1
|
Non-Targeted Effects of Synchrotron Radiation: Lessons from Experiments at the Australian and European Synchrotrons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Studies have been conducted at synchrotron facilities in Europe and Australia to explore a variety of applications of synchrotron X-rays in medicine and biology. We discuss the major technical aspects of the synchrotron irradiation setups, paying specific attention to the Australian Synchrotron (AS) and the European Synchrotron Radiation Facility (ESRF) as those best configured for a wide range of biomedical research involving animals and future cancer patients. Due to ultra-high dose rates, treatment doses can be delivered within milliseconds, abiding by FLASH radiotherapy principles. In addition, a homogeneous radiation field can be spatially fractionated into a geometric pattern called microbeam radiotherapy (MRT); a coplanar array of thin beams of microscopic dimensions. Both are clinically promising radiotherapy modalities because they trigger a cascade of biological effects that improve tumor control, while increasing normal tissue tolerance compared to conventional radiation. Synchrotrons can deliver high doses to a very small volume with low beam divergence, thus facilitating the study of non-targeted effects of these novel radiation modalities in both in-vitro and in-vivo models. Non-targeted radiation effects studied at the AS and ESRF include monitoring cell–cell communication after partial irradiation of a cell population (radiation-induced bystander effect, RIBE), the response of tissues outside the irradiated field (radiation-induced abscopal effect, RIAE), and the influence of irradiated animals on non-irradiated ones in close proximity (inter-animal RIBE). Here we provide a summary of these experiments and perspectives on their implications for non-targeted effects in biomedical fields.
Collapse
|
2
|
Wright MD, Romanelli P, Bravin A, Le Duc G, Brauer-Krisch E, Requardt H, Bartzsch S, Hlushchuk R, Laissue JA, Djonov V. Non-conventional Ultra-High Dose Rate (FLASH) Microbeam Radiotherapy Provides Superior Normal Tissue Sparing in Rat Lung Compared to Non-conventional Ultra-High Dose Rate (FLASH) Radiotherapy. Cureus 2021; 13:e19317. [PMID: 35223216 PMCID: PMC8864723 DOI: 10.7759/cureus.19317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional radiotherapy is a widely used non-invasive form of treatment for many types of cancer. However, due to a low threshold in the lung for radiation-induced normal tissue damage, it is of less utility in treating lung cancer. For this reason, surgery is the preferred treatment for lung cancer, which has the detriment of being highly invasive. Non-conventional ultra-high dose rate (FLASH) radiotherapy is currently of great interest in the radiotherapy community due to demonstrations of reduced normal tissue toxicity in lung and other anatomy. This study investigates the effects of FLASH microbeam radiotherapy, which in addition to ultra-high dose rate incorporates a spatial segmentation of the radiation field, on the normal lung tissue of rats. With a focus on fibrotic damage, this work demonstrates that FLASH microbeam radiotherapy provides an order of magnitude increase in normal tissue radio-resistance compared to FLASH radiotherapy. This result suggests FLASH microbeam radiotherapy holds promise for much improved non-invasive control of lung cancer.
Collapse
Affiliation(s)
- Michael D Wright
- Ginzton Technology Center, Varian Medical Systems, Palo Alto, USA.,Research & Development Center, Avail Medical Devices, Roseville, USA
| | | | - Alberto Bravin
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, FRA
| | - Geraldine Le Duc
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, FRA.,Pharmaceutics, NH TherAguix, Lyon, FRA
| | - Elke Brauer-Krisch
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, FRA
| | - Herwig Requardt
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, FRA
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Munich, DEU.,Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, DEU
| | | | | | | |
Collapse
|
3
|
Moradi F, Khandaker M, Abdul Sani S, Uguru E, Sulieman A, Bradley D. Feasibility study of a minibeam collimator design for a 60Co gamma irradiator. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Hombrink G, Wilkens JJ, Combs SE, Bartzsch S. Simulation and measurement of microbeam dose distribution in lung tissue. Phys Med 2020; 75:77-82. [PMID: 32559648 DOI: 10.1016/j.ejmp.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022] Open
Abstract
Microbeam radiation therapy (MRT), a so far preclinical method in radiation oncology, modulates treatment doses on a micrometre scale. MRT uses treatment fields with a few ten micrometre wide high dose regions (peaks) separated by a few hundred micrometre wide low dose regions (valleys) and was shown to spare tissue much more effectively than conventional radiation therapy at similar tumour control rates. While preclinical research focused primarily on tumours of the central nervous system, recently also lung tumours have been suggested as a potential target for MRT. This study investigates the effect of the lung microstructure, comprising air cavities of a few hundred micrometre diameter, on the microbeam dose distribution in lung. In Monte Carlo simulations different models of heterogeneous lung tissue are compared with pure water and homogeneous air-water mixtures. Experimentally, microbeam dose distributions in porous foam material with cavity sizes similar to the size of lung alveoli were measured with film dosimetry at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Simulations and experiments show that the microstructure of the lung has a huge impact on the local doses in the microbeam fields. Locally, material inhomogeneities may change the dose by a factor of 1.7, and also average peak and valley doses substantially differ from those in homogeneous material. Our results imply that accurate dose prediction for MRT in lung requires adequate models of the lung microstructure. Even if only average peak and valley doses are of interest, the assumption of a simple homogeneous air-water mixture is not sufficient. Since anatomic information on a micrometre scale are unavailable for clinical treatment planning, alternative methods and models have to be developed.
Collapse
Affiliation(s)
- Gerrit Hombrink
- University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany; Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | - Jan J Wilkens
- University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Stephanie E Combs
- University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany; Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | - Stefan Bartzsch
- University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany; Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| |
Collapse
|
5
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Billena C, Khan AJ. A Current Review of Spatial Fractionation: Back to the Future? Int J Radiat Oncol Biol Phys 2019; 104:177-187. [PMID: 30684666 PMCID: PMC7443362 DOI: 10.1016/j.ijrobp.2019.01.073] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 11/24/2022]
Abstract
Spatially fractionated radiation therapy represents a significant departure from canonical thinking in radiation oncology despite having origins in the early 1900s. The original and most common implementation of spatially fractionated radiation therapy uses commercially available blocks or multileaf collimators to deliver a nonconfluent, sieve-like pattern of radiation to the target volume in a nonuniform dose distribution. Dosimetrically, this is parameterized by the ratio of the valley dose in cold spots to the peak dose in hot spots, or the valley-to-peak dose ratio. The radiobiologic mechanisms are postulated to involve radiation-induced bystander effects, microvascular alterations, and/or immunomodulation. Current indications include bulky or locally advanced disease that would not be amenable to conventional radiation or that has proved refractory to chemoradiation. Early-phase clinical trials have shown remarkable success, with some response rates >90% and minimal toxicity. This has promoted technological developments in 3-dimensional formats (LATTICE), micron-size beams (microbeam), and proton arrays. Nevertheless, more clinical and biological data are needed to specify ideal dosimetry parameters and to formulate robust clinical indications and guidelines for optimal standardized care.
Collapse
Affiliation(s)
- Cole Billena
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
7
|
Donzelli M, Bräuer-Krisch E, Oelfke U, Wilkens JJ, Bartzsch S. Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy. Phys Med Biol 2018; 63:045013. [PMID: 29324439 PMCID: PMC5964549 DOI: 10.1088/1361-6560/aaa705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.
Collapse
Affiliation(s)
- Mattia Donzelli
- The European
Synchrotron Radiation Facility, 71 Avenue des Martyrs 38000,
Grenoble, France
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
- Author to whom any correspondence should be
addressed
| | - Elke Bräuer-Krisch
- The European
Synchrotron Radiation Facility, 71 Avenue des Martyrs 38000,
Grenoble, France
| | - Uwe Oelfke
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts
der Isar, Technical University of
Munich, Ismaninger Straße 22, 81675 Munich,
Germany
| | - Stefan Bartzsch
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
- Department of Radiation Oncology, Klinikum rechts
der Isar, Technical University of
Munich, Ismaninger Straße 22, 81675 Munich,
Germany
| |
Collapse
|
8
|
Schültke E, Balosso J, Breslin T, Cavaletti G, Djonov V, Esteve F, Grotzer M, Hildebrandt G, Valdman A, Laissue J. Microbeam radiation therapy - grid therapy and beyond: a clinical perspective. Br J Radiol 2017; 90:20170073. [PMID: 28749174 PMCID: PMC5853350 DOI: 10.1259/bjr.20170073] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microbeam irradiation is spatially fractionated radiation on a micrometer scale. Microbeam irradiation with therapeutic intent has become known as microbeam radiation therapy (MRT). The basic concept of MRT was developed in the 1980s, but it has not yet been tested in any human clinical trial, even though there is now a large number of animal studies demonstrating its marked therapeutic potential with an exceptional normal tissue sparing effect. Furthermore, MRT is conceptually similar to macroscopic grid based radiation therapy which has been used in clinical practice for decades. In this review, the potential clinical applications of MRT are analysed for both malignant and non-malignant diseases.
Collapse
Affiliation(s)
- Elisabeth Schültke
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Jacques Balosso
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Thomas Breslin
- 3 Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden.,4 Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Guido Cavaletti
- 5 Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentin Djonov
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Francois Esteve
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Michael Grotzer
- 7 Department of Oncology, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Guido Hildebrandt
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Alexander Valdman
- 8 Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jean Laissue
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Dou Y, Jamieson DN, Liu J, Li A, Li L. GEANT4 models for the secondary radiation flux in the collimation system of a 300MeV proton microbeam. Phys Med 2017; 32:1841-1845. [PMID: 28341297 DOI: 10.1016/j.ejmp.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 11/27/2022] Open
Abstract
In Harbin, we are developing a 300MeV proton microbeam for many applications in space science including upset studies in microelectronic devices, radiation hardness of materials for satellites and radiation effects in human tissues. There are also applications of this facility proposed for proton therapy. The microbeam system will employ a purpose-built proton synchrotron to provide the beam. However there are many challenges to be addressed in the design, construction and operation of this facility. Here we address two important design aspects for which we apply GEANT4 modeling. First, the high energy proton beam interacts strongly with beam line materials, especially the collimation slits, to produce showers of secondary particles which could introduce significant background signals and degrade the resolution of the proton microbeam. Second, the beam transport within the residual vacuum of the beam line may also introduce undesirable background radiation. In both cases mitigation strategies need to be incorporated during the design phase of the new system. We study the use of a dipole magnet following the aperture collimator to reduce the flux of secondary particles incident on the analysis chamber. Monte Carlo simulations are performed using GEANT4 and SRIM. By inserting the dipole magnet, we find as expected a significant reduction in the scattering of protons and other particles, such as neutrons and gamma rays, at the collimation system exit position. Secondary radiation from the residual gas pressure within the beam line vacuum system are also modelled and found to be negligible under the standard operating conditions.
Collapse
Affiliation(s)
- Yanxin Dou
- School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China; School of Physics, University of Melbourne, VIC 3010, Australia.
| | | | - Jianli Liu
- Research Center of Basic Space Science, Harbin Institute of Technology, Harbin 150001, China
| | - Anlong Li
- Microelectronics Center, Harbin Institute of Technology, Harbin 150001, China
| | - Liyi Li
- School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
10
|
Bartzsch S, Cummings C, Eismann S, Oelfke U. A preclinical microbeam facility with a conventional x-ray tube. Med Phys 2016; 43:6301. [PMID: 27908159 PMCID: PMC5965367 DOI: 10.1118/1.4966032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Microbeam radiation therapy is an innovative treatment approach in radiation therapy that uses arrays of a few tens of micrometer wide and a few hundreds of micrometer spaced planar x-ray beams as treatment fields. In preclinical studies these fields efficiently eradicated tumors while normal tissue could effectively be spared. However, development and clinical application of microbeam radiation therapy is impeded by a lack of suitable small scale sources. Until now, only large synchrotrons provide appropriate beam properties for the production of microbeams. METHODS In this work, a conventional x-ray tube with a small focal spot and a specially designed collimator are used to produce microbeams for preclinical research. The applicability of the developed source is demonstrated in a pilot in vitro experiment. The properties of the produced radiation field are characterized by radiochromic film dosimetry. RESULTS 50 μm wide and 400 μm spaced microbeams were produced in a 20 × 20 mm2 sized microbeam field. The peak to valley dose ratio ranged from 15.5 to 30, which is comparable to values obtained at synchrotrons. A dose rate of up to 300 mGy/s was achieved in the microbeam peaks. Analysis of DNA double strand repair and cell cycle distribution after in vitro exposures of pancreatic cancer cells (Panc1) at the x-ray tube and the European Synchrotron leads to similar results. In particular, a reduced G2 cell cycle arrest is observed in cells in the microbeam peak region. CONCLUSIONS At its current stage, the source is restricted to in vitro applications. However, moderate modifications of the setup may soon allow in vivo research in mice and rats.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Institute of Cancer Research, 15 Cotswold Road, Belmont Sutton, Surrey SM2 5NG, United Kingdom
| | - Craig Cummings
- Institute of Cancer Research, 15 Cotswold Road, Belmont Sutton, Surrey SM2 5NG, United Kingdom
| | - Stephan Eismann
- Department of Physics and Astronomy, University of Heidelberg, Grabengasse 1, 69117 Heidelberg, Germany
| | - Uwe Oelfke
- Institute of Cancer Research, 15 Cotswold Road, Belmont Sutton, Surrey SM2 5NG, United Kingdom
| |
Collapse
|
11
|
Multi-strip silicon sensors for beam array monitoring in micro-beam radiation therapy. Phys Med 2016; 32:1795-1800. [DOI: 10.1016/j.ejmp.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/14/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022] Open
|
12
|
Optimizing dose enhancement with Ta 2O 5 nanoparticles for synchrotron microbeam activated radiation therapy. Phys Med 2016; 32:1852-1861. [PMID: 27866898 DOI: 10.1016/j.ejmp.2016.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022] Open
Abstract
Microbeam Radiation Therapy (MRT) exploits tumour selectivity and normal tissue sparing with spatially fractionated kilovoltage X-ray microbeams through the dose volume effect. Experimental measurements with Ta2O5 nanoparticles (NPs) in 9L gliosarcoma treated with MRT at the Australian Synchrotron, increased the treatment efficiency. Ta2O5 NPs were observed to form shells around cell nuclei which may be the reason for their efficiency in MRT. In this article, our experimental observation of NP shell formation is the basis of a Geant4 radiation transport study to characterise dose enhancement by Ta2O5 NPs in MRT. Our study showed that NP shells enhance the physical dose depending microbeam energy and their location relative to a single microbeam. For monochromatic microbeam energies below ∼70keV, NP shells show highly localised dose enhancement due to the short range of associated secondary electrons. Low microbeam energies indicate better targeted treatment by allowing higher microbeam doses to be administered to tumours and better exploit the spatial fractionation related selectivity observed with MRT. For microbeam energies above ∼100keV, NP shells extend the physical dose enhancement due to longer-range secondary electrons. Again, with NPs selectively internalised, the local effectiveness of MRT is expected to increase in the tumour. Dose enhancement produced by the shell aggregate varied more significantly in the cell population, depending on its location, when compared to a homogeneous NP distribution. These combined simulation and experimental data provide first evidence for optimising MRT through the incorporation of newly observed Ta2O5 NP distributions within 9L cancer cells.
Collapse
|
13
|
Lee E, Meyer J, Sandison G. Collimator design for spatially-fractionated proton beams for radiobiology research. Phys Med Biol 2016; 61:5378-89. [DOI: 10.1088/0031-9155/61/14/5378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Bravin A, Olko P, Schültke E, Wilkens JJ. SYRA3 COST Action--Microbeam radiation therapy: Roots and prospects. Phys Med 2015; 31:561-3. [PMID: 26123367 DOI: 10.1016/j.ejmp.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022] Open
Abstract
Microbeam radiation therapy (MRT) is an irradiation modality for therapeutic purposes which uses arrays of collimated quasi parallel microbeams, each up to 100 μm wide, to deliver high radiation doses. Several studies have reported the extraordinary tolerance of normal tissues to MRT irradiation; conversely, MRT has been shown to be highly efficient on tumor growth control. The original and most widely developed application of MRT, yet in the preclinical phase, consists in using spatially fractionated X-ray beams issued from a synchrotron radiation source in the treatment of brain tumors. More recently, MRT has been tested in successful pioneering assays to reduce or interrupt seizures in preclinical models of epilepsy. The MRT concept has also been extended to proton therapy. The development of MRT towards its clinical implementation is presently driven by an EU-supported consortium of laboratories from 16 countries within the COST Action TD1205 (SYRA3). The results of the first SYRA3 workshop on "Radiation Therapy with Synchrotron Radiation: Achievements and Challenges" held in Krakow (Poland) during March 25-26 2014 are summarized in this issue with an overview presented in this paper. The papers reflect the multidisciplinary international activities of SYRA3. The topics covered in this focus issue include medical physics aspects, pre-clinical studies, clinical applications, and an industrial perspective; finally an outlook towards future prospects of compact sources and proton microbeams.
Collapse
Affiliation(s)
- Alberto Bravin
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex, France.
| | - Pawel Olko
- Institute of Nuclear Physics, PAS, Kraków, Poland.
| | - Elisabeth Schültke
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany.
| | - Jan J Wilkens
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.
| |
Collapse
|