts functionally with Ras p21 protein activator 1 (RASA1) also known as p120 Ras GTPase-activating protein. Here, we review the evidence for an inhibitory role for an EPHB4-RASA1 interface in EC. We further discuss the mechanisms by which loss of EPHB4-RASA1 signaling in EC leads to blood and lymphatic vascular abnormalities in mice and the implications of these findings for an understanding of the pathogenesis of vascular anomalies in humans caused by mutations in EPHB4 and RASA1 genes. Last, we provide insights into possible means of drug therapy for EPHB4- and RASA1-related vascular anomalies.
Collapse
Affiliation(s)
| | | | | | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Chen D, Hughes ED, Saunders TL, Wu J, Hernández Vásquez MN, Makinen T, King PD. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight 2022; 7:156928. [PMID: 35015735 PMCID: PMC8876457 DOI: 10.1172/jci.insight.156928] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss of function mutations in RASA1 or EPHB4 genes that encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4) respectively. However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell (EC)-specific disruption of Ephb4 in mice results in accumulation of collagen IV in the EC endoplasmic reticulum leading to EC apoptotic death and defective developmental, neonatal and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice can be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4 mutant mice that express a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity show normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications with regards possible means of treatment of this disease.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States of America
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Taija Makinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, United States of America
| |
Collapse
|
11
|
Brouillard P, Witte MH, Erickson RP, Damstra RJ, Becker C, Quéré I, Vikkula M. Primary lymphoedema. Nat Rev Dis Primers 2021; 7:77. [PMID: 34675250 DOI: 10.1038/s41572-021-00309-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Lymphoedema is the swelling of one or several parts of the body owing to lymph accumulation in the extracellular space. It is often chronic, worsens if untreated, predisposes to infections and causes an important reduction in quality of life. Primary lymphoedema (PLE) is thought to result from abnormal development and/or functioning of the lymphatic system, can present in isolation or as part of a syndrome, and can be present at birth or develop later in life. Mutations in numerous genes involved in the initial formation of lymphatic vessels (including valves) as well as in the growth and expansion of the lymphatic system and associated pathways have been identified in syndromic and non-syndromic forms of PLE. Thus, the current hypothesis is that most cases of PLE have a genetic origin, although a causative mutation is identified in only about one-third of affected individuals. Diagnosis relies on clinical presentation, imaging of the structure and functionality of the lymphatics, and in genetic analyses. Management aims at reducing or preventing swelling by compression therapy (with manual drainage, exercise and compressive garments) and, in carefully selected cases, by various surgical techniques. Individuals with PLE often have a reduced quality of life owing to the psychosocial and lifelong management burden associated with their chronic condition. Improved understanding of the underlying genetic origins of PLE will translate into more accurate diagnosis and prognosis and personalized treatment.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Marlys H Witte
- Department of Surgery, Neurosurgery, and Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert J Damstra
- VASCERN PPL European Reference Centre; Department of Dermatology, Phlebology and Lymphology, Nij Smellinghe Hospital, Drachten, Netherlands
| | | | - Isabelle Quéré
- Department of Vascular Medicine, Centre de référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium. .,VASCERN VASCA European Reference Centre; Center for Vascular Anomalies, Division of Plastic Surgery, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
12
|
Choksi F, Weinsheimer S, Nelson J, Pawlikowska L, Fox CK, Zafar A, Mabray MC, Zabramski J, Akers A, Hart BL, Morrison L, McCulloch CE, Kim H. Assessing the association of common genetic variants in EPHB4 and RASA1 with phenotype severity in familial cerebral cavernous malformation. Mol Genet Genomic Med 2021; 9:e1794. [PMID: 34491620 PMCID: PMC8580075 DOI: 10.1002/mgg3.1794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022] Open
Abstract
Background To investigate whether common variants in EPHB4 and RASA1 are associated with cerebral cavernous malformation (CCM) disease severity phenotypes, including intracranial hemorrhage (ICH), total and large lesion counts. Methods Familial CCM cases enrolled in the Brain Vascular Malformation Consortium were included (n = 338). Total lesions and large lesions (≥5 mm) were counted on MRI; clinical history of ICH at enrollment was assessed by medical records. Samples were genotyped on the Affymetrix Axiom Genome‐Wide LAT1 Human Array. We tested the association of seven common variants (three in EPHB4 and four in RASA1) using multivariable logistic regression for ICH (odds ratio, OR) and multivariable linear regression for total and large lesion counts (proportional increase, PI), adjusting for age, sex, and three principal components. Significance was based on Bonferroni adjustment for multiple comparisons (0.05/7 variants = 0.007). Results EPHB4 variants were not significantly associated with CCM severity phenotypes. One RASA1 intronic variant (rs72783711 A>C) was significantly associated with ICH (OR = 1.82, 95% CI = 1.21–2.37, p = 0.004) and nominally associated with large lesion count (PI = 1.17, 95% CI = 1.03–1.32, p = 0.02). Conclusion A common RASA1 variant may be associated with ICH and large lesion count in familial CCM. EPHB4 variants were not associated with any of the three CCM severity phenotypes.
Collapse
Affiliation(s)
- Foram Choksi
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Nelson
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA
| | - Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Christine K Fox
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albquerque, New Mexico, USA
| | - Marc C Mabray
- Department of Radiology, University of New Mexico, Albquerque, New Mexico, USA
| | - Joseph Zabramski
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Amy Akers
- Angioma Alliance, Durham, North Carolina, USA
| | - Blaine L Hart
- Department of Radiology, University of New Mexico, Albquerque, New Mexico, USA
| | - Leslie Morrison
- Department of Neurology, University of New Mexico, Albquerque, New Mexico, USA
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Helen Kim
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA.,Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Chen D, Geng X, Lapinski PE, Davis MJ, Srinivasan RS, King PD. RASA1-driven cellular export of collagen IV is required for the development of lymphovenous and venous valves in mice. Development 2020; 147:dev192351. [PMID: 33144395 PMCID: PMC7746672 DOI: 10.1242/dev.192351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
RASA1, a negative regulator of Ras-MAPK signaling, is essential for the development and maintenance of lymphatic vessel valves. However, whether RASA1 is required for the development and maintenance of lymphovenous valves (LVV) and venous valves (VV) is unknown. In this study, we show that induced disruption of Rasa1 in mouse embryos did not affect initial specification of LVV or central VV, but did affect their continued development. Similarly, a switch to expression of a catalytically inactive form of RASA1 resulted in impaired LVV and VV development. Blocked development of LVV was associated with accumulation of the basement membrane protein, collagen IV, in LVV-forming endothelial cells (EC), and could be partially or completely rescued by MAPK inhibitors and drugs that promote collagen IV folding. Disruption of Rasa1 in adult mice resulted in venous hypertension and impaired VV function that was associated with loss of EC from VV leaflets. In conclusion, RASA1 functions as a negative regulator of Ras signaling in EC that is necessary for EC export of collagen IV, thus permitting the development of LVV and the development and maintenance of VV.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65102, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Embolization Techniques for Arteriovenous Malformations in Parkes-Weber Syndrome. Ann Vasc Surg 2020; 69:224-231. [DOI: 10.1016/j.avsg.2020.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
|
15
|
Lymphatic Valves and Lymph Flow in Cancer-Related Lymphedema. Cancers (Basel) 2020; 12:cancers12082297. [PMID: 32824219 PMCID: PMC7464955 DOI: 10.3390/cancers12082297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphedema is a complex disease caused by the accumulation of fluid in the tissues resulting from a dysfunctional or damaged lymphatic vasculature. In developed countries, lymphedema most commonly occurs as a result of cancer treatment. Initially, impaired lymph flow causes edema, but over time this results in inflammation, fibrotic and fatty tissue deposition, limited mobility, and bacterial infections that can lead to sepsis. While chronically impaired lymph flow is generally believed to be the instigating factor, little is known about what pathophysiological changes occur in the lymphatic vessels to inhibit lymph flow. Lymphatic vessels not only regulate lymph flow through a variety of physiologic mechanisms, but also respond to lymph flow itself. One of the fascinating ways that lymphatic vessels respond to flow is by growing bicuspid valves that close to prevent the backward movement of lymph. However, lymphatic valves have not been investigated in cancer-related lymphedema patients, even though the mutations that cause congenital lymphedema regulate genes involved in valve development. Here, we review current knowledge of the regulation of lymphatic function and development by lymph flow, including newly identified genetic regulators of lymphatic valves, and provide evidence for lymphatic valve involvement in cancer-related lymphedema.
Collapse
|
16
|
D'Amours G, Brunel-Guitton C, Delrue MA, Dubois J, Laberge S, Soucy JF. Prenatal pleural effusions and chylothorax: An unusual presentation for CM-AVM syndrome due to RASA1. Am J Med Genet A 2020; 182:2454-2460. [PMID: 32776686 DOI: 10.1002/ajmg.a.61779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Guylaine D'Amours
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Canada
| | | | - Marie-Ange Delrue
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Canada
| | - Josée Dubois
- Département d'Imagerie Médicale, CHU Sainte-Justine, Montréal, Canada
- Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Université de Montréal, Montréal, Canada
| | - Sophie Laberge
- Département de Pédiatrie, Université de Montréal, Montréal, Canada
- Service de Pneumologie, CHU Sainte-Justine, Montréal, Canada
| | - Jean-François Soucy
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Canada
| |
Collapse
|
17
|
Chen D, Teng JM, North PE, Lapinski PE, King PD. RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. J Clin Invest 2019; 129:3545-3561. [PMID: 31185000 DOI: 10.1172/jci124917] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combined germline and somatic second hit inactivating mutations of the RASA1 gene, which encodes a negative regulator of the Ras signaling pathway, cause blood and lymphatic vascular lesions in the human autosomal dominant vascular disorder capillary malformation-arteriovenous malformation (CM-AVM). How RASA1 mutations in endothelial cells (EC) result in vascular lesions in CM-AVM is unknown. Here, using different murine models of RASA1-deficiency, we found that RASA1 was essential for the survival of EC during developmental angiogenesis in which primitive vascular plexuses are remodeled into hierarchical vascular networks. RASA1 was required for EC survival during developmental angiogenesis because it was necessary for export of collagen IV from EC and deposition in vascular basement membranes. In the absence of RASA1, dysregulated Ras mitogen-activated protein kinase (MAPK) signal transduction in EC resulted in impaired folding of collagen IV and its retention in the endoplasmic reticulum (ER) leading to EC death. Remarkably, the chemical chaperone, 4-phenylbutyric acid, and small molecule inhibitors of MAPK and 2-oxoglutarate dependent collagen IV modifying enzymes rescued ER retention of collagen IV and EC apoptosis and resulted in normal developmental angiogenesis. These findings have important implications with regards an understanding of the molecular pathogenesis of CM-AVM and possible means of treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joyce M Teng
- Department of Dermatology, Stanford University, Stanford, California, USA
| | - Paula E North
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Zeng X, Hunt A, Jin SC, Duran D, Gaillard J, Kahle KT. EphrinB2-EphB4-RASA1 Signaling in Human Cerebrovascular Development and Disease. Trends Mol Med 2019; 25:265-286. [PMID: 30819650 DOI: 10.1016/j.molmed.2019.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Recent whole exome sequencing studies in humans have provided novel insight into the importance of the ephrinB2-EphB4-RASA1 signaling axis in cerebrovascular development, corroborating and extending previous work in model systems. Here, we aim to review the human cerebrovascular phenotypes associated with ephrinB2-EphB4-RASA1 mutations, including those recently discovered in Vein of Galen malformation: the most common and severe brain arteriovenous malformation in neonates. We will also discuss emerging paradigms of the molecular and cellular pathophysiology of disease-causing ephrinB2-EphB4-RASA1 mutations, including the potential role of somatic mosaicism. These observations have potential diagnostic and therapeutic implications for patients with rare congenital cerebrovascular diseases and their families.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven CT, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Ava Hunt
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA; Department of Pediatrics, Yale School of Medicine, New Haven CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven CT, USA.
| |
Collapse
|
19
|
Edwards LR, Blechman AB, Zlotoff BJ. RASA1 mutation in a family with capillary malformation-arteriovenous malformation syndrome: A discussion of the differential diagnosis. Pediatr Dermatol 2018; 35:e9-e12. [PMID: 29120072 DOI: 10.1111/pde.13332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe a family who presented with several scattered, vascular, cutaneous lesions and was found to have a novel mutation in RASA1, diagnostic of capillary malformation-arteriovenous malformation syndrome. Our patient was initially given a presumptive clinical diagnosis of hereditary hemorrhagic telangiectasia. Capillary malformation-arteriovenous malformation syndrome shares several features with hereditary hemorrhagic telangiectasia and hereditary benign telangiectasia, but it can be distinguished clinically according to its morphologic appearance and distribution of cutaneous vascular lesions, the presence of internal fast-flow lesions, and genetic analysis.
Collapse
Affiliation(s)
- Lisa R Edwards
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Adam B Blechman
- Department of Dermatology, University of Virginia Health System, Charlottesville, VA, USA
| | - Barrett J Zlotoff
- Department of Dermatology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
20
|
Saliou G, Eyries M, Iacobucci M, Knebel J, Waill M, Coulet F, Ozanne A, Soubrier F. Clinical and genetic findings in children with central nervous system arteriovenous fistulas. Ann Neurol 2017; 82:972-980. [DOI: 10.1002/ana.25106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/26/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Guillaume Saliou
- Department of NeuroradiologyCentre Hospitalier Universitaire VaudoisLausanne Switzerland
- Department of NeuroradiologyBicêtre HospitalLe Kremlin Bicêtre France
| | - Mélanie Eyries
- Department of geneticsHopital Pitié‐SalpêtrièreParis France
- UMR‐S 1166‐ICAN; INSERM and UPMC Sorbonne UniversityParis France
| | - Marta Iacobucci
- Department of NeuroradiologyBicêtre HospitalLe Kremlin Bicêtre France
| | - Jean‐François Knebel
- département de Radiologie, Centre d'Imagerie Biomédicale, Hôpital Nestlé, CHUVLausanne Switzerland
| | | | | | - Augustin Ozanne
- Department of NeuroradiologyBicêtre HospitalLe Kremlin Bicêtre France
| | - Florent Soubrier
- Department of geneticsHopital Pitié‐SalpêtrièreParis France
- UMR‐S 1166‐ICAN; INSERM and UPMC Sorbonne UniversityParis France
| |
Collapse
|
21
|
Lapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ, King PD. RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest 2017; 127:2569-2585. [PMID: 28530642 DOI: 10.1172/jci89607] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood and lymphatic vessel (LV) disorder that is caused by inherited inactivating mutations of the RASA1 gene, which encodes p120 RasGAP (RASA1), a negative regulator of the Ras small GTP-binding protein. How RASA1 mutations lead to the LV leakage defects that occur in CM-AVM is not understood. Here, we report that disruption of the Rasa1 gene in adult mice resulted in loss of LV endothelial cells (LECs) specifically from the leaflets of intraluminal valves in collecting LVs. As a result, valves were unable to prevent fluid backflow and the vessels were ineffective pumps. Furthermore, disruption of Rasa1 in midgestation resulted in LEC apoptosis in developing LV valves and consequently failed LV valvulogenesis. Similar phenotypes were observed in induced RASA1-deficient adult mice and embryos expressing a catalytically inactive RASA1R780Q mutation. Thus, RASA1 catalytic activity is essential for the function and development of LV valves. These data provide a partial explanation for LV leakage defects and potentially other LV abnormalities observed in CM-AVM.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abbas Doosti
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Scerri TS, Quaglieri A, Cai C, Zernant J, Matsunami N, Baird L, Scheppke L, Bonelli R, Yannuzzi LA, Friedlander M, Egan CA, Fruttiger M, Leppert M, Allikmets R, Bahlo M. Genome-wide analyses identify common variants associated with macular telangiectasia type 2. Nat Genet 2017; 49:559-567. [DOI: 10.1038/ng.3799] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
|
23
|
Macmurdo CF, Wooderchak-Donahue W, Bayrak-Toydemir P, Le J, Wallenstein MB, Milla C, Teng JMC, Bernstein JA, Stevenson DA. RASA1somatic mutation and variable expressivity in capillary malformation/arteriovenous malformation (CM/AVM) syndrome. Am J Med Genet A 2016; 170:1450-4. [DOI: 10.1002/ajmg.a.37613] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/22/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Colleen F. Macmurdo
- Division of Medical Genetics; Department of Pediatrics; Stanford University; Stanford California
| | - Whitney Wooderchak-Donahue
- ARUP Institute for Clinical and Experimental Pathology; Salt Lake City Utah
- Department of Pathology; University of Utah; Salt Lake City Utah
| | - Pinar Bayrak-Toydemir
- ARUP Institute for Clinical and Experimental Pathology; Salt Lake City Utah
- Department of Pathology; University of Utah; Salt Lake City Utah
| | - Jenny Le
- ARUP Institute for Clinical and Experimental Pathology; Salt Lake City Utah
| | - Matthew B. Wallenstein
- Division of Medical Genetics; Department of Pediatrics; Stanford University; Stanford California
| | - Carlos Milla
- Division of Medical Genetics; Department of Pediatrics; Stanford University; Stanford California
| | - Joyce M. C. Teng
- Department of Dermatology; Stanford University; Stanford California
| | - Jonathan A. Bernstein
- Division of Medical Genetics; Department of Pediatrics; Stanford University; Stanford California
| | - David A. Stevenson
- Division of Medical Genetics; Department of Pediatrics; Stanford University; Stanford California
| |
Collapse
|
24
|
Overcash RT, Gibu CK, Jones MC, Ramos GA, Andreasen TS. Maternal and fetal capillary malformation-arteriovenous malformation (CM-AVM) due to a novel RASA1
mutation presenting with prenatal non-immune hydrops fetalis. Am J Med Genet A 2015; 167A:2440-3. [DOI: 10.1002/ajmg.a.37203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Rachael T. Overcash
- Division of Maternal-Fetal Medicine; Department of Reproductive Medicine; University of California; San Diego California
| | - Christopher K. Gibu
- Division of Neonatology; Department of Pediatrics; University of California; San Diego California
| | - Marilyn C. Jones
- Division of Genetics; Department of Pediatrics; University of California; San Diego California
| | - Gladys A. Ramos
- Division of Maternal-Fetal Medicine; Department of Reproductive Medicine; University of California; San Diego California
| | - Tara S. Andreasen
- Division of Genetics; Department of Pediatrics; University of California; San Diego California
| |
Collapse
|
25
|
Weitz NA, Lauren CT, Behr GG, Wu JK, Kandel JJ, Meyers PM, Sultan S, Anyane-Yeboa K, Morel KD, Garzon MC. Clinical spectrum of capillary malformation-arteriovenous malformation syndrome presenting to a pediatric dermatology practice: a retrospective study. Pediatr Dermatol 2015; 32:76-84. [PMID: 25040287 DOI: 10.1111/pde.12384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary malformation-arteriovenous malformation syndrome (CM-AVM) is an autosomal dominant disorder caused by RASA1 mutations. The prevalence and phenotypic spectrum are unknown. Evaluation of patients with multiple CMs is challenging because associated AVMs can be life threatening. The objective of this study was to describe the clinical characteristics of children presenting with features of CM-AVM to an academic pediatric dermatology practice. After institutional review board approval was received, a retrospective chart review was performed of patients presenting between 2009 and 2012 with features of CM-AVM. We report nine cases. Presenting symptoms ranged from extensive vascular stains and cardiac failure to CMs noted incidentally during routine skin examination. All demonstrated multiple CMs, two had Parkes Weber syndrome, and two had multiple infantile hemangiomas. Seven patients had family histories of multiple CMs; three had family histories of large, atypical CMs. Six had personal or family histories of AVMs. Genetic evaluation was recommended for all and was pursued by six families; four RASA1 mutations were identified, including one de novo. Consultations with neurology, cardiology, and orthopedics were recommended. Most patients (89%) have not required treatment to date. CM-AVM is an underrecognized condition with a wide clinical spectrum that often presents in childhood. Further evaluation may be indicated in patients with multiple CMs. This study is limited by its small and retrospective nature.
Collapse
Affiliation(s)
- Nicole A Weitz
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lubeck BA, Lapinski PE, Bauler TJ, Oliver JA, Hughes ED, Saunders TL, King PD. Blood vascular abnormalities in Rasa1(R780Q) knockin mice: implications for the pathogenesis of capillary malformation-arteriovenous malformation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3163-9. [PMID: 25283357 DOI: 10.1016/j.ajpath.2014.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal dominant blood vascular (BV) disorder characterized by CM and fast flow BV lesions. Inactivating mutations of the RASA1 gene are the cause of CM-AVM in most cases. RASA1 is a GTPase-activating protein that acts as a negative regulator of the Ras small GTP-binding protein. In addition, RASA1 performs Ras-independent functions in intracellular signal transduction. Whether CM-AVM results from loss of an ability of RASA1 to regulate Ras or loss of a Ras-independent function of RASA1 is unknown. To address this, we generated Rasa1 knockin mice with an R780Q point mutation that abrogates RASA1 catalytic activity specifically. Homozygous Rasa1(R780Q/R780Q) mice showed the same severe BV abnormalities as Rasa1-null mice and died midgestation. This finding indicates that BV abnormalities in CM-AVM develop as a result of loss of an ability of RASA1 to control Ras activation and not loss of a Ras-independent function of this molecule. More important, findings indicate that inhibition of Ras signaling is likely to represent an effective means of therapy for this disease.
Collapse
Affiliation(s)
- Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Timothy J Bauler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer A Oliver
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth D Hughes
- Biomedical Research Core Facility Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thomas L Saunders
- Biomedical Research Core Facility Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan; Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
27
|
Kawasaki J, Aegerter S, Fevurly RD, Mammoto A, Mammoto T, Sahin M, Mably JD, Fishman SJ, Chan J. RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Invest 2014; 124:2774-84. [PMID: 24837431 DOI: 10.1172/jci67084] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/27/2014] [Indexed: 11/17/2022] Open
Abstract
Vascular malformations are linked to mutations in RAS p21 protein activator 1 (RASA1, also known as p120RasGAP); however, due to the global expression of this gene, it is unclear how these mutations specifically affect the vasculature. Here, we tested the hypothesis that RASA1 performs a critical effector function downstream of the endothelial receptor EPHB4. In zebrafish models, we found that either RASA1 or EPHB4 deficiency induced strikingly similar abnormalities in blood vessel formation and function. Expression of WT EPHB4 receptor or engineered receptors with altered RASA1 binding revealed that the ability of EPHB4 to recruit RASA1 is required to restore blood flow in EPHB4-deficient animals. Analysis of EPHB4-deficient zebrafish tissue lysates revealed that mTORC1 is robustly overactivated, and pharmacological inhibition of mTORC1 in these animals rescued both vessel structure and function. Furthermore, overexpression of mTORC1 in endothelial cells exacerbated vascular phenotypes in animals with reduced EPHB4 or RASA1, suggesting a functional EPHB4/RASA1/mTORC1 signaling axis in endothelial cells. Tissue samples from patients with arteriovenous malformations displayed strong endothelial phospho-S6 staining, indicating increased mTORC1 activity. These results indicate that deregulation of EPHB4/RASA1/mTORC1 signaling in endothelial cells promotes vascular malformation and suggest that mTORC1 inhibitors, many of which are approved for the treatment of certain cancers, should be further explored as a potential strategy to treat patients with vascular malformations.
Collapse
|
28
|
Abstract
Abstract
Lymphatic vasculature is increasingly recognized as an important factor both in the regulation of normal tissue homeostasis and immune response and in many diseases, such as inflammation, cancer, obesity, and hypertension. In the last few years, in addition to the central role of vascular endothelial growth factor (VEGF)-C/VEGF receptor-3 signaling in lymphangiogenesis, significant new insights were obtained about Notch, transforming growth factor β/bone morphogenetic protein, Ras, mitogen-activated protein kinase, phosphatidylinositol 3 kinase, and Ca2+/calcineurin signaling pathways in the control of growth and remodeling of lymphatic vessels. An emerging picture of lymphangiogenic signaling is complex and in many ways distinct from the regulation of angiogenesis. This complexity provides new challenges, but also new opportunities for selective therapeutic targeting of lymphatic vasculature.
Collapse
|
29
|
Organ SL, Hai J, Radulovich N, Marshall CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, Tsao MS. p120RasGAP is a mediator of rho pathway activation and tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One 2014; 9:e86103. [PMID: 24465899 PMCID: PMC3897622 DOI: 10.1371/journal.pone.0086103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022] Open
Abstract
KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.
Collapse
Affiliation(s)
- Shawna L. Organ
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Hai
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lisa Leung
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Takehiko Sasazuki
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Senji Shirasawa
- Department of Cell Biology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Sevick-Muraca EM, King PD. Lymphatic vessel abnormalities arising from disorders of Ras signal transduction. Trends Cardiovasc Med 2013; 24:121-7. [PMID: 24183794 DOI: 10.1016/j.tcm.2013.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/24/2022]
Abstract
A number of genetic diseases in man have been described in which abnormalities in the development and function of the lymphatic vascular (LV) system are prominent features. The genes that are mutated in these diseases are varied and include genes that encode lymphatic endothelial cell (LEC) growth factor receptors and their ligands and transcription factors that control LEC fate and function. In addition, an increasing number of genes have been identified that encode components of the Ras signal transduction pathway that conveys signals from cell surface receptors to regulate cell growth, proliferation, and differentiation. Gene targeting studies performed in mice have confirmed that the LV system is particularly susceptible to perturbations in the Ras pathway.
Collapse
Affiliation(s)
- Eva M Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, USA.
| |
Collapse
|
31
|
Larralde M, Abad ME, Luna PC, Hoffner MV. Capillary malformation-arteriovenous malformation: a clinical review of 45 patients. Int J Dermatol 2013; 53:458-61. [DOI: 10.1111/ijd.12040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Margarita Larralde
- Pediatric Dermatology Department; Hospital Ramos Mejía; Buenos Aires Argentina
- Dermatology Department; Hospital Alemán; Buenos Aires Argentina
| | - María Eugenia Abad
- Pediatric Dermatology Department; Hospital Ramos Mejía; Buenos Aires Argentina
- Dermatology Department; Hospital Alemán; Buenos Aires Argentina
| | - Paula Carolina Luna
- Pediatric Dermatology Department; Hospital Ramos Mejía; Buenos Aires Argentina
- Dermatology Department; Hospital Alemán; Buenos Aires Argentina
| | | |
Collapse
|
32
|
Revencu N, Boon LM, Mendola A, Cordisco MR, Dubois J, Clapuyt P, Hammer F, Amor DJ, Irvine AD, Baselga E, Dompmartin A, Syed S, Martin-Santiago A, Ades L, Collins F, Smith J, Sandaradura S, Barrio VR, Burrows PE, Blei F, Cozzolino M, Brunetti-Pierri N, Vicente A, Abramowicz M, Désir J, Vilain C, Chung WK, Wilson A, Gardiner CA, Dwight Y, Lord DJE, Fishman L, Cytrynbaum C, Chamlin S, Ghali F, Gilaberte Y, Joss S, Boente MDC, Léauté-Labrèze C, Delrue MA, Bayliss S, Martorell L, González-Enseñat MA, Mazereeuw-Hautier J, O'Donnell B, Bessis D, Pyeritz RE, Salhi A, Tan OT, Wargon O, Mulliken JB, Vikkula M. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat 2013; 34:1632-41. [PMID: 24038909 DOI: 10.1002/humu.22431] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/20/2013] [Indexed: 01/13/2023]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal-dominant disorder, caused by heterozygous RASA1 mutations, and manifesting multifocal CMs and high risk for fast-flow lesions. A limited number of patients have been reported, raising the question of the phenotypic borders. We identified new patients with a clinical diagnosis of CM-AVM, and patients with overlapping phenotypes. RASA1 was screened in 261 index patients with: CM-AVM (n = 100), common CM(s) (port-wine stain; n = 100), Sturge-Weber syndrome (n = 37), or isolated AVM(s) (n = 24). Fifty-eight distinct RASA1 mutations (43 novel) were identified in 68 index patients with CM-AVM and none in patients with other phenotypes. A novel clinical feature was identified: cutaneous zones of numerous small white pale halos with a central red spot. An additional question addressed in this study was the "second-hit" hypothesis as a pathophysiological mechanism for CM-AVM. One tissue from a patient with a germline RASA1 mutation was available. The analysis of the tissue showed loss of the wild-type RASA1 allele. In conclusion, mutations in RASA1 underscore the specific CM-AVM phenotype and the clinical diagnosis is based on identifying the characteristic CMs. The high incidence of fast-flow lesions warrants careful clinical and radiologic examination, and regular follow-up.
Collapse
Affiliation(s)
- Nicole Revencu
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium; Center for Human Genetics, Cliniques universitaires St Luc, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Durrington HJ, Firth HV, Patient C, Belham M, Jayne D, Burrows N, Morrell NW, Chilvers ER. A novel RASA1 mutation causing capillary malformation-arteriovenous malformation (CM-AVM) presenting during pregnancy. Am J Med Genet A 2013; 161A:1690-4. [PMID: 23687085 DOI: 10.1002/ajmg.a.35935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/09/2013] [Indexed: 11/10/2022]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a newly recognized clinical entity caused by mutation of the RASA1 gene, which encodes p120-RasGAP. Here we describe, for the first time, a patient with CM-AVM presenting during the late stages of pregnancy with pulmonary "capillary level" microvascular shunt, worsening cutaneous capillary malformations, and gross fluid overload. Sequencing revealed a novel mutation of the RASA1 gene involving a frameshift mutation in the RASGAP domain of RASA1. This report extends our current genetic and clinical understanding of CM-AVM.
Collapse
Affiliation(s)
- Hannah J Durrington
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man. Proc Natl Acad Sci U S A 2013; 110:8621-6. [PMID: 23650393 DOI: 10.1073/pnas.1222722110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in gene RASA1 have been historically associated with capillary malformation-arteriovenous malformation, but sporadic reports of lymphatic involvement have yet to be investigated in detail. To investigate the impact of RASA1 mutations in the lymphatic system, we performed investigational near-infrared fluorescence lymphatic imaging and confirmatory radiographic lymphangiography in a Parkes-Weber syndrome (PKWS) patient with suspected RASA1 mutations and correlated the lymphatic abnormalities against that imaged in an inducible Rasa1 knockout mouse. Whole-exome sequencing (WES) analysis and validation by Sanger sequencing of DNA from the patient and unaffected biological parents enabled us to identify an early-frameshift deletion in RASA1 that was shared with the father, who possessed a capillary stain but otherwise no overt disease phenotype. Abnormal lymphatic vasculature was imaged in both affected and unaffected legs of the PKWS subject that transported injected indocyanine green dye to the inguinal lymph node and drained atypically into the abdomen and into dermal lymphocele-like vesicles on the groin. Dermal lymphatic hyperplasia and dilated vessels were observed in Rasa1-deficient mice, with subsequent development of chylous ascites. WES analyses did not identify potential gene modifiers that could explain the variability of penetrance between father and son. Nonetheless, we conclude that the RASA1 mutation is responsible for the aberrant lymphatic architecture and functional abnormalities, as visualized in the PKWS subject and in the animal model. Our unique method to combine investigatory near-infrared fluorescence lymphatic imaging and WES for accurate phenoptyping and unbiased genotyping allows the study of molecular mechanisms of lymphatic involvement of hemovascular disorders.
Collapse
|
35
|
King PD, Lubeck BA, Lapinski PE. Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal 2013; 6:re1. [PMID: 23443682 DOI: 10.1126/scisignal.2003669] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inactivation of the small guanosine triphosphate-binding protein Ras during receptor signal transduction is mediated by Ras guanosine triphosphatase (GTPase)-activating proteins (RasGAPs). Ten different RasGAPs have been identified and have overlapping patterns of tissue distribution. However, genetic analyses are revealing critical nonredundant functions for each RasGAP in tissue homeostasis and as regulators of disease processes in mouse and man. Here, we discuss advances in understanding the role of RasGAPs in the maintenance of tissue integrity.
Collapse
Affiliation(s)
- Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
36
|
Behr GG, Liberman L, Compton J, Garzon MC, Morel KD, Lauren CT, Starc TJ, Kovacs SJ, Beltroni V, Landres R, Anyane-Yeboa K, Meyers PM, Bacha E, Kandel JJ. CM-AVM syndrome in a neonate: case report and treatment with a novel flow reduction strategy. Vasc Cell 2012; 4:19. [PMID: 23164092 PMCID: PMC3517480 DOI: 10.1186/2045-824x-4-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/08/2012] [Indexed: 12/28/2022] Open
Abstract
Mutations in the RASA-1 gene underlie several related disorders of vasculogenesis. Capillary malformation-arteriovenous malformation (CM-AVM) is one such entity and was recently encountered in a neonate who demonstrated its clinical and radiologic features. A single mutation in the RASA-1 gene was detected.A novel flow reduction strategy was employed to a large AVM affecting the patient's upper limb. The imaging findings, surgical procedure and patient's improved post-operative state are described.
Collapse
Affiliation(s)
- Gerald G Behr
- Department of Radiology, Division of Pediatric Radiology Columbia University, New York, NY, USA
| | - Leonardo Liberman
- Department of Pediatrics, Division of Cardiology Columbia University, New York, NY, USA
| | - Jocelyn Compton
- Columbia College of Physicians & Surgeons, New York, NY, USA
| | - Maria C Garzon
- Department of Dermatology and Pediatrics, Columbia University, New York, NY, USA
| | - Kimberly D Morel
- Department of Dermatology and Pediatrics, Columbia University, New York, NY, USA
| | - Christine T Lauren
- Department of Dermatology and Pediatrics, Columbia University, New York, NY, USA
| | - Thomas J Starc
- Department of Pediatrics, Division of Cardiology Columbia University, New York, NY, USA
| | - Stephen J Kovacs
- Division of Neonatology, Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Vincent Beltroni
- Division of Neonatology, Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Rachel Landres
- Division of Neonatology, Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Division of Clinical Genetics, Columbia University, New York, NY, USA
| | - Philip M Meyers
- Department of Radiology, Division of Interventional Neuroradiology, Columbia University, New York, NY, USA
| | - Emile Bacha
- Department of Surgery, Division of Cardiothoracic Surgery, Columbia University, New York, NY, USA
| | - Jessica J Kandel
- Department of Surgery, Division of Pediatric Surgery, Columbia University, New York, NY, USA
| |
Collapse
|