1
|
Sterrett MC, Cureton LA, Cohen LN, van Hoof A, Khoshnevis S, Fasken MB, Corbett AH, Ghalei H. Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562946. [PMID: 37904946 PMCID: PMC10614903 DOI: 10.1101/2023.10.18.562946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The RNA exosome is an evolutionarily conserved exoribonuclease complex that consists of a 3-subunit cap, a 6-subunit barrel-shaped core, and a catalytic base subunit. Missense mutations in genes encoding structural subunits of the RNA exosome cause a growing family of diseases with diverse pathologies, collectively termed RNA exosomopathies. The disease symptoms vary and can manifest as neurological defects or developmental disorders. The diversity of the RNA exosomopathy pathologies suggests that the different missense mutations in structural genes result in distinct in vivo consequences. To investigate these functional consequences and distinguish whether they are unique to each RNA exosomopathy mutation, we generated a collection of in vivo models using budding yeast by introducing pathogenic missense mutations in orthologous S. cerevisiae genes. We then performed a comparative RNA-seq analysis to assess broad transcriptomic changes in each mutant model. Three of the mutant models rrp4-G226D, rrp40-W195R and rrp46-L191H, which model mutations in the genes encoding structural subunits of the RNA exosome, EXOSC2, EXOSC3 and EXOSC5 showed the largest transcriptomic differences. Further analyses revealed shared increased transcripts enriched in translation or ribosomal RNA modification/processing pathways across the three mutant models. Studies of the impact of the mutations on translation revealed shared defects in ribosome biogenesis but distinct impacts on translation. Collectively, our results provide the first comparative analysis of several RNA exosomopathy mutant models and suggest that different RNA exosomopathy mutations result in in vivo consequences that are both unique and shared across each variant, providing more insight into the biology underlying each distinct pathology.
Collapse
Affiliation(s)
- Maria C. Sterrett
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Lauryn A. Cureton
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lauren N. Cohen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Milo B. Fasken
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Ibrahim I, Scriver T, Basalom SA. No, it is not mutually exclusive! A case report of a girl with two genetic diagnoses: Craniofrontonasal dysplasia and pontocerebellar hypoplasia type 1B. Clin Case Rep 2023; 11:e7332. [PMID: 37180334 PMCID: PMC10172455 DOI: 10.1002/ccr3.7332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Key Clinical Message Multiple genetic disorders can coexist in one patient. When the phenotype is not fully explained with one diagnosis, it is recommended to perform further genetic investigations in search for coexisting second diagnosis. Abstract Craniofrontonasal dysplasia (CFND) (MIM: 304110) is an X-linked dominant disorder that shows paradoxically greater severity in heterozygous females than in hemizygous males. It is caused by a pathogenic variant in EFNB1. Pontocerebellar hypoplasia type 1B (PCH1B) (MIM: 614678) is an extremely rare condition with over 100 individuals reported to date. It is caused by biallelic pathogenic variants in EXOSC3. This report presents the case of a girl who was diagnosed prenatally with CFND based on the findings on the prenatal imaging and the known diagnosis of CFND in her mother. She has severe global development delay that cannot be explained solely by the CFND diagnosis. Around the age of 2 years, she was diagnosed with PCH1B following whole exome sequencing (WES) testing. The objective of this study is to highlight the importance of pursuing genetic investigation if the available genetic diagnosis cannot fully explain the clinical picture. This is a case report of one patient and review of the literature. Informed consent was obtained from the parents. WES was performed by a private lab using next-generation sequencing (NGS), DNA was sequenced on the NovaSeq 6000 using 2 × 150 bp paired-end read. WES identified the following: homozygous pathogenic variant in EXOSC3: C.395A>C, p.ASp132Ala, maternally inherited, likely pathogenic duplication at Xq13.1 (includes EFNB1) and paternally inherited 16p11.2 duplication that is classified as a variant of uncertain significance. Perusing more extensive genetic testing like: WES is indicated if the current genetic diagnosis cannot fully explain the phenotype in a patient.
Collapse
Affiliation(s)
- Iman Ibrahim
- School of Health Studies, Elborn CollegeWestern UniversityLondonOntarioCanada
| | - Tara Scriver
- Division of Medical Genetics, Department of Pediatrics, Royal University HospitalUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Shuaa A. Basalom
- Division of Medical Genetics, Department of Pediatrics, Royal University HospitalUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
4
|
Sekulovski S, Trowitzsch S. What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia? Bioessays 2023; 45:e2200130. [PMID: 36517085 DOI: 10.1002/bies.202200130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
5
|
Pontocerebellar Hypoplasia Type 1D: A Case Report and Comprehensive Literature Review. J Clin Med 2022; 11:jcm11154335. [PMID: 35893425 PMCID: PMC9368788 DOI: 10.3390/jcm11154335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pontocerebellar hypoplasia (PCH) is an autosomal recessive, neurodegenerative disorder with multiple subtypes leading to severe neurodevelopmental disabilities. PCH type 1 D is linked to alterations in the EXOSC9 gene. EXOSC9 is a component of the RNA exosome, an evolutionarily conserved ribonuclease complex essential for RNA degradation and processing. The clinical phenotype is characterized by cerebellar and pontine hypoplasia associated with motor neuronopathy. To date, nine patients have been reported in the literature with PCH1D. We report the case of an infant with PCH type 1D due to two variants in the EXOCS9 gene (NM_001034194.1: c.41T>C-p.Leu14Pro) and a novel variant (c.643C>T-p.Arg212*). This report thoroughly reviews the literature PCH1D and highlights the crucial role of the exosome in cellular homeostasis.
Collapse
|
6
|
EXOSC9 mutation causes pontocerebellar hypoplasia type 1D (PCH1D): Refining the phenotype and literature review. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, Hurtig JE, Enyenihi L, Sterrett MC, Leung SW, Schneidman-Duhovny D, Estrada-Veras J, Duncan JL, Haaxma CA, Kamsteeg EJ, Xia V, Beleford D, Si Y, Douglas G, Treidene HE, van Hoof A, Fasken MB, Corbett AH. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2021; 29:2218-2239. [PMID: 32504085 DOI: 10.1093/hmg/ddaa108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Stephanie Htun
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Linda Mathisen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Michelle Foreman
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering and the Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Juvianee Estrada-Veras
- Department of Pediatrics-Medical Genetics and Metabolism, Uniformed Services University/Walter Reed NMMC Bethesda, MD 20889, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Vivian Xia
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Daniah Beleford
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yue Si
- GeneDx Inc., MD 20877, USA
| | | | - Hans Einar Treidene
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0450, Norway
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Sakamoto M, Iwama K, Sekiguchi F, Mashimo H, Kumada S, Ishigaki K, Okamoto N, Behnam M, Ghadami M, Koshimizu E, Miyatake S, Mitsuhashi S, Mizuguchi T, Takata A, Saitsu H, Miyake N, Matsumoto N. Novel EXOSC9 variants cause pontocerebellar hypoplasia type 1D with spinal motor neuronopathy and cerebellar atrophy. J Hum Genet 2020; 66:401-407. [PMID: 33040083 DOI: 10.1038/s10038-020-00853-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
Pontocerebellar hypoplasia (PCH) is currently classified into 13 subgroups and many gene variants associated with PCH have been identified by next generation sequencing. PCH type 1 is a rare heterogeneous neurodegenerative disorder. The clinical presentation includes early-onset severe developmental delay, progressive motor neuronopathy, and cerebellar and pontine atrophy. Recently two variants in the EXOSC9 gene (MIM: 606180), NM_001034194.1: c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161*) were identified in four unrelated patients with PCH type 1D (PCH1D) (MIM: 618065). EXOSC9 encodes a component of the exosome complex, which is essential for correct processing and degradation of RNA. We report here two PCH1D families with biallelic EXOSC9 variants: c.239T>G (p.Leu80Arg) and c.484dupA (p.Arg162Lysfs*3) in one family and c.151G>C (p.Gly51Arg) in the other family. Although the patients studied here showed similar clinical features as previously described for PCH1D, relatively greater intellectual development (although still highly restricted) and normal pontine structure were recognized. Our findings expand the clinical consequences of biallelic EXOSC9 variants.
Collapse
Affiliation(s)
- Masamune Sakamoto
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Hideaki Mashimo
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Mahdiyeh Behnam
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Ghadami
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cardiac Primary Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
9
|
Morton DJ, Jalloh B, Kim L, Kremsky I, Nair RJ, Nguyen KB, Rounds JC, Sterrett MC, Brown B, Le T, Karkare MC, McGaughey KD, Sheng S, Leung SW, Fasken MB, Moberg KH, Corbett AH. A Drosophila model of Pontocerebellar Hypoplasia reveals a critical role for the RNA exosome in neurons. PLoS Genet 2020; 16:e1008901. [PMID: 32645003 PMCID: PMC7373318 DOI: 10.1371/journal.pgen.1008901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/21/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
The RNA exosome is an evolutionarily-conserved ribonuclease complex critically important for precise processing and/or complete degradation of a variety of cellular RNAs. The recent discovery that mutations in genes encoding structural RNA exosome subunits cause tissue-specific diseases makes defining the role of this complex within specific tissues critically important. Mutations in the RNA exosome component 3 (EXOSC3) gene cause Pontocerebellar Hypoplasia Type 1b (PCH1b), an autosomal recessive neurologic disorder. The majority of disease-linked mutations are missense mutations that alter evolutionarily-conserved regions of EXOSC3. The tissue-specific defects caused by these amino acid changes in EXOSC3 are challenging to understand based on current models of RNA exosome function with only limited analysis of the complex in any multicellular model in vivo. The goal of this study is to provide insight into how mutations in EXOSC3 impact the function of the RNA exosome. To assess the tissue-specific roles and requirements for the Drosophila ortholog of EXOSC3 termed Rrp40, we utilized tissue-specific RNAi drivers. Depletion of Rrp40 in different tissues reveals a general requirement for Rrp40 in the development of many tissues including the brain, but also highlight an age-dependent requirement for Rrp40 in neurons. To assess the functional consequences of the specific amino acid substitutions in EXOSC3 that cause PCH1b, we used CRISPR/Cas9 gene editing technology to generate flies that model this RNA exosome-linked disease. These flies show reduced viability; however, the surviving animals exhibit a spectrum of behavioral and morphological phenotypes. RNA-seq analysis of these Drosophila Rrp40 mutants reveals increases in the steady-state levels of specific mRNAs and ncRNAs, some of which are central to neuronal function. In particular, Arc1 mRNA, which encodes a key regulator of synaptic plasticity, is increased in the Drosophila Rrp40 mutants. Taken together, this study defines a requirement for the RNA exosome in specific tissues/cell types and provides insight into how defects in RNA exosome function caused by specific amino acid substitutions that occur in PCH1b can contribute to neuronal dysfunction.
Collapse
Affiliation(s)
- Derrick J. Morton
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Binta Jalloh
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lily Kim
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Isaac Kremsky
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Rishi J. Nair
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Khuong B. Nguyen
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - J. Christopher Rounds
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maria C. Sterrett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
| | - Brianna Brown
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thalia Le
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Maya C. Karkare
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kathryn D. McGaughey
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Shaoyi Sheng
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Sara W. Leung
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Milo B. Fasken
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anita H. Corbett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Müller JS, Burns DT, Griffin H, Wells GR, Zendah RA, Munro B, Schneider C, Horvath R. RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci Alliance 2020; 3:3/8/e202000678. [PMID: 32527837 PMCID: PMC7295610 DOI: 10.26508/lsa.202000678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA exosome is a ubiquitously expressed complex of nine core proteins (EXOSC1-9) and associated nucleases responsible for RNA processing and degradation. Mutations in EXOSC3, EXOSC8, EXOSC9, and the exosome cofactor RBM7 cause pontocerebellar hypoplasia and motor neuronopathy. We investigated the consequences of exosome mutations on RNA metabolism and cellular survival in zebrafish and human cell models. We observed that levels of mRNAs encoding p53 and ribosome biogenesis factors are increased in zebrafish lines with homozygous mutations of exosc8 or exosc9, respectively. Consistent with higher p53 levels, mutant zebrafish have a reduced head size, smaller brain, and cerebellum caused by an increased number of apoptotic cells during development. Down-regulation of EXOSC8 and EXOSC9 in human cells leads to p53 protein stabilisation and G2/M cell cycle arrest. Increased p53 transcript levels were also observed in muscle samples from patients with EXOSC9 mutations. Our work provides explanation for the pathogenesis of exosome-related disorders and highlights the link between exosome function, ribosome biogenesis, and p53-dependent signalling. We suggest that exosome-related disorders could be classified as ribosomopathies.
Collapse
Affiliation(s)
- Juliane S Müller
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David T Burns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Graeme R Wells
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Romance A Zendah
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin Munro
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK .,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|