1
|
Zhang F, Qi L, Zhao M, Han S, Zhang H, Wang G. Global research landscape on the genetics of congenital heart disease: A bibliometric and visualized analysis via VOSviewer and CiteSpace. Medicine (Baltimore) 2024; 103:e40261. [PMID: 39470501 PMCID: PMC11521071 DOI: 10.1097/md.0000000000040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Genetic factors play a significant role in the development of congenital heart disease (CHD). Many studies on the genetics of CHD have been published worldwide; however, no research has assessed and mapped the global research landscape of these studies. This bibliometric and visualized study aimed to delineate research hotspots and trends in the field of CHD genetics. Scientific papers on the genetics of CHD from January 1, 1950, to December 31, 2023, were obtained by searching the Web of Science Core Collection. The bibliometric metadata of each chosen research paper were extracted, analyzed, and visualized using tools such as Microsoft Excel 2021, VOSviewer, and CiteSpace. The final analysis included 5317 papers discussing the genetics of CHD. The countries and journals that published the highest number of papers were the United States (n = 2118), and American Journal of Medical Genetics Part A (n = 332), respectively. In addition to CHD and genetics, keywords such as tetralogy of Fallot, ventricular septal defect, and atrial septal defect appeared most frequently among 8365 keywords. Eight clusters were formed to categorize the keywords. Keywords such as case-control study, whole genome sequencing, and whole exome sequencing in clusters 6, 7, and 8, respectively, had the latest average publication year among all clusters. To the best of our knowledge, this is the first bibliometric analysis of CHD genetics studies. Tetralogy of Fallot, ventricular septal defect, and atrial septal defect are global research topics. The interactions between environmental and genetic factors in the pathogenesis of CHD, genetic etiology of CHD-associated pulmonary arterial hypertension, and molecular genetics of CHD via high-throughput genomic technology are possible areas of future research on the genetics of CHD.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lei Qi
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Mingxue Zhao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Shuming Han
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Haoran Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Guangxin Wang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
- Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
3
|
Shi HY, Xie MS, Guo YH, Yang CX, Gu JN, Qiao Q, Di RM, Qiu XB, Xu YJ, Yang YQ. VEZF1 loss-of-function mutation underlying familial dilated cardiomyopathy. Eur J Med Genet 2023; 66:104705. [PMID: 36657711 DOI: 10.1016/j.ejmg.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/17/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Dilated cardiomyopathy (DCM), characteristic of left ventricular or biventricular dilation with systolic dysfunction, is the most common form of cardiomyopathy, and a leading cause of heart failure and sudden cardiac death. Aggregating evidence highlights the underlying genetic basis of DCM, and mutations in over 100 genes have been causally linked to DCM. Nevertheless, due to pronounced genetic heterogeneity, the genetic defects underpinning DCM in most cases remain obscure. Hence, this study was sought to identify novel genetic determinants of DCM. In this investigation, whole-exome sequencing and bioinformatics analyses were conducted in a family suffering from DCM, and a novel heterozygous mutation in the VEZF1 gene (coding for a zinc finger-containing transcription factor critical for cardiovascular development and structural remodeling), NM_007146.3: c.490A > T; p.(Lys164*), was identified. The nonsense mutation was validated by Sanger sequencing and segregated with autosome-dominant DCM in the family with complete penetrance. The mutation was neither detected in another cohort of 200 unrelated DCM patients nor observed in 400 unrelated healthy individuals nor retrieved in the Single Nucleotide Polymorphism database, the Human Gene Mutation Database and the Genome Aggregation Database. Biological analyses by utilizing a dual-luciferase reporter assay system revealed that the mutant VEZF1 protein failed to transactivate the promoters of MYH7 and ET1, two genes that have been associated with DCM. The findings indicate VEZF1 as a new gene responsible for DCM, which provides novel insight into the molecular pathogenesis of DCM, implying potential implications for personalized precisive medical management of the patients affected with DCM.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ruo-Min Di
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Wang Y, Xu YJ, Yang CX, Huang RT, Xue S, Yuan F, Yang YQ. SMAD4 loss-of-function mutation predisposes to congenital heart disease. Eur J Med Genet 2022; 66:104677. [PMID: 36496093 DOI: 10.1016/j.ejmg.2022.104677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Congenital heart disease (CHD) represents the most frequent developmental deformity in human beings and accounts for substantial morbidity and mortality worldwide. Accumulating investigations underscore the strong inherited basis of CHD, and pathogenic variations in >100 genes have been related to CHD. Nevertheless, the heritable defects underpinning CHD remain elusive in most cases, mainly because of the pronounced genetic heterogeneity. In this investigation, a four-generation family with CHD was recruited and clinically investigated. Via whole-exome sequencing and Sanger sequencing assays in selected family members, a heterozygous variation in the SMAD4 gene (coding for a transcription factor essential for cardiovascular morphogenesis), NM_005359.6: c.285T > A; p.(Tyr95*), was identified to be in co-segregation with autosomal-dominant CHD in the entire family. The truncating variation was not observed in 460 unrelated non-CHD volunteers employed as control subjects. Functional exploration by dual-reporter gene analysis demonstrated that Tyr95*-mutant SMAD4 lost transactivation of its two key downstream target genes NKX2.5 and ID2, which were both implicated with CHD. Additionally, the variation nullified the synergistic transcriptional activation between SMAD4 and GATA4, another transcription factor involved in CHD. These data strongly indicate SMAD4 may be associated with CHD and shed more light on the molecular pathogenesis underlying CHD, implying potential implications for antenatal precise prevention and prognostic risk stratification of the patients affected with CHD.
Collapse
Affiliation(s)
- Yin Wang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fang Yuan
- Department of Cardiac Intensive Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Shi HY, Xie MS, Yang CX, Huang RT, Xue S, Liu XY, Xu YJ, Yang YQ. Identification of SOX18 as a New Gene Predisposing to Congenital Heart Disease. Diagnostics (Basel) 2022; 12:diagnostics12081917. [PMID: 36010266 PMCID: PMC9406965 DOI: 10.3390/diagnostics12081917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease (CHD) is the most frequent kind of birth deformity in human beings and the leading cause of neonatal mortality worldwide. Although genetic etiologies encompassing aneuploidy, copy number variations, and mutations in over 100 genes have been uncovered to be involved in the pathogenesis of CHD, the genetic components predisposing to CHD in most cases remain unclear. We recruited a family with CHD from the Chinese Han population in the present investigation. Through whole-exome sequencing analysis of selected family members, a new SOX18 variation, namely NM_018419.3:c.349A>T; p.(Lys117*), was identified and confirmed to co-segregate with the CHD phenotype in the entire family by Sanger sequencing analysis. The heterozygous variant was absent from the 384 healthy volunteers enlisted as control individuals. Functional exploration via luciferase reporter analysis in cultivated HeLa cells revealed that Lys117*-mutant SOX18 lost transactivation on its target genes NR2F2 and GATA4, two genes responsible for CHD. Moreover, the genetic variation terminated the synergistic activation between SOX18 and NKX2.5, another gene accountable for CHD. The findings strongly indicate SOX18 as a novel gene contributing to CHD, which helps address challenges in the clinical genetic diagnosis and prenatal prophylaxis of CHD.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| |
Collapse
|
6
|
Wang Z, Qiao XH, Xu YJ, Liu XY, Huang RT, Xue S, Qiu HY, Yang YQ. SMAD1 Loss-of-Function Variant Responsible for Congenital Heart Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9916325. [PMID: 35281600 PMCID: PMC8913148 DOI: 10.1155/2022/9916325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
As the most common form of developmental malformation affecting the heart and endothoracic great vessels, congenital heart disease (CHD) confers substantial morbidity and mortality as well as socioeconomic burden on humans globally. Aggregating convincing evidence highlights the genetic origin of CHD, and damaging variations in over 100 genes have been implicated with CHD. Nevertheless, the genetic basis underpinning CHD remains largely elusive. In this study, via whole-exosome sequencing analysis of a four-generation family inflicted with autosomal-dominant CHD, a heterozygous SMAD1 variation, NM_005900.3: c.264C > A; p.(Tyr88∗), was detected and validated by Sanger sequencing analysis to be in cosegregation with CHD in the whole family. The truncating variation was not observed in 362 unrelated healthy volunteers employed as control persons. Dual-luciferase reporter gene assay in cultured COS7 cells demonstrated that Tyr88∗-mutant SMAD1 failed to transactivate the genes TBX20 and NKX2.5, two already well-established CHD-causative genes. Additionally, the variation nullified the synergistic transcriptional activation between SMAD1 and MYOCD, another recognized CHD-causative gene. These data indicate SMAD1 as a new gene responsible for CHD, which provides new insight into the genetic mechanism underlying CHD, suggesting certain significance for genetic risk assessment and precise antenatal prevention of the family members inflicted with CHD.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hai-Yan Qiu
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
7
|
Abhinav P, Zhang GF, Zhao CM, Xu YJ, Wang J, Yang YQ. A novel KLF13 mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve. Exp Ther Med 2022; 23:311. [PMID: 35369534 PMCID: PMC8943534 DOI: 10.3892/etm.2022.11240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Gao-Feng Zhang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
8
|
Shen L, Yu J, Ge Y, Li H, Li Y, Cao Z, Luan P, Xiao F, Gao H, Zhang H. Associations of Transcription Factor 21 Gene Polymorphisms with the Growth and Body Composition Traits in Broilers. Animals (Basel) 2022; 12:ani12030393. [PMID: 35158719 PMCID: PMC8833368 DOI: 10.3390/ani12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The functional SNPs discovered in this work will give helpful information on the crucial molecular markers that may be employed in breeding efforts to improve the heart development of broiler chickens. Abstract This study aims to identify molecular marker loci that could be applied in broiler breeding programs. In this study, we used public databases to locate the Transcription factor 21 (TCF21) gene that affected the economically important traits in broilers. Ten single nucleotide polymorphisms were detected in the TCF21 gene by monoclonal sequencing. The polymorphisms of these 10 SNPs in the TCF21 gene were significantly associated (p < 0.05) with multiple growth and body composition traits. Furthermore, the TT genotype of g.-911T>G was identified to significantly increase the heart weight trait without affecting the negative traits, such as abdominal fat and reproduction by multiple methods. Thus, it was speculated that the g.-911T>G identified in the TCF21 gene might be used in marker-assisted selection in the broiler breeding program.
Collapse
Affiliation(s)
- Linyong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Jiaqiang Yu
- Forest Investigating and Planning Institute of Daxinganling, Yakshi 022150, China;
| | - Yaowen Ge
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Fan Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Nanping 354100, China; (F.X.); (H.G.)
| | - Haihe Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Nanping 354100, China; (F.X.); (H.G.)
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
- Correspondence: ; Tel.: +86-451-55191486
| |
Collapse
|
9
|
Ke ZP, Zhang GF, Guo YH, Sun YM, Wang J, Li N, Qiu XB, Xu YJ, Yang YQ. A novel PRRX1 loss-of-function variation contributing to familial atrial fibrillation and congenital patent ductus arteriosus. Genet Mol Biol 2022; 45:e20210378. [PMID: 35377386 PMCID: PMC8978609 DOI: 10.1590/1678-4685-gmb-2021-0378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) represents the most common type of sustained cardiac arrhythmia in humans and confers a significantly increased risk for thromboembolic stroke, congestive heart failure and premature death. Aggregating evidence emphasizes the predominant genetic defects underpinning AF and an increasing number of deleterious variations in more than 50 genes have been involved in the pathogenesis of AF. Nevertheless, the genetic basis underlying AF remains incompletely understood. In the current research, by whole-exome sequencing and Sanger sequencing analysis in a family with autosomal-dominant AF and congenital patent ductus arteriosus (PDA), a novel heterozygous variation in the PRRX1 gene encoding a homeobox transcription factor critical for cardiovascular development, NM_022716.4:c.373G>T;p.(Glu125*), was identified to be in co-segregation with AF and PDA in the whole family. The truncating variation was not detected in 306 unrelated healthy individuals employed as controls. Quantitative biological measurements with a reporter gene analysis system revealed that the Glu125*-mutant PRRX1 protein failed to transactivate its downstream target genes SHOX2 and ISL1, two genes that have been causally linked to AF. Conclusively, the present study firstly links PRRX1 loss-of-function variation to AF and PDA, suggesting that AF and PDA share a common abnormal developmental basis in a proportion of cases.
Collapse
Affiliation(s)
| | | | - Yu-Han Guo
- Fudan University, China; Fudan University, China
| | | | | | - Ning Li
- Shanghai Jiao Tong University, China
| | | | - Ying-Jia Xu
- Fudan University, China; Fudan University, China
| | - Yi-Qing Yang
- Fudan University, China; Fudan University, China; Fudan University, China; Fudan University, China
| |
Collapse
|