1
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Rahimzadeh M, Tennstedt S, Aherrahrou Z. Nexilin in cardiomyopathy: unveiling its diverse roles with special focus on endocardial fibroelastosis. Heart Fail Rev 2024; 29:1025-1037. [PMID: 38985384 DOI: 10.1007/s10741-024-10416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cardiac disorders exhibit considerable heterogeneity, and understanding their genetic foundations is crucial for their diagnosis and treatment. Recent genetic analyses involving a growing number of participants have uncovered novel mutations within both coding and non-coding regions of DNA, contributing to the onset of cardiac conditions. The NEXN gene, encoding the Nexilin protein, an actin filament-binding protein, is integral to normal cardiac function. Mutations in this gene have been linked to cardiomyopathies, cardiovascular disorders, and sudden deaths. Heterozygous or homozygous variants of the NEXN gene are associated with the development of endocardial fibroelastosis (EFE), a rare cardiac condition characterized by excessive collagen and elastin deposition in the left ventricular endocardium predominantly affecting infants and young children. EFE occurs both primary and secondary to other conditions and often leads to unfavorable prognoses and outcomes. This review explores the role of NEXN genetic variants in cardiovascular disorders, particularly EFE, revealing that functional mutations are not clustered in a specific domain of Nexilin based on the cardiac disorder phenotype. Our review underscores the importance of understanding genetic mutations for the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Mahsa Rahimzadeh
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Germany
- University Heart Center Lübeck, Lübeck, 23562, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Germany.
- University Heart Center Lübeck, Lübeck, 23562, Germany.
| |
Collapse
|
3
|
Picciolli I, Ratti A, Rinaldi B, Baban A, Iascone M, Francescato G, Cappelleri A, Magliozzi M, Novelli A, Parlapiano G, Colli AM, Persico N, Carugo S, Mosca F, Bedeschi MF. Biallelic NEXN variants and fetal onset dilated cardiomyopathy: two independent case reports and revision of literature. Ital J Pediatr 2024; 50:156. [PMID: 39183344 PMCID: PMC11346034 DOI: 10.1186/s13052-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/28/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is an etiologically heterogeneous group of diseases of the myocardium. With the rapid evolution in laboratory investigations, genetic background is increasingly determined including many genes with variable penetrance and expressivity. Biallelic NEXN variants are rare in humans and associated with poor prognosis: fetal and perinatal death or severe DCMs in infants. CASE PRESENTATION We describe two male infants with prenatal diagnosis of dilated cardiomyopathy with impaired ventricular contractility. One of the patients showed hydrops and polyhydramnios. Postnatally, a DCM with severely reduced systolic function was confirmed and required medical treatment. In patient 1, Whole Exome Sequencing (WES) revealed a homozygous NEXN variant: c.1156dup (p.Met386fs) while in patient 2 a custom Next Generation Sequencing (NGS) panel revealed the homozygous NEXN variant c.1579_1584delp. (Glu527_Glu528del). These NEXN variants have not been previously described. Unlike the unfavorable prognosis described for biallelic NEXN variants, we observed in both our patients a favorable clinical course over time. CONCLUSION This report might help to broaden the present knowledge regarding NEXN biallelic variants and their clinical expression. It might be worthy to consider the inclusion of the NEXN gene sequencing in the investigation of pediatric patients with DCM.
Collapse
Affiliation(s)
- Irene Picciolli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Angelo Ratti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anwar Baban
- Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Maria Iascone
- Molecular Genetics Section, Medical Genetics Laboratory, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Gaia Francescato
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Cappelleri
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monia Magliozzi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Giovanni Parlapiano
- Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Anna Maria Colli
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Persico
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fetal Medicine and Surgery Unit, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, 20122, Italy
- Center for Environmental Health, CRC, University of Milan, Milan, 20122, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Center for Environmental Health, CRC, University of Milan, Milan, 20122, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | |
Collapse
|
4
|
Schubert C, Milverton J, Goodall S, Merlin T. A systematic review to assess the utility of genomic autopsy using exome or genome sequencing in cases of congenital anomalies and perinatal death. Genet Med 2024; 26:101159. [PMID: 38704678 DOI: 10.1016/j.gim.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
PURPOSE Exome or genome sequencing (ES or GS) can identify genetic causes of otherwise unexplained congenital anomaly and perinatal death (PND) but is not routine practice. The evidence base for "genomic autopsy" after termination of pregnancy for fetal anomaly (TOPFA) and PND has been synthesized to determine the value of this investigation. METHODS We conducted a systematic review and meta-analysis of studies meeting prespecified inclusion criteria and containing ≥10 cases of TOPFA or PND (with or without major congenital abnormality), in which ES or GS was conducted. We determined test performance, including diagnostic yield, accuracy, and reliability. We also reported outcomes associated with clinical utility and harms, where described. RESULTS From 2245 potentially eligible studies, 32 publications were eligible and had data extracted, representing 2120 cases that could be meta-analyzed. No diagnostic accuracy or comparative studies were identified, although some analysis of concordance between different ES/GS methodologies could be performed. Studies reporting parent-related outcomes or long-term follow-up did not do so in a systematic or quantifiable manner. CONCLUSION Evidence suggests that approximately one-fourth to one-third of fetal losses associated with TOPFA or unexplained PND are associated with a genetic cause identifiable on ES or GS-albeit this estimate varies depending on phenotypic and background risk factors. Despite the large body of evidence on ES and GS, little research has attempted to validate the accuracy of testing, nor measure the clinical or societal outcomes in families that follow the diagnostic investigation in this context.
Collapse
Affiliation(s)
- Camille Schubert
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia.
| | - Joanne Milverton
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, Faculty of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Tracy Merlin
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Mustafa HJ, Barbera JP, Sambatur EV, Pagani G, Yaron Y, Baptiste CD, Wapner RJ, Brewer CJ, Khalil A. Diagnostic yield of exome sequencing in prenatal agenesis of corpus callosum: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:312-320. [PMID: 37519216 DOI: 10.1002/uog.27440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES To determine the incremental diagnostic yield of exome sequencing (ES) after negative chromosomal microarray analysis (CMA) in cases of prenatally diagnosed agenesis of the corpus callosum (ACC) and to identify the associated genes and variants. METHODS A systematic search was performed to identify relevant studies published up until June 2022 using four databases: PubMed, SCOPUS, Web of Science and The Cochrane Library. Studies in English reporting on the diagnostic yield of ES following negative CMA in prenatally diagnosed partial or complete ACC were included. Authors of cohort studies were contacted for individual participant data and extended cohorts were provided for two of them. The increase in diagnostic yield with ES for pathogenic/likely pathogenic (P/LP) variants was assessed in all cases of ACC, isolated ACC, ACC with other cranial anomalies and ACC with extracranial anomalies. To identify all reported genetic variants, the systematic review included all ACC cases; however, for the meta-analysis, only studies with ≥ three ACC cases were included. Meta-analysis of proportions was employed using a random-effects model. Quality assessment of the included studies was performed using modified Standards for Reporting of Diagnostic Accuracy criteria. RESULTS A total of 28 studies, encompassing 288 prenatally diagnosed ACC cases that underwent ES following negative CMA, met the inclusion criteria of the systematic review. We classified 116 genetic variants in 83 genes associated with prenatal ACC with a full phenotypic description. There were 15 studies, encompassing 268 cases, that reported on ≥ three ACC cases and were included in the meta-analysis. Of all the included cases, 43% had a P/LP variant on ES. The highest yield was for ACC with extracranial anomalies (55% (95% CI, 35-73%)), followed by ACC with other cranial anomalies (43% (95% CI, 30-57%)) and isolated ACC (32% (95% CI, 18-51%)). CONCLUSIONS ES demonstrated an incremental diagnostic yield in cases of prenatally diagnosed ACC following negative CMA. While the greatest diagnostic yield was observed in ACC with extracranial anomalies and ACC with other central nervous system anomalies, ES should also be considered in cases of isolated ACC. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- H J Mustafa
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Children and Indiana University Health Fetal Center, Indianapolis, IN, USA
| | - J P Barbera
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - E V Sambatur
- Research Division, Houston Center for Maternal Fetal Medicine, Houston, TX, USA
| | - G Pagani
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, ASST-Papa Giovanni XXIII, Bergamo, Italy
| | - Y Yaron
- Prenatal Genetic Diagnosis Unit, Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C D Baptiste
- Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, NY, USA
| | - R J Wapner
- Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, NY, USA
| | - C J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - A Khalil
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
6
|
Rimoldi M, Rinaldi B, Villa R, Cerasani J, Beltrami B, Iascone M, Silipigni R, Boito S, Gangi S, Colombo L, Porro M, Cesaretti C, Bedeschi MF. Congenital diaphragmatic hernia in Coffin Siris syndrome: Further evidence from two cases. Am J Med Genet A 2023; 191:605-611. [PMID: 36416235 DOI: 10.1002/ajmg.a.63054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
Coffin-Siris Syndrome (CSS) is a rare multi-system dominant condition with a variable clinical presentation mainly characterized by hypoplasia/aplasia of the nail and/or distal phalanx of the fifth digit, coarse facies, hirsutism/hypertrichosis, developmental delay and intellectual disability of variable degree and growth impairment. Congenital anomalies may include cardiac, genitourinary and central nervous system malformations whereas congenital diaphragmatic hernia (CDH) is rarely reported. The genes usually involved in CSS pathogenesis are ARID1B (most frequently), SMARCA4, SMARCB1, ARID1A, SMARCE1, DPF2, and PHF6. Here, we present two cases of CSS presenting with CDH, for whom Whole Exome Sequencing (WES) identified two distinct de novo heterozygous causative variants, one in ARID1B (case 1) and one in SMARCA4 (case 2). Due to the rarity of CDH in CSS, in both cases the occurrence of CDH did not represent a predictive sign of CSS but, on the other hand, prompted genetic testing before (case 1) or independently (case 2) from the clinical hypothesis of CSS. We provide further evidence of the association between CSS and CDH, reviewed previous cases from literature and discuss possible functional links to related conditions.
Collapse
Affiliation(s)
- Martina Rimoldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | - Roberta Villa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | - Jacopo Cerasani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Beltrami
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | - Maria Iascone
- Ospedale Papa Giovanni XXIII, Laboratory of Medical Genetics, Bergamo, Italy
| | - Rosamaria Silipigni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Laboratory of Medical Genetics, Milan, Italy
| | - Simona Boito
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Fetal Medicine and Surgery Service, Milan, Italy
| | - Silvana Gangi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Colombo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Matteo Porro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Physical Medicine and Rehabilitation Unit, Milan, Italy
| | - Claudia Cesaretti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | | |
Collapse
|
7
|
Rinaldi B, Cesaretti C, Boito S, Villa R, Guerneri S, Borzani I, Rizzuti T, Marchetti D, Conte G, Cinnante C, Triulzi F, Persico N, Iascone M, Natacci F. Family history is key to the interpretation of exome sequencing in the prenatal context: Unexpected diagnosis of Basal Cell Nevus Syndrome. Prenat Diagn 2022; 42:927-933. [PMID: 35584264 DOI: 10.1002/pd.6171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To reach a molecular diagnosis for a family with two consecutive fetuses presenting with multiple congenital anomalies. METHOD The two fetuses underwent prenatal ultrasound, autopsy, radiologic and genetic investigation. Genetic analysis included karyotype and array-CGH for both fetuses and trio-based whole exome sequencing (WES) only for the second fetus. RESULTS WES results, initially focusing on recessive or dominant de novo variants, were negative. However, as a result of new relevant information regarding family history, the variant c.648_651dup in the PTCH1 gene was identified as causative of the fetal phenotype. CONCLUSION This case further highlights how WES data analysis and interpretation strongly rely on family history and robust genotype-phenotype correlation. This is even more relevant in the prenatal setting, where access to fetal phenotype is limited and prenatal recognition of many morbid genes is not fully explored. We also provide a detailed description of the prenatal manifestations of Basal Cell Nevus Syndrome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cesaretti
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Villa
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Borzani
- Pediatric Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Rizzuti
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Marchetti
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giorgio Conte
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Istituto Auxologico Italiano IRCCS, Dipartimento di Radiologia e Diagnostica per Immagini, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Natacci
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Liu P, Vossaert L. Emerging technologies for prenatal diagnosis: The application of whole genome and RNA sequencing. Prenat Diagn 2022; 42:686-696. [PMID: 35416301 PMCID: PMC10014115 DOI: 10.1002/pd.6146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
DNA sequencing technologies for clinical genetic testing have been rapidly evolving in recent years, and steadily become more important within the field of prenatal diagnostics. This review aims to give an overview of recent developments and to describe how they have the potential to fill the gaps of the currently clinically implemented methods for prenatal diagnosis of various genetic disorders. It has been shown for postnatal testing that whole genome sequencing provides a set of added benefits compared to exome sequencing, and it is to be expected that this will be the case for prenatal testing as well. RNA-sequencing, already used postnatally, can provide valuable complementary data to DNA-based testing, and aid in variant interpretation. While not ready for clinical implementation, emerging technologies such as long-read and Hi-C sequencing analyses might add to the toolbox for interpreting the expanding genetic data sets generated by genome-wide sequencing. Lastly, we also discuss some more practical implications of introducing these emerging technologies, which generate larger and larger genomic data sets, in the prenatal field.
Collapse
Affiliation(s)
- Pengfei Liu
- Baylor College of Medicine and Baylor Genetics, Houston, Texas, USA
| | | |
Collapse
|
9
|
Mellis R, Oprych K, Scotchman E, Hill M, Chitty LS. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat Diagn 2022; 42:662-685. [PMID: 35170059 PMCID: PMC9325531 DOI: 10.1002/pd.6115] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022]
Abstract
Objectives We conducted a systematic review and meta‐analysis to determine the diagnostic yield of exome sequencing (ES) for prenatal diagnosis of fetal structural anomalies, where karyotype/chromosomal microarray (CMA) is normal. Methods Following electronic searches of four databases, we included studies with ≥10 structurally abnormal fetuses undergoing ES or whole genome sequencing. The incremental diagnostic yield of ES over CMA/karyotype was calculated and pooled in a meta‐analysis. Sub‐group analyses investigated effects of case selection and fetal phenotype on diagnostic yield. Results We identified 72 reports from 66 studies, representing 4350 fetuses. The pooled incremental yield of ES was 31% (95% confidence interval (CI) 26%–36%, p < 0.0001). Diagnostic yield was significantly higher for cases pre‐selected for likelihood of monogenic aetiology compared to unselected cases (42% vs. 15%, p < 0.0001). Diagnostic yield differed significantly between phenotypic sub‐groups, ranging from 53% (95% CI 42%–63%, p < 0.0001) for isolated skeletal abnormalities, to 2% (95% CI 0%–5%, p = 0.04) for isolated increased nuchal translucency. Conclusion Prenatal ES provides a diagnosis in an additional 31% of structurally abnormal fetuses when CMA/karyotype is non‐diagnostic. The expected diagnostic yield depends on the body system(s) affected and can be optimised by pre‐selection of cases following multi‐disciplinary review to determine that a monogenic cause is likely.
What's already known about this topic?
Prenatal exome sequencing (ES) increases genetic diagnoses in fetuses with structural abnormalities and a normal karyotype and chromosomal microarray. Published diagnostic yields from ES are varied and may be influenced by study size, case selection and fetal phenotype.
What does this study add?
This study provides a comprehensive systematic review of the literature to date and investigates the diagnostic yield of ES for a range of isolated system anomalies, to support clinical decision‐making on how to offer prenatal ES.
Collapse
Affiliation(s)
- Rhiannon Mellis
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Elizabeth Scotchman
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Melissa Hill
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Lyn S Chitty
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
10
|
Johansson J, Frykholm C, Ericson K, Kazamia K, Lindberg A, Mulaiese N, Falck G, Gustafsson P, Lidéus S, Gudmundsson S, Ameur A, Bondeson M, Wilbe M. Loss of Nexilin function leads to a recessive lethal fetal cardiomyopathy characterized by cardiomegaly and endocardial fibroelastosis. Am J Med Genet A 2022; 188:1676-1687. [PMID: 35166435 PMCID: PMC9306924 DOI: 10.1002/ajmg.a.62685] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Katharina Ericson
- Department of Clinical Pathology Akademiska University Hospital Uppsala Sweden
| | - Kalliopi Kazamia
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
- Children's Heart Center Stockholm‐Uppsala Karolinska University Hospital Stockholm Sweden
- Children’s Heart Center Stockholm‐Uppsala Akademiska University Hospital Uppsala Sweden
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Nancy Mulaiese
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Geir Falck
- Department of Internal Medicine Bollnäs Hospital Bollnäs Sweden
| | | | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics Broad Institute of Massachusetts Institute of Technology and Harvard Cambridge Massachusetts USA
- Division of Genetics and Genomics Boston Children's Hospital Boston Massachusetts USA
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Marie‐Louise Bondeson
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| |
Collapse
|
11
|
So PL, Luk HM, Cheung KW, Hui W, Chung MY, Mak ASL, Lok WY, Yu KPT, Cheng SSW, Hau EWL, Ho S, Lam STS, Lo IFM. Prenatal phenotype of Kabuki syndrome: A case series and literature review. Prenat Diagn 2021; 41:1089-1100. [PMID: 34185329 DOI: 10.1002/pd.5998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Kabuki syndrome (KS) is a genetic disorder characterized by intellectual disability, facial dysmorphism and congenital anomalies. We aim to investigate the prenatal features of fetuses with KS and to provide a comprehensive review of the literature on prenatal sonographic abnormalities associated with KS. METHODS We retrospectively reviewed the prenatal ultrasound findings of all mothers of children with molecularly confirmed KS in Hong Kong, between 1991 and 2019. We also performed systematic review of the literature to identify studies on the prenatal findings in KS. RESULTS We identified 11 cases with KS with detectable fetal ultrasound findings ranging from no detectable abnormalities to a variety of non-specific findings including increased nuchal translucency, pleural effusion, cardiac anomalies, renal anomalies, intrauterine growth restriction, polyhydramnios, oligohydramnios and single umbilical artery. In combining our cases with the 77 cases published, 42 (50.6%) of them had more than one abnormal antenatal ultrasound finding. The most frequent ultrasound features observed were cardiac anomalies (49.4%), followed by polyhydramnios (28.9%), genitourinary anomalies (26.5%), single umbilical artery (15.7%), intrauterine growth restriction (14.5%) and hydrops fetalis/pleural effusion/ascites (12.0%). CONCLUSIONS These cases demonstrate the prenatal phenotypic heterogeneity associated with KS. Although the ultrasound abnormalities are non-specific, KS should be considered in the differential diagnosis when these fetal findings following normal microarray analysis/karyotyping.
Collapse
Affiliation(s)
- Po Lam So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong SAR
| | - Ho Ming Luk
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | - Ka Wang Cheung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, Hong Kong SAR
| | - Winnie Hui
- Department of Obstetrics & Gynecology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
| | - Man Yan Chung
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, Hong Kong SAR
| | - Annisa S L Mak
- Department of Obstetrics and Gynecology, Queen Elizabeth Hospital, Hong Kong SAR
| | - Wing Yi Lok
- Department of Obstetrics and Gynecology, United Christian Hospital, Hong Kong SAR
| | - Kris Pui Tak Yu
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | | | - Edgar W L Hau
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | - Stephanie Ho
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | - Stephen T S Lam
- Clinical Genetics Service, Hong Kong Sanatorium & Hospital, Hong Kong SAR
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| |
Collapse
|
12
|
Russo FM, Debeer A, De Coppi P, Devriendt K, Crombag N, Hubble T, Power B, Benachi A, Deprest J. What should we tell parents? Congenital diaphragmatic hernia. Prenat Diagn 2020; 42:398-407. [PMID: 33599313 DOI: 10.1002/pd.5880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is characterized by a defect in the muscle dividing the thoracic and abdominal cavities. This leads to herniation of the abdominal organs into the thorax and a disturbance of lung development. Two-thirds of cases are identified by prenatal ultrasound in the second trimester, which should prompt referral to a tertiary center for prognosis assessment and counseling by a multidisciplinary team familiar with this condition. In this review, we summarize evidence on prenatal diagnosis and postnatal management of CDH. There is a focus on information that should be provided to expecting parents during prenatal counseling.
Collapse
Affiliation(s)
- Francesca M Russo
- Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium
| | - Anne Debeer
- Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium.,Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Paolo De Coppi
- Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.,Stem Cells & Regenerative Medicine Section, NIHR Biomedical Research Center, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Neeltje Crombag
- Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium
| | - Talia Hubble
- Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium.,Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Alexandra Benachi
- Department of Obstetrics and Gynecology, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, Clamart, France.,Centre Référence Maladie Rare: Hernie de Coupole Diaphragmatique, Clamart, France
| | - Jan Deprest
- Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| |
Collapse
|