1
|
Mergener R, Nascimento LPC, Böttcher AK, Nunes MR, Zen PRG. What Can Really Be Considered a Syndrome? An Insight Based on 16p11.2 Microduplication. Cell Biochem Funct 2024; 42:e4121. [PMID: 39264303 DOI: 10.1002/cbf.4121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
What is the definition of Syndrome? Since the beginning of studies in genetics, certain terminologies have been created and used to define groups of diseases or alterations. With the advancement of knowledge and the emergence of new technologies, the use of basic concepts is being done in a mistaken or often confusing way. Because of this, revisiting and readjusting the old terms becomes imminent. Here, we explore these concepts and their use, through a literature compilation of an already well-defined genetic alteration (16q11.2 microduplication). We bring comparisons in clinical and molecular scope of the alteration itself and its diagnostic methods, to improve the report of cases, rescuing terminologies and their applicability nowadays.
Collapse
Affiliation(s)
- Rafaella Mergener
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lívia Polisseni Cotta Nascimento
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Kalise Böttcher
- Undergraduate Program in Biomedical Science, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcela Rodrigues Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical Genetics Resident, UFCSPA/Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ricardo Gazzola Zen
- Department of Clinical Medicine, Medical Genetics, UFCSPA/ISCMPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Ye F, Xu X, Wang Y, Chen L, Shan Q, Wang Q, Jin F. The yield of SNP microarray analysis for fetal ultrasound cardiac abnormalities. BMC Pregnancy Childbirth 2024; 24:244. [PMID: 38580914 PMCID: PMC10998306 DOI: 10.1186/s12884-024-06428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Chromosomal microarray analysis (CMA) has emerged as a critical instrument in prenatal diagnostic procedures, notably in assessing congenital heart diseases (CHD). Nonetheless, current research focuses solely on CHD, overlooking the necessity for thorough comparative investigations encompassing fetuses with varied structural abnormalities or those without apparent structural anomalies. OBJECTIVE This study sought to assess the relation of single nucleotide polymorphism-based chromosomal microarray analysis (SNP-based CMA) in identifying the underlying causes of fetal cardiac ultrasound abnormalities. METHODS A total of 2092 pregnant women who underwent prenatal diagnosis from 2017 to 2022 were included in the study and divided into four groups based on the presence of ultrasound structural abnormalities and the specific type of abnormality. The results of the SNP-Array test conducted on amniotic fluid samples from these groups were analyzed. RESULTS Findings from the study revealed that the non-isolated CHD group exhibited the highest incidence of aneuploidy, overall chromosomal abnormalities, and trisomy 18, demonstrating statistically significant differences from the other groups (p < 0.001). Regarding the distribution frequency of copy number variation (CNV) segment size, no statistically significant distinctions were observed between the isolated CHD group and the non-isolated CHD group (p > 0.05). The occurrence rates of 22q11.2 and 15q11.2 were also not statistically different between the isolated CHD group and the non-isolated congenital heart defect group (p > 0.05). CONCLUSION SNP-based CMA enhances the capacity to detect abnormal CNVs in CHD fetuses, offering valuable insights for diagnosing chromosomal etiology and facilitating genetic counseling. This research contributes to the broader understanding of the utility of SNP-based CMA in the context of fetal cardiac ultrasound abnormalities.
Collapse
Affiliation(s)
- Fenglei Ye
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310000, China
- Department of Obstetrics, Lishui Maternal and Child Health Hospital, Lishui, 323000, China
| | - Xiayuan Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310000, China
- Department of Laboratory, Jinhua Maternal and Child Health Hospital, Jinhua, 321000, China
| | - Yi Wang
- Department of Obstetrics, Lishui Maternal and Child Health Hospital, Lishui, 323000, China
| | - Lifang Chen
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310000, China
- Department of Obstetrics, Lishui Maternal and Child Health Hospital, Lishui, 323000, China
| | - Qunda Shan
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310000, China
- Department of Prenatal Diagnosis Center, Lishui Maternal and Child Health Hospital, Lishui, 323000, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310000, China.
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Cai M, Que Y, Chen X, Chen Y, Liang B, Huang H, Xu L, Lin N. 16p13.11 microdeletion/microduplication in fetuses: investigation of associated ultrasound phenotypes, genetic anomalies, and pregnancy outcome follow-up. BMC Pregnancy Childbirth 2022; 22:913. [PMID: 36476185 PMCID: PMC9727942 DOI: 10.1186/s12884-022-05267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES 16p13.11 microdeletion/microduplication are rare genetic diseases with incomplete penetrance, most of which have been reported in adults and children, with ultrasound phenotyping in fetuses rarely described. Here, we have analyzed prenatal ultrasound phenotypic characteristics associated with 16p13.11 microdeletion/microduplication, in order to improve the understanding, diagnosis and monitoring of this disease in the fetus. METHODS A total of 9000 pregnant women who underwent invasive prenatal diagnosis for karyotyping and SNP-array were retrospectively analyzed in tertiary referral institutions from October 2016 to January 2022. RESULTS SNP-array revealed that 20 fetuses had copy number variation (CNV) in the 16p13.11 region, out of which 5 had 16p13.11 microdeletion and the rest showed microduplication, along with different ultrasound phenotypes. Furthermore, 4/20 cases demonstrated structural abnormalities, while the remaining 16 cases were atypical in ultrasound. Taken together, 16p13.1 microdeletion was closely related to thickened nuchal translucency, while 16p13.11 microduplication was more closely associated with echogenic bowel. Only 5/15 fetuses were verified by pedigree, with one case of 16p13.11 microdeletion being de novo, and the other cases of 16p13.11 microduplication were inherited from one parent. In 4/20 cases, the pregnancy was terminated. Except for one case with short stature and another one who underwent lung cystadenoma surgery, no abnormalities were reported in the other cases during follow-up. CONCLUSION Fetuses with 16p13.11 microdeletion/microduplication had no characteristic phenotype of intrauterine ultrasound and was in good health after birth, thus providing a reference for the perinatal management of such cases.
Collapse
Affiliation(s)
- Meiying Cai
- grid.256112.30000 0004 1797 9307 Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yanting Que
- grid.256112.30000 0004 1797 9307College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xuemei Chen
- grid.256112.30000 0004 1797 9307 Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yuqing Chen
- grid.256112.30000 0004 1797 9307 Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Bin Liang
- grid.256112.30000 0004 1797 9307 Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- grid.256112.30000 0004 1797 9307 Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- grid.256112.30000 0004 1797 9307 Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- grid.256112.30000 0004 1797 9307 Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
4
|
Yoshikawa A, Kushima I, Miyashita M, Suzuki K, Iino K, Toriumi K, Horiuchi Y, Kawaji H, Ozaki N, Itokawa M, Arai M. Exonic deletions in IMMP2L in schizophrenia with enhanced glycation stress subtype. PLoS One 2022; 17:e0270506. [PMID: 35776734 PMCID: PMC9249242 DOI: 10.1371/journal.pone.0270506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
We previously identified a subtype of schizophrenia (SCZ) characterized by increased plasma pentosidine, a marker of glycation and oxidative stress (PEN-SCZ). However, the genetic factors associated with PEN-SCZ have not been fully clarified. We performed a genome-wide copy number variation (CNV) analysis to identify CNVs associated with PEN-SCZ to provide an insight into the novel therapeutic targets for PEN-SCZ. Plasma pentosidine was measured by high-performance liquid chromatography in 185 patients with SCZ harboring rare CNVs detected by array comparative genomic hybridization. In three patients with PEN-SCZ showing additional autistic features, we detected a novel deletion at 7q31.1 within exons 2 and 3 of IMMP2L, which encodes the inner mitochondrial membrane peptidase subunit 2. The deletion was neither observed in non-PEN-SCZ nor in public database of control subjects. IMMP2L is one of the SCZ risk loci genes identified in a previous SCZ genome-wide association study, and its trans-populational association was recently described. Interestingly, deletions in IMMP2L have been previously linked with autism spectrum disorder. Disrupted IMMP2L function has been shown to cause glycation/oxidative stress in neuronal cells in an age-dependent manner. To our knowledge, this is the first genome-wide CNV study to suggest the involvement of IMMP2L exons 2 and 3 in the etiology of PEN-SCZ. The combination of genomic information with plasma pentosidine levels may contribute to the classification of biological SCZ subtypes that show additional autistic features. Modifying IMMP2L functions may be useful for treating PEN-SCZ if the underlying biological mechanism can be clarified in further studies.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Department of Psychiatry, Takatsuki Clinic, Akishima, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Department of Psychiatry, Takatsuki Clinic, Akishima, Tokyo, Japan
| | - Kyoka Iino
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Sherer DM, Hsieh V, Kheyman M, Field A, Dalloul M. Mid-trimester absent nasal bone and transient unilateral hydronephrosis associated with 16p13.3 microduplication. JOURNAL OF CLINICAL ULTRASOUND : JCU 2021; 49:622-624. [PMID: 33778969 DOI: 10.1002/jcu.23007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Characteristic phenotypic features of 16p13.3 microduplication include impaired mental development, arthrogryposis-like musculoskeletal anomalies (club-feet, congenital hip dislocation, and camptodactyly of fingers and toes), facial dysmorphology, and at times congenital cardiac disease. Most of the described affected individuals have microduplications involving the CREBBP gene. Findings indicate this gene to be dosage-sensitive and likely involved in the phenotypes of 16p13.3 microduplication syndrome. We describe the incidental finding of 16p13.3 microduplication in a fetus with mid-trimester sonographic examination showing absent nasal bone and transient unilateral hydronephrosis.
Collapse
Affiliation(s)
- David M Sherer
- The Division of Maternal-Fetal Medicine, The Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Vicky Hsieh
- The Division of Maternal-Fetal Medicine, The Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mila Kheyman
- The Division of Maternal-Fetal Medicine, The Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Alessia Field
- The Division of Maternal-Fetal Medicine, The Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mudar Dalloul
- The Division of Maternal-Fetal Medicine, The Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
6
|
Calderoni S, Ricca I, Balboni G, Cagiano R, Cassandrini D, Doccini S, Cosenza A, Tolomeo D, Tancredi R, Santorelli FM, Muratori F. Evaluation of Chromosome Microarray Analysis in a Large Cohort of Females with Autism Spectrum Disorders: A Single Center Italian Study. J Pers Med 2020; 10:E160. [PMID: 33050239 PMCID: PMC7720139 DOI: 10.3390/jpm10040160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) encompass a heterogeneous group of neurodevelopmental disorders resulting from the complex interaction between genetic and environmental factors. Thanks to the chromosome microarray analysis (CMA) in clinical practice, the accurate identification and characterization of submicroscopic deletions/duplications (copy number variants, CNVs) associated with ASD was made possible. However, the widely acknowledged excess of males on the autism spectrum reflects on a paucity of CMA studies specifically focused on females with ASD (f-ASD). In this framework, we aim to evaluate the frequency of causative CNVs in a single-center cohort of idiopathic f-ASD. Among the 90 f-ASD analyzed, we found 20 patients with one or two potentially pathogenic CNVs, including those previously associated with ASD (located at 16p13.2 16p11.2, 15q11.2, and 22q11.21 regions). An exploratory genotype/phenotype analysis revealed that the f-ASD with causative CNVs had statistically significantly lower restrictive and repetitive behaviors than those without CNVs or with non-causative CNVs. Future work should focus on further understanding of f-ASD genetic underpinnings, taking advantage of next-generation sequencing technologies, with the ultimate goal of contributing to precision medicine in ASD.
Collapse
Affiliation(s)
- Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, Calambrone, 56128 Pisa, Italy; (R.C.); (A.C.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy
| | - Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (I.R.); (D.C.); (S.D.); (D.T.); (F.M.S.)
| | - Giulia Balboni
- Department of Philosophy, Social and Human Sciences and Education, University of Perugia, Piazza G. Ermini 1, 06123 Perugia, Italy;
| | - Romina Cagiano
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, Calambrone, 56128 Pisa, Italy; (R.C.); (A.C.); (R.T.); (F.M.)
| | - Denise Cassandrini
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (I.R.); (D.C.); (S.D.); (D.T.); (F.M.S.)
| | - Stefano Doccini
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (I.R.); (D.C.); (S.D.); (D.T.); (F.M.S.)
| | - Angela Cosenza
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, Calambrone, 56128 Pisa, Italy; (R.C.); (A.C.); (R.T.); (F.M.)
| | - Deborah Tolomeo
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (I.R.); (D.C.); (S.D.); (D.T.); (F.M.S.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6-50139 Florence, Italy
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, Calambrone, 56128 Pisa, Italy; (R.C.); (A.C.); (R.T.); (F.M.)
| | - Filippo Maria Santorelli
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128 Pisa, Italy; (I.R.); (D.C.); (S.D.); (D.T.); (F.M.S.)
| | - Filippo Muratori
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, Calambrone, 56128 Pisa, Italy; (R.C.); (A.C.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy
| |
Collapse
|
7
|
De novo 16p13.3-p12.3 duplication in a child with syndromic developmental delay. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Carlo SE, Martinez-Baladejo MT, Santiago-Cornier A, Arciniegas-Medina N. 9q34 & 16p13 chromosome duplications in autism. AME Case Rep 2020; 4:17. [PMID: 32793859 DOI: 10.21037/acr.2020.03.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/28/2020] [Indexed: 11/06/2022]
Abstract
Epigenetic mechanisms, genetic factors, and environment influence the diversity of phenotypes developed in various diseases. Duplications in several chromosomes are well characterized in the scientific literature, but partial duplications, in some cases, present with milder forms of a disease and are yet to be understood. Fortunately, the identification of genetic diseases has now become more feasible due to several cytogenetic techniques such as microarray analysis and karyotyping. With these tools, together with other laboratory results and clinical examination, we are able to report the first case in the medical literature of double partial trisomy of chromosome 9q34 and 16p13.
Collapse
Affiliation(s)
- Simon E Carlo
- Department of Biochemistry, Ponce Health Sciences University, Ponce.,Department of Medicine, Ponce Health Sciences University, Ponce.,SER de Puerto Rico, Ponce.,Mayagüez Medical Center, Mayaguez, Ponce
| | | | | | | |
Collapse
|