1
|
Durmus H. Editorial: Diagnosis and identification of novel disorders and ultra-rare disorders in science and clinical routine. Front Genet 2024; 15:1522931. [PMID: 39634273 PMCID: PMC11614831 DOI: 10.3389/fgene.2024.1522931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Hacer Durmus
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul, Türkiye
| |
Collapse
|
2
|
Starosta RT, Larson AA, Meeks NJL, Gracie S, Friederich MW, Gaughan SM, Baker PR, Knupp KG, Michel CR, Reisdorph R, Hock DH, Stroud DA, Wood T, Van Hove JLK. An integrated multi-omics approach allowed ultra-rapid diagnosis of a deep intronic pathogenic variant in PDHX and precision treatment in a neonate critically ill with lactic acidosis. Mitochondrion 2024; 79:101973. [PMID: 39413893 PMCID: PMC11578067 DOI: 10.1016/j.mito.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The diagnosis of mitochondrial disorders is complex. Rapid whole genome sequencing is a first line test for critically ill neonates and infants allowing rapid diagnosis and treatment. Standard genomic technology and bioinformatic pipelines still have an incomplete diagnostic yield requiring complementary approaches. There are currently limited options for rapid additional tests to continue a diagnostic work-up after a negative rapid whole-genome sequencing result, reflecting a gap in clinical practice. Multi-modal integrative diagnostic approaches derived from systems biology including proteomics and transcriptomics show promise in suspected mitochondrial disorders. In this article, we report the case of a neonate who presented with severe lactic acidosis on the second day of life, for whom an initial report of ultra-rapid genome sequencing was negative. The patient was started on dichloroacetate as an emergency investigational new drug (eIND), with a sharp decline in lactic acid levels and clinical stabilization. A proteomics-based approach identified a complete absence of PDHX protein, leading to a re-review of the genome data for the PDHX gene in which a homozygous deep intronic pathogenic variant was identified. Subsequent testing in the following months confirmed the diagnosis with deficient pyruvate dehydrogenase enzyme activity, reduced protein levels of E3-binding protein, and confirmed by mRNA sequencing to lead to the inclusion of a cryptic exon and a premature stop codon. This case highlights the power of rapid proteomics in guiding genomic analysis. It also shows a promising role for dichloroacetate treatment in controlling lactic acidosis related to PDHX-related pyruvate dehydrogenase complex deficiency.
Collapse
Affiliation(s)
- Rodrigo T Starosta
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sara Gracie
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sommer M Gaughan
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Kelly G Knupp
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Tim Wood
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Chowdhury SR, Whitney R, RamachandranNair R, Bijarnia Mahay S, Sharma S. Genetic Testing in Pediatric Epilepsy: Tools, Tips, and Navigating the Traps. Pediatr Neurol 2024; 157:42-49. [PMID: 38865949 DOI: 10.1016/j.pediatrneurol.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
With the advent of high-throughput sequencing and computational methods, genetic testing has become an integral part of contemporary clinical practice, particularly in epilepsy. The toolbox for genetic testing has evolved from conventional chromosomal microarray and epilepsy gene panels to state-of-the-art sequencing techniques in the modern genomic era. Beyond its potential for therapeutic benefits through precision medicine, optimizing the choice of antiseizure medications, or exploring nonpharmacological therapeutic modalities, genetic testing carries substantial diagnostic, prognostic, and personal implications. Developmental and epileptic encephalopathies, the coexistence of neurodevelopmental comorbidities, early age of epilepsy onset, unexplained drug-refractory epilepsy, and positive family history have demonstrated the highest likelihood of yielding positive genetic test results. Given the diagnostic efficacy across different testing modalities, reducing costs of next-generation sequencing tests, and genetic diversity of epilepsies, exome sequencing or genome sequencing, where feasible and available, have been recommended as the first-tier test. Comprehensive clinical phenotyping at the outset, corroborative evidence from radiology and electrophysiology-based investigations, reverse phenotyping, and periodic reanalysis are some of the valuable strategies when faced with inconclusive test results. In this narrative review, the authors aim to simplify the approach to genetic testing in epilepsy by guiding on the selection of appropriate testing tools in the indicated clinical scenarios, addressing crucial aspects during pre- and post-test counseling sessions, adeptly navigating the traps posed by uncertain or negative genetic variants, and paving the way forward to the emerging testing modalities beyond DNA sequencing.
Collapse
Affiliation(s)
- Sayoni Roy Chowdhury
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Robyn Whitney
- Comprehensive Paediatric Epilepsy Program, Division of Neurology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Rajesh RamachandranNair
- Comprehensive Paediatric Epilepsy Program, Division of Neurology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Sunita Bijarnia Mahay
- Sr. Consultant, Clinical & Metabolic Geneticist, Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India.
| |
Collapse
|
4
|
Guner Yilmaz B, Akgun-Dogan O, Ozdemir O, Yuksel B, Hatirnaz Ng O, Bilguvar K, Ay B, Ozkose GS, Aydin E, Yigit A, Bulut A, Esen FN, Beken S, Aktas S, Demirel A, Arcagok BC, Kazanci E, Bingol İ, Umur O, Sik G, Isik U, Ersoy M, Korkmaz A, Citak A, Mardinoglu A, Ozbek U, Alanay Y. Rapid genome sequencing for critically ill infants: an inaugural pilot study from Turkey. Front Pediatr 2024; 12:1412880. [PMID: 39026936 PMCID: PMC11254770 DOI: 10.3389/fped.2024.1412880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Rare and ultra-rare genetic conditions significantly contribute to infant morbidity and mortality, often presenting with atypical features and genetic heterogeneity that complicate management. Rapid genome sequencing (RGS) offers a timely and cost-effective approach to diagnosis, aiding in early clinical management and reducing unnecessary interventions. This pilot study represents the inaugural use of next-generation sequencing (NGS) as a diagnostic instrument for critically ill neonatal and pediatric ICU patients in a Turkish hospital setting. Methods Ten infants were enrolled based on predefined inclusion criteria, and trio RGS was performed. The mean age of the participants was 124 days, with congenital abnormalities being the most common indication for testing. Three patients had consanguineous parents. The mean turnaround time from enrollment to delivery of results was 169 h, with a diagnostic yield of 50%. Results Three patients received a definitive molecular diagnosis, impacting their clinical management. Two patients benefited from the exclusion of Mendelian conditions, leading to alternative diagnoses. Discussion This study demonstrates the feasibility and results of RGS in Turkish hospital settings, emphasizing the importance of timely genetic diagnosis in reducing the diagnostic odyssey for families and improving patient care. Further research is needed to evaluate the cost-effectiveness and applicability of RGS in the Turkish healthcare system for children with diseases of uncertain etiology.
Collapse
Affiliation(s)
- Bengisu Guner Yilmaz
- Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozlem Akgun-Dogan
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Transitional Medicine, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozkan Ozdemir
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Division of Medical Biology, Department of Basic Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Bayram Yuksel
- Genetic Diagnosis Center, SZA OMICS, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Division of Medical Biology, Department of Basic Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Kaya Bilguvar
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Beril Ay
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Gulsah Sebnem Ozkose
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eylul Aydin
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayca Yigit
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aybike Bulut
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Serdar Beken
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Selma Aktas
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Atalay Demirel
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Baran Cengiz Arcagok
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ebru Kazanci
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İbrahim Bingol
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Umur
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Guntulu Sik
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ugur Isik
- Division of Neurology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Melike Ersoy
- Division of Pediatric Metabolism, Department of Pediatrics, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Ayse Korkmaz
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Agop Citak
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Adil Mardinoglu
- Genetic Diagnosis Center, SZA OMICS, Istanbul, Turkey
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Ugur Ozbek
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
5
|
Habib C, Paperna T, Zaid R, Ravid S, Ben Ari J, Tal G, Weiss K, Hershkovitz T. Rapid exome sequencing for children with severe acute encephalopathy - A case series. Eur J Med Genet 2024; 68:104918. [PMID: 38325642 DOI: 10.1016/j.ejmg.2024.104918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Increasingly, next-generation sequencing (NGS) is becoming an invaluable tool in the diagnosis of unexplained acute neurological disorders, such as acute encephalopathy/encephalitis. Here, we describe a brief series of pediatric patients who presented at the pediatric intensive care unit with severe acute encephalopathy, initially suspected as infectious or inflammatory but subsequently diagnosed with a monogenic disorder. Rapid exome sequencing was performed during the initial hospitalization of three unrelated patients, and results were delivered within 7-21 days. All patients were previously healthy, 1.5-3 years old, of Muslim Arab descent, with consanguineous parents. One patient presenting with acute necrotizing encephalopathy (ANEC). Her sister presented with ANEC one year prior. Exome sequencing was diagnostic in all three patients. All were homozygous for pathogenic and likely-pathogenic variants associated with recessive disorders; MOCS2, NDUFS8 and DBR1. Surprisingly, the initial workup was not suggestive of the final diagnosis. This case series demonstrates that the use of rapid exome sequencing is shifting the paradigm of diagnostics even in critical care situations and should be considered early on in children with acute encephalopathy. A timely diagnosis can direct initial treatment as well as inform decisions regarding long-term care.
Collapse
Affiliation(s)
- Clair Habib
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Rinat Zaid
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Sarit Ravid
- Pediatric Neurology Department, Rambam Health Care Campus, Haifa, Israel
| | - Josef Ben Ari
- Pediatric Intensive Care Unit, Rambam Health Care Campus, Haifa, Israel
| | - Galit Tal
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Metabolic Clinic, Rambam Health Care Campus, Haifa, Israel
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Jerves Serrano T, Gold J, Cooper JA, Church HJ, Tylee KL, Wu HY, Kim SY, Stepien KM. Hepatomegaly and Splenomegaly: An Approach to the Diagnosis of Lysosomal Storage Diseases. J Clin Med 2024; 13:1465. [PMID: 38592278 PMCID: PMC10932313 DOI: 10.3390/jcm13051465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.
Collapse
Affiliation(s)
| | - Jessica Gold
- Division of Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - James A. Cooper
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Heather J. Church
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Karen L. Tylee
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Hoi Yee Wu
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Karolina M. Stepien
- Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Adult Inherited Metabolic Diseases Department, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Marouane A, Neveling K, Deden AC, van den Heuvel S, Zafeiropoulou D, Castelein S, van de Veerdonk F, Koolen DA, Simons A, Rodenburg R, Westra D, Mensenkamp AR, de Leeuw N, Ligtenberg M, Matthijsse R, Pfundt R, Kamsteeg EJ, Brunner HG, Gilissen C, Feenstra I, de Boode WP, Yntema HG, van Zelst-Stams WAG, Nelen M, Vissers LELM. Lessons learned from rapid exome sequencing for 575 critically ill patients across the broad spectrum of rare disease. Front Genet 2024; 14:1304520. [PMID: 38259611 PMCID: PMC10800954 DOI: 10.3389/fgene.2023.1304520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Rapid exome sequencing (rES) has become the first-choice genetic test for critically ill patients, mostly neonates, young infants, or fetuses in prenatal care, in time-sensitive situations and when it is expected that the genetic test result may guide clinical decision making. The implementation of rES has revolutionized medicine by enabling timely identification of genetic causes for various rare diseases. The utilization of rES has increasingly been recognized as an essential diagnostic tool for the identification of complex and undiagnosed genetic disorders. Methods: We conducted a retrospective evaluation of our experiences with rES performed on 575 critically ill patients from various age groups (prenatal to adulthood), over a four-year period (2016-2019). These patients presented with a wide spectrum of rare diseases, including but not limited to neurological disorders, severe combined immune deficiency, and cancer. Results: During the study period, there was a significant increase in rES referrals, with a rise from a total of two referrals in Q1-2016 to 10 referrals per week in Q4-2019. The median turnaround time (TAT) decreased from 17 to 11 days in the period 2016-2019, with an overall median TAT of 11 days (IQR 8-15 days). The overall diagnostic yield for this cohort was 30.4%, and did not significantly differ between the different age groups (e.g. adults 22.2% vs children 31.0%; p-value 0.35). However, variability in yield was observed between clinical entities: craniofacial anomalies yielded 58.3%, while for three clinical entities (severe combined immune deficiency, aneurysm, and hypogonadotropic hypogonadism) no diagnoses were obtained. Discussion: Importantly, whereas clinical significance is often only attributed to a conclusive diagnosis, we also observed impact on clinical decision-making for individuals in whom no genetic diagnosis was established. Hence, our experience shows that rES has an important role for patients of all ages and across the broad spectrum of rare diseases to impact clinical outcomes.
Collapse
Affiliation(s)
- Abderrahim Marouane
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Nijmegen, Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - A. Chantal Deden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone van den Heuvel
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dimitra Zafeiropoulou
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Steven Castelein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - David A. Koolen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Richard Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dineke Westra
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arjen R. Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marjolijn Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rene Matthijsse
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Nijmegen, Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erik Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Han G. Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ilse Feenstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Willem P. de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Nijmegen, Netherlands
| | - Helger G. Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Marcel Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lisenka E. L. M. Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Kim S, Pistawka C, Langlois S, Osiovich H, Virani A, Kitchin V, Elliott AM. Genetic counselling considerations with genetic/genomic testing in Neonatal and Pediatric Intensive Care Units: A scoping review. Clin Genet 2024; 105:13-33. [PMID: 37927209 DOI: 10.1111/cge.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Genetic and genomic technologies can effectively diagnose numerous genetic disorders. Patients benefit when genetic counselling accompanies genetic testing and international guidelines recommend pre- and post-test genetic counselling with genome-wide sequencing. However, there is a gap in knowledge regarding the unique genetic counselling considerations with different types of genetic testing in the Neonatal Intensive Care Unit (NICU) and the Pediatric Intensive Care Unit (PICU). This scoping review was conducted to identify the gaps in care with respect to genetic counselling for infants/pediatric patients undergoing genetic and genomic testing in NICUs and PICUs and understand areas in need of improvement in order to optimize clinical care for patients, caregivers, and healthcare providers. Five databases (MEDLINE [Ovid], Embase [Ovid], PsycINFO [Ebsco], CENTRAL [Ovid], and CINHAL [Ebsco]) and grey literature were searched. A total of 170 studies were included and used for data extraction and analysis. This scoping review includes descriptive analysis, followed by a narrative account of the extracted data. Results were divided into three groups: pre-test, post-test, and comprehensive (both pre- and post-test) genetic counselling considerations based on indication for testing. More studies were conducted in the NICU than the PICU. Comprehensive genetic counselling was discussed in only 31% of all the included studies demonstrating the need for both pre-test and post-test genetic counselling for different clinical indications in addition to the need to account for different cultural aspects based on ethnicity and geographic factors.
Collapse
Affiliation(s)
- Sunu Kim
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carly Pistawka
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Horacio Osiovich
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Virani
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Ethics Service, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Vanessa Kitchin
- Woodward Library, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|