1
|
Kokhan VS, Pikalov VA, Chaprov K, Gulyaev MV. Combined Ionizing Radiation Exposure by Gamma Rays and Carbon-12 Nuclei Increases Neurotrophic Factor Content and Prevents Age-Associated Decreases in the Volume of the Sensorimotor Cortex in Rats. Int J Mol Sci 2024; 25:6725. [PMID: 38928431 PMCID: PMC11203503 DOI: 10.3390/ijms25126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of NRC “Kurchatov Institute”, 142281 Protvino, Russia;
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Mikhail V. Gulyaev
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
2
|
Zhou S, Ding X, Zhang Y, Liu Y, Wang X, Guo Y, Zhang J, Liu X, Gong G, Su Y, Wang L, Zhao M, Hu M. Evaluation of specific RBE in different cells of hippocampus under high-dose proton irradiation in rats. Sci Rep 2024; 14:8193. [PMID: 38589544 PMCID: PMC11001863 DOI: 10.1038/s41598-024-58831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
The study aimed to determine the specific relative biological effectiveness (RBE) of various cells in the hippocampus following proton irradiation. Sixty Sprague-Dawley rats were randomly allocated to 5 groups receiving 20 or 30 Gy of proton or photon irradiation. Pathomorphological neuronal damage in the hippocampus was assessed using Hematoxylin-eosin (HE) staining. The expression level of NeuN, Nestin, Caspase-3, Olig2, CD68 and CD45 were determined by immunohistochemistry (IHC). The RBE range established by comparing the effects of proton and photon irradiation at equivalent biological outcomes. Proton20Gy induced more severe damage to neurons than photon20Gy, but showed no difference compared to photon30Gy. The RBE of neuron was determined to be 1.65. Similarly, both proton20Gy and proton30Gy resulted in more inhibition of oligodendrocytes and activation of microglia in the hippocampal regions than photon20Gy and photon30Gy. However, the expression of Olig2 was higher and CD68 was lower in the proton20Gy group than in the photon30Gy group. The RBE of oligodendrocyte and microglia was estimated to be between 1.1 to 1.65. For neural stem cells (NSCs) and immune cells, there were no significant difference in the expression of Nestin and CD45 between proton and photon irradiation (both 20 and 30 Gy). Therefore, the RBE for NSCs and immune cell was determined to be 1.1. These findings highlight the varying RBE values of different cells in the hippocampus in vivo. Moreover, the actual RBE of the hippocampus may be higher than 1.1, suggesting that using as RBE value of 1.1 in clinical practice may underestimate the toxicities induced by proton radiation.
Collapse
Affiliation(s)
- Shengying Zhou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Yiyuan Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Yuanyuan Liu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiaowen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
- Shandong University cancer center, Jinan, 250100, Shandong, China
| | - Yujiao Guo
- Affiliated Hospital of Jining Medical College, Jining, 272067, Shandong, China
| | | | - Xiao Liu
- 960 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jinan, 250031, Shandong, China
| | - Guanzhong Gong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Ya Su
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
3
|
Kolesnikova IA, Lalkovičova M, Severyukhin YS, Golikova KN, Utina DM, Pronskikh EV, Despotović SZ, Gaevsky VN, Pirić D, Masnikosa R, Budennaya NN. The Effects of Whole Body Gamma Irradiation on Mice, Age-Related Behavioral, and Pathophysiological Changes. Cell Mol Neurobiol 2023; 43:3723-3741. [PMID: 37402948 DOI: 10.1007/s10571-023-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co60 at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group. The radiation damage was confirmed by assessing the ratio of leukocytes in the peripheral blood of mice at a later date after exposure to Co60. After irradiation, a decrease in the glioneuronal complex was observed in the irritated group as well as histological changes of brain cells. To sum up, not only was the hematological status of mice altered upon the total gamma irradiation, but also their behavior, which was most probably due to significant alterations in the CNS. Study of influence of ionizing radiation on female mice, comparison between different age groups. Open Field test on the 30 days after 2 Gy of γ-rays and histological analysis indicated changes in behavioral patterns, leucocytes, and brain tissue.
Collapse
Affiliation(s)
- I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - M Lalkovičova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198.
- Department of Physical Chemistry, Pavol Jozef Safarik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| | - Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - K N Golikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - E V Pronskikh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - Sanja Z Despotović
- Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D Pirić
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - R Masnikosa
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - N N Budennaya
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| |
Collapse
|
4
|
Differential Impact of Social Isolation and Space Radiation on Behavior and Motor Learning in Rats. Life (Basel) 2023; 13:life13030826. [PMID: 36983981 PMCID: PMC10057568 DOI: 10.3390/life13030826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Future missions to Mars will expose astronauts to several physical and psychological challenges, including exposure to space radiation (SR) and periods of social isolation (SI). Each of these stressors, in addition to mission demands, can affect physical and mental health and potentially negatively impact sleep. The effects of inflight stressors may vary with duration and time course, may be additive or compounding, and may vary with individual differences in stress resilience and vulnerability. Determining how individual differences in resilient and vulnerable phenotypes respond to these mission-related stressors and their interactions with sleep will be crucial for understanding and mitigating factors that can impair performance and damage health. Here, we examined the single and compound effects of ground-based analogs of SI and SR on sensorimotor performance on the balance beam (BB) in rats. We also assessed emotional responses during testing on the BB and assessed whether sensorimotor performance and emotion varied with individual differences in stress resiliency using our established animal model in which stress produces different effects on sleep. Results showed differential motor performance and emotion in the BB task between SI and SR, and these varied based on resilient and vulnerable phenotypes. These findings demonstrate that identifying individual responses to stressors that can impact sensorimotor ability and behavior necessary to perform mission-related tasks will be of particular importance for astronauts and future missions. Should similar effects occur in humans, there may be considerable inter-individual variability in the impact that flight stressors have on the mental health of astronauts and their ability to perform mission-related tasks.
Collapse
|
5
|
Comparative Analysis of Behavioral Reactions and Morphological Changes in the Rat Brain After Exposure to Ionizing Radiation with Different Physical Characteristics. Cell Mol Neurobiol 2023; 43:339-353. [PMID: 34982311 DOI: 10.1007/s10571-021-01187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/24/2021] [Indexed: 01/11/2023]
Abstract
The aim of this research was to study behavioral reactions and morphological changes in the brain of adult female Sprague Dawley rats after exposure to 170 MeV and 70 MeV protons and gamma radiation (60Co) at a dose of 1 Gy. The analysis of the behavioral reactions in the T-maze showed that exposure to ionizing radiation with different LETs led to an increase in number of repeated entries into the arms of the maze in the spontaneous alternation test. In the Open Field test a decrease in overall motor activity in the group of irradiated animals (70 MeV protons at the Bragg peak) was observed. A decrease in the number of standing positions was seen in all groups of irradiated animals. Morphological analysis showed the development of early amyloidosis, autolysis of the ependymal layer, an increase in the number of neurodegenerative changes in various structures of the brain, and the development of neuronal hypertrophy on the 30th day after irradiation in the cerebellum and hippocampal hilus. Exposure to protons at a dose of 1 Gy leads to the development of structural and functional disorders of the central nervous system of animals on the 30th day after irradiation. These data indicate a damage of short-term memory, a decrease in motor activity and exploratory behavior of animals. With an increase in LET, there is an increase in the number of amyloid plaques in the forebrain of rats, autolysis of the ependymal layer of the ventricles, and the development of dystrophic changes. Investigations of behavioral reactions and morphological changes in various parts of the brain of adult rats on the 30th day after influence of ionizing radiation with different physical characteristics at a dose of 1 Gy. Various negative patho-morphological and cognitive-behavioral changes observed.
Collapse
|
6
|
Kokhan VS, Ustyugov AA, Pikalov VA. Dynamics of Dopamine and Other Monoamines Content in Rat Brain after Single Low-Dose Carbon Nuclei Irradiation. Life (Basel) 2022; 12:life12091306. [PMID: 36143343 PMCID: PMC9502711 DOI: 10.3390/life12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Space radiation, presented primarily by high-charge and -energy particles (HZEs), has a substantial impact on the central nervous system (CNS) of astronauts. This impact, surprisingly, has not only negative but also positive effects on CNS functions. Despite the fact that the mechanisms of this effect have not yet been elucidated, several studies indicate a key role for monoaminergic networks underlying these effects. Here, we investigated the effects of acute irradiation with 450 MeV/n carbon (12C) nuclei at a dose of 0.14 Gy on Wistar rats; a state of anxiety was accessed using a light–dark box, spatial memory in a Morris water maze, and the dynamics of monoamine metabolism in several brain morphological structures using HPLC. No behavioral changes were observed. Irradiation led to the immediate suppression of dopamine turnover in the prefrontal cortex, hypothalamus, and striatum, while a decrease in the level of norepinephrine was detected in the amygdala. However, these effects were transient. The deferred effect of dopamine turnover increase was found in the hippocampus. These data underscore the ability of even low-dose 12C irradiation to affect monoaminergic networks. However, this impact is transient and is not accompanied by behavioral alterations.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
- Correspondence: ; Tel.: +7-92-5462-9948
| | - Alexey A. Ustyugov
- Institute of Physiologically Active Compounds RAS, 142432 Chernogolovka, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of National Research Centre “Kurchatov Institute”, 142281 Protvino, Russia
| |
Collapse
|
7
|
Severyukhin YS, Lalkovičová M, Kolesnikova IA, Utina DM, Lyakhova KN, Gaevsky VN. The effect of piracetam on behavioral reactions of adult rats and morphological changes in the brain after whole body fractionated gamma irradiation: an exploratory study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:73-86. [PMID: 33394131 DOI: 10.1007/s00411-020-00886-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
This research was aimed at examining the effect of piracetam on behavioral reactions and morphological changes in the brain of adult rats after fractionated gamma irradiation with a total dose of 5 Gy. Fractionated gamma irradiation led to a decrease in freezing behavior in the Open Field and leukopenia. These behavioral and hematological disorders were accompanied by a cell decrease in the cross-sectional area of granular layer of the dentate gyrus, an increase in the number of Fluoro Jade B-positive cells, and an increase in the number of irreversible changes in the cerebral cortex. The administration of piracetam immediately after irradiation for 14 days maintained the freezing behavior at the level of intact animals and decreased in general motor activity. Also, an increase in morphometric parameters and a decrease of neurodegeneration were observed. We found a statistically significant decrease in the number of Fluoro Jade B-positive cells in comparison with the group of irradiated animals. The drug had no leukoprotective effect on laboratory animals, and led to the emergence of inconclusive trends in the alternation of the arms of the T-labyrinth. Piracetam application showed positive behavioral and morphological changes in rodents and might have a neuroprotective effect in brain tissue after gamma irradiation. Since it is the first experiment with piracetam we attempted, this exploratory study serves to provide more insight into the potential neuroprotection activity of piracetam, and following research is necessary.
Collapse
Affiliation(s)
- Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 20, 14198, Dubna, Russia
- Dubna State University, Universitetskaya 19, 14198, Dubna, Russia
| | - M Lalkovičová
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 20, 14198, Dubna, Russia.
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia.
| | - I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 20, 14198, Dubna, Russia
- Dubna State University, Universitetskaya 19, 14198, Dubna, Russia
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 20, 14198, Dubna, Russia
- Dubna State University, Universitetskaya 19, 14198, Dubna, Russia
| | - K N Lyakhova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 20, 14198, Dubna, Russia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 20, 14198, Dubna, Russia
| |
Collapse
|
8
|
Blackwell AA, Schell BD, Osterlund Oltmanns JR, Whishaw IQ, Ton ST, Adamczyk NS, Kartje GL, Britten RA, Wallace DG. Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation ( 28Si) exposure. Behav Brain Res 2020; 400:113010. [PMID: 33181183 DOI: 10.1016/j.bbr.2020.113010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Deep space flight missions beyond the Van Allen belt have the potential to expose astronauts to space radiation which may damage the central nervous system and impair function. The proposed mission to Mars will be the longest mission-to-date and identifying mission critical tasks that are sensitive to space radiation is important for developing and evaluating the efficacy of counter measures. Fine motor control has been assessed in humans, rats, and many other species using string-pulling behavior. For example, focal cortical damage has been previously shown to disrupt the topographic (i.e., path circuity) and kinematic (i.e., moment-to-moment speed) organization of rat string-pulling behavior count to compromise task accuracy. In the current study, rats were exposed to a ground-based model of simulated space radiation (5 cGy 28Silicon), and string-pulling behavior was used to assess fine motor control. Irradiated rats initially took longer to pull an unweighted string into a cage, exhibited impaired accuracy in grasping the string, and displayed postural deficits. Once rats were switched to a weighted string, some deficits lessened but postural instability remained. These results demonstrate that a single exposure to a low dose of space radiation disrupts skilled hand movements and posture, suggestive of neural impairment. This work establishes a foundation for future studies to investigate the neural structures and circuits involved in fine motor control and to examine the effectiveness of counter measures to attenuate the effects of space radiation on fine motor control.
Collapse
Affiliation(s)
- Ashley A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States.
| | - Brandi D Schell
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States
| | | | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Son T Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, 60153, United States
| | - Natalie S Adamczyk
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States
| | - Gwendolyn L Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, 60153, United States
| | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, 23507, United States
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States
| |
Collapse
|
9
|
Microgravity versus Microgravity and Irradiation: Investigating the Change of Neuroendocrine-Immune System and the Antagonistic Effect of Traditional Chinese Medicine Formula. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2641324. [PMID: 32566675 PMCID: PMC7273471 DOI: 10.1155/2020/2641324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022]
Abstract
During spaceflight, the homeostasis of the living body is threatened with cosmic environment including microgravity and irradiation. Traditional Chinese medicine could ameliorate the internal imbalance during spaceflight, but its mechanism is still unclear. In this article, we compared the difference of neuroendocrine-immune balance between simulated microgravity (S) and simulated microgravity and irradiation (SAI) environment. We also observed the antagonistic effect of SAI using a traditional Chinese medicine formula (TCMF). Wistar rats were, respectively, exposed under S using tail suspending and SAI using tail suspending and 60Co-gama irradiation exposure. The SAI rats were intervened with TCMF. The changes of hypothalamic–pituitary–adrenal (HPA) axis, splenic T-cell, celiac macrophages, and related cytokines were observed after 21 days. Compared with the normal group, the hyperfunction of HPA axis and celiac macrophages, as well as the hypofunction of splenic T-cells, was observed in both the S and SAI group. Compared with the S group, the levels of plasmatic corticotropin-releasing hormone (CRH), macrophage activity, and serous interleukin-6 (IL-6) in the SAI group were significantly reduced. The dysfunctional targets were mostly reversed in the TCMF group. Both S and SAI could lead to NEI imbalance. Irradiation could aggravate the negative feedback inhibition of HPA axis and macrophages caused by S. TCMF could ameliorate the NEI dysfunction caused by SAI.
Collapse
|
10
|
Kokhan VS, Anokhin PK, Belov OV, Gulyaev MV. Cortical Glutamate/GABA Imbalance after Combined Radiation Exposure: Relevance to Human Deep-Space Missions. Neuroscience 2019; 416:295-308. [DOI: 10.1016/j.neuroscience.2019.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/01/2019] [Accepted: 08/03/2019] [Indexed: 12/22/2022]
|
11
|
Neurochemical insights into the radiation protection of astronauts: Distinction between low- and moderate-LET radiation components. Phys Med 2018; 57:7-16. [PMID: 30738534 DOI: 10.1016/j.ejmp.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/13/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023] Open
Abstract
Radiation protection of astronauts remains an ongoing challenge in preparation of deep space exploratory missions. Exposure to space radiation consisting of multiple radiation components is associated with a significant risk of experiencing central nervous system (CNS) detriments, potentially influencing the crew operational decisions. Developing of countermeasures protecting CNS from the deleterious exposure requires understanding the mechanistic nature of cognitive impairments induced by different components of space radiation. The current study was designed to identify differences in neurochemical modifications caused by exposure to low- and moderate-LET radiations and to elucidate a distinction between the observed outcomes. We exposed rats to accelerated protons (170 MeV; 0.5 keV/μm) or to carbon ions (12C; 500 MeV/u; 10.5 keV/μm) delivered at the same dose of 1 Gy. Neurochemical alterations were evaluated 1, 30, and 90 days after exposure via indices of the monoamine metabolism measured in five brain structures, including prefrontal cortex, hypothalamus, nucleus accumbens, hippocampus and striatum. We obtained the detailed patterns of neurochemical modifications after exposure to the mentioned radiation modalities. Our data show that the enhancement in the radiation LET from relatively low to moderate values leads to different neurochemical outcomes and that a particular effect depends on the irradiated brain structure. We also hypothesized that exposure to the moderate-LET radiations can induce a hyperactivation of feedback neurochemical mechanisms, which blur metabolic deviations and lead to the delayed impairments in brain functions. Based on our findings we discuss possible contribution of the observed changes to behavioural impairments.
Collapse
|
12
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
13
|
Belov OV, Batmunkh M, Incerti S, Lkhagva O. Radiation damage to neuronal cells: Simulating the energy deposition and water radiolysis in a small neural network. Phys Med 2016; 32:1510-1520. [PMID: 27865670 DOI: 10.1016/j.ejmp.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023] Open
Abstract
Radiation damage to the central nervous system (CNS) has been an on-going challenge for the last decades primarily due to the issues of brain radiotherapy and radiation protection for astronauts during space travel. Although recent findings revealed a number of molecular mechanisms associated with radiation-induced impairments in behaviour and cognition, some uncertainties exist in the initial neuronal cell injury leading to the further development of CNS malfunction. The present study is focused on the investigation of early biological damage induced by ionizing radiations in a sample neural network by means of modelling physico-chemical processes occurring in the medium after exposure. For this purpose, the stochastic simulation of incident particle tracks and water radiation chemistry was performed in realistic neuron phantoms constructed using experimental data on cell morphology. The applied simulation technique is based on using Monte-Carlo processes of the Geant4-DNA toolkit. The calculations were made for proton, 12C, and 56Fe particles of different energy within a relatively wide range of linear energy transfer values from a few to hundreds of keV/μm. The results indicate that the neuron morphology is an important factor determining the accumulation of microscopic radiation dose and water radiolysis products in neurons. The estimation of the radiolytic yields in neuronal cells suggests that the observed enhancement in the levels of reactive oxygen species may potentially lead to oxidative damage to neuronal components disrupting the normal communication between cells of the neural network.
Collapse
Affiliation(s)
- Oleg V Belov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Moscow Region, Russia.
| | - Munkhbaatar Batmunkh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Moscow Region, Russia
| | - Sébastien Incerti
- Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France; CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Oidov Lkhagva
- Natural Science Division, National University of Mongolia, 1 University St., 210646 Ulaanbaatar, Mongolia
| |
Collapse
|