1
|
Real-time control of respiratory motion: Beyond radiation therapy. Phys Med 2019; 66:104-112. [PMID: 31586767 DOI: 10.1016/j.ejmp.2019.09.241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
Motion management in radiation oncology is an important aspect of modern treatment planning and delivery. Special attention has been paid to control respiratory motion in recent years. However, other medical procedures related to both diagnosis and treatment are likely to benefit from the explicit control of breathing motion. Quantitative imaging - including increasingly important tools in radiology and nuclear medicine - is among the fields where a rapid development of motion control is most likely, due to the need for quantification accuracy. Emerging treatment modalities like focussed-ultrasound tumor ablation are also likely to benefit from a significant evolution of motion control in the near future. In the present article an overview of available respiratory motion systems along with ongoing research in this area is provided. Furthermore, an attempt is made to envision some of the most expected developments in this field in the near future.
Collapse
|
2
|
Nakamura M, Akimoto M, Mukumoto N, Yamada M, Tanabe H, Ueki N, Matsuo Y, Mizowaki T, Kokubo M, Hiraoka M. Influence of the correlation modeling period on the prediction accuracy of infrared marker-based dynamic tumor tracking using a gimbaled X-ray head. Phys Med 2015; 31:204-9. [PMID: 25639590 DOI: 10.1016/j.ejmp.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To assess the utility of 10 s and 20 s modeling periods, rather than the 40 s currently used, in the clinical construction of practical correlation models (CMs) in dynamic tumor tracking irradiation using the Vero4DRT. METHODS The CMs with five independent parameters (CM parameters) were analyzed retrospectively for 10 consecutive lung cancer patients. CM remodeling was performed two or three times per treatment session. Three different CMs trained over modeling periods of 10, 20, and 40 s were built from a single, original CM log file. The predicted target positions were calculated from the CM parameters and the vertical displacement of infrared markers on the abdomen (PIR) during the modeling. We assessed how the CM parameters obtained over modeling periods of T s (T = 10, 20, and 40 s) were robust to changes in respiratory patterns after several minutes. The mimic-predicted target positions after several minutes were computed based on the previous CM parameters and PIR during the next modeling. The 95th percentiles of the differences between mimic-predicted and detected target positions over 40 s (E95robust,T: T = 10, 20, and 40 s) were then calculated. RESULTS Strong correlations greater than 0.92 were observed between the E95robust,20 and E95robust,40 values. Meanwhile, irregular respiratory patterns with inconsistent amplitudes of motion created differences between the E95robust,10 and E95robust,40 values of ≥10 mm. CONCLUSIONS The accuracies of CMs derived using 20 s were almost identical to those obtained over 40 s, and superior to those obtained over 10 s.
Collapse
Affiliation(s)
- Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan.
| | - Mami Akimoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Yamada
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Hiroaki Tanabe
- Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Japan
| | - Nami Ueki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Masaki Kokubo
- Department of Radiation Oncology, Kobe City Medical Center General Hospital, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
3
|
Knopf A, Nill S, Yohannes I, Graeff C, Dowdell S, Kurz C, Sonke JJ, Biegun AK, Lang S, McClelland J, Champion B, Fast M, Wölfelschneider J, Gianoli C, Rucinski A, Baroni G, Richter C, van de Water S, Grassberger C, Weber D, Poulsen P, Shimizu S, Bert C. Challenges of radiotherapy: report on the 4D treatment planning workshop 2013. Phys Med 2014; 30:809-15. [PMID: 25172392 DOI: 10.1016/j.ejmp.2014.07.341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 01/27/2023] Open
Abstract
This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including all critical aspects of time resolved delivery, such as in-room imaging, motion detection, motion managing, beam application, and quality assurance techniques. The report aims to revise achievements in the field and to discuss remaining challenges and potential solutions. As main achievements advances in the development of a standardized 4D phantom and in the area of 4D-treatment plan optimization were identified. Furthermore, it was noticed that MR imaging gains importance and high interest for sequential 4DCT/MR data sets was expressed, which represents a general trend of the field towards data covering a longer time period of motion. A new point of attention was work related to dose reconstructions, which may play a major role in verification of 4D treatment deliveries. The experimental validation of results achieved by 4D treatment planning and the systematic evaluation of different deformable image registration methods especially for inter-modality fusions were identified as major remaining challenges. A challenge that was also suggested as focus for future 4D workshops was the adaptation of image guidance approaches from conventional radiotherapy into particle therapy. Besides summarizing the last workshop, the authors also want to point out new evolving demands and give an outlook on the focus of the next workshop.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aleksandra K Biegun
- KVI-Center for Advanced Radiation Technology, University of Groningen, Netherlands
| | | | | | | | | | | | - Chiara Gianoli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy; Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Antoni Rucinski
- Radiation Oncology Department, SLK-Klinik Heilbronn, Germany
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and Bioengineering Unit, CNAO Foundation, Pavia, Italy
| | - Christian Richter
- Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital C.G. Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, DKTK, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Fattori G, Saito N, Seregni M, Kaderka R, Pella A, Constantinescu A, Riboldi M, Steidl P, Cerveri P, Bert C, Durante M, Baroni G. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring. Technol Cancer Res Treat 2013; 13:517-28. [PMID: 24354750 PMCID: PMC4527457 DOI: 10.7785/tcrtexpress.2013.600275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in −0.3(2.3)% and −1.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.
Collapse
Affiliation(s)
- G Fattori
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|