1
|
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, Ruaud L. Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study. Eur J Hum Genet 2024; 32:1144-1149. [PMID: 38355961 PMCID: PMC11369172 DOI: 10.1038/s41431-024-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.
Collapse
Affiliation(s)
- Alix Paulet
- Département de Génétique, Hôpital Robert-Debré, Paris, France.
| | - Cavan Bennett-Ness
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | | | | | - Andrew Green
- UCD School of Medicine and Medical Science Consultant in Clinical Genetics, Dublin, Ireland
| | - David Goudie
- Regional Genetics Service, NHS Tayside, Dundee, Scotland, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, England, UK
| | - Minna Kraatari-Tiri
- Department of Clinical Genetics, Research unit of Clinical Medicine, Medical Research Center Oulu, Oulu, Finland
- Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juliette Piard
- Centre de Génétique Humaine, CHU Besançon, Besançon, France
| | - Christine Coubes
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Wayne Lam
- South-East of Scotland Clinical Genetics Service, General Hospital, Edinburgh, Scotland, UK
| | - Sally Ann Lynch
- Clinical Genetics, Children's Health Ireland, Dublin, Ireland
| | - Samuel Groeschel
- Department of Neuropediatrics, University Children's Hospital, Tuebingen, Germany
| | - Francis Ramond
- Service de Génétique, CHU Saint-Etienne - Hôpital Nord, Saint-Etienne, France
| | - Joël Fluss
- University Hospitals of Geneva, Geneva, Switzerland
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Tjitske Kleefstra
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | | | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes, France
| | - Antonio Vitobello
- UMR-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Romano Tenconi
- Servizio di Genetica Medica, Dipartimento di Pediatra, Padova, Italia
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph A Marsh
- MRC Human Genetics Unit, Western General Hospital, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Elke de Boer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Adam Ostendorf
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Colombus, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, 3010, Bern, Switzerland
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas Smol
- University of Lille, EA7364-RADEME, Medical Genetics Institute, Chu Lille, Lille, France
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD et Institut GIMI, CHU dijon, Bourgogne, Dijon, France
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Irene Bagnasco
- Division of Child Neuropsychiatry, Martini Hospital, Torino, Italy
| | - Daniel Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
| | | | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| |
Collapse
|
2
|
He HL, Lin XQ, Wang XL, Peng P, Xiao H, Yin F, Peng J. [Developmental and epileptic encephalopathy 33 caused by EEF1A2 gene mutation: a case report]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:861-864. [PMID: 39148392 PMCID: PMC11334538 DOI: 10.7499/j.issn.1008-8830.2404013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
A boy, aged 7 months, presented with severe global developmental delay (GDD), refractory epilepsy, hypotonia, nystagmus, ocular hypertelorism, a broad nasal bridge, everted upper lip, a high palatal arch, and cryptorchidism. Genetic testing revealed a de novo heterozygous missense mutation of c.364G>A(p.E122K) in the EEF1A2 gene, and finally the boy was diagnosed with autosomal dominant developmental and epileptic encephalopathy 33 caused by the EEF1A2 gene mutation. This case report suggests that for children with unexplained infancy-onset severe to profound GDD/intellectual disability and refractory epilepsy, genetic testing for EEF1A2 gene mutations should be considered. This is particularly important for those exhibiting hypotonia, nonverbal communication, and craniofacial deformities, to facilitate a confirmed diagnosis.
Collapse
Affiliation(s)
- Hai-Lan He
- Department of Neurology, Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xue-Qin Lin
- Department of Neurology, Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiao-Le Wang
- Department of Neurology, Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pan Peng
- Department of Neurology, Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Xiao
- Department of Neurology, Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fei Yin
- Department of Neurology, Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Peng
- Department of Neurology, Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Shi HY, Xie MS, Guo YH, Yang CX, Gu JN, Qiao Q, Di RM, Qiu XB, Xu YJ, Yang YQ. VEZF1 loss-of-function mutation underlying familial dilated cardiomyopathy. Eur J Med Genet 2023; 66:104705. [PMID: 36657711 DOI: 10.1016/j.ejmg.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/17/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Dilated cardiomyopathy (DCM), characteristic of left ventricular or biventricular dilation with systolic dysfunction, is the most common form of cardiomyopathy, and a leading cause of heart failure and sudden cardiac death. Aggregating evidence highlights the underlying genetic basis of DCM, and mutations in over 100 genes have been causally linked to DCM. Nevertheless, due to pronounced genetic heterogeneity, the genetic defects underpinning DCM in most cases remain obscure. Hence, this study was sought to identify novel genetic determinants of DCM. In this investigation, whole-exome sequencing and bioinformatics analyses were conducted in a family suffering from DCM, and a novel heterozygous mutation in the VEZF1 gene (coding for a zinc finger-containing transcription factor critical for cardiovascular development and structural remodeling), NM_007146.3: c.490A > T; p.(Lys164*), was identified. The nonsense mutation was validated by Sanger sequencing and segregated with autosome-dominant DCM in the family with complete penetrance. The mutation was neither detected in another cohort of 200 unrelated DCM patients nor observed in 400 unrelated healthy individuals nor retrieved in the Single Nucleotide Polymorphism database, the Human Gene Mutation Database and the Genome Aggregation Database. Biological analyses by utilizing a dual-luciferase reporter assay system revealed that the mutant VEZF1 protein failed to transactivate the promoters of MYH7 and ET1, two genes that have been associated with DCM. The findings indicate VEZF1 as a new gene responsible for DCM, which provides novel insight into the molecular pathogenesis of DCM, implying potential implications for personalized precisive medical management of the patients affected with DCM.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ruo-Min Di
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|